Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms
Abstract
:1. Introduction
2. Epidemiological Studies
2.1. Cross-Sectional Studies
2.2. Case-Control Studies
2.3. Cohort Studies
2.4. Other Epidemiological Studies
3. Experimental Research
3.1. Potatoes
3.2. Soybeans
3.3. Sesame
3.4. Tomatoes
3.5. Dioscorea
3.6. Onions
3.7. Other Vegetables
4. Clinical Trials
4.1. Whole Soybeans and Soy Milk
4.2. Soybean Protein
4.3. Soybean Isoflavones
4.4. Combination of Soybean Isoflavones and Soybean Protein
4.5. Other Vegetables and Their Bioactive Components
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, M.B.; Wang, W.; Zhou, M.G. Trend analysis on the mortality of cardiovascular diseases from 2004 to 2010 in China. Chin. J. Epidemiol. 2013, 34, 985–988. [Google Scholar]
- Celermajer, D.S.; Chow, C.K.; Marijon, E.; Anstey, N.M.; Woo, K.S. Cardiovascular disease in the developing world: Prevalences, patterns, and the potential of early disease detection. J. Am. Coll. Cardiol. 2012, 60, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cardiovascular Diseases (CVDs). Available online: http://www.who.int/cardiovascular_diseases/en/ (accessed on 13 March 2017).
- Yazdanyar, A.; Newman, A.B. The burden of cardiovascular disease in the elderly: Morbidity, mortality, and costs. Clin. Geriatr. Med. 2009, 25, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Zaina, S.; Lund, G. Epigenetics: A tool to understand diet-related cardiovascular risk? J. Nutrigenet. Nutrigenom. 2011, 4, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.A.; Roy, A.; Prabhakaran, D. Cardiovascular disease risk factors: A childhood perspective. Indian J. Pediatr. 2013, 80 (Suppl. 1), 3–12. [Google Scholar] [CrossRef] [PubMed]
- Walker, J. Reducing cardiovascular disease risk: Cholesterol and diet. Nurs. Stand. 2013, 28, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.L.C.A.; Gomez, M.M.; Ferrando, V.P.; Barianca, O.M.; Abiatua, B.I.; Posada, D.L.P.M. Prevalence of cardiovascular risk factors in a cohort of affected by the toxic oil syndrome. Med. Clin. 2003, 121, 405–407. [Google Scholar] [CrossRef]
- Tam, C.F.; Nguyen, L.; Pe, S.S.; Hajyan, K.; Kevork, S.; Davis, R.; Poon, G.; Lew, P. The effects of age, gender, obesity, health habits, and vegetable consumption frequency on hypertension in elderly Chinese Americans. Nutr. Res. 2005, 25, 31–43. [Google Scholar] [CrossRef]
- Wens, I.; Dalgas, U.; Stenager, E.; Eijnde, B.O. Risk factors related to cardiovascular diseases and the metabolic syndrome in multiple sclerosis—A systematic review. Mult. Scler. 2013, 19, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Anthony, D.; George, P.; Eaton, C.B. Cardiac risk factors: Environmental, sociodemographic, and behavioral cardiovascular risk factors. FP Essent. 2014, 421, 16–20. [Google Scholar] [PubMed]
- Li, S.; Gan, L.Q.; Li, S.K.; Zheng, J.C.; Xu, D.P.; Li, H.B. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity. Food Funct. 2014, 5, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Li, S.; Zhou, T.; Zhang, P.; Li, H.B. Alcoholic beverage consumption and chronic diseases. Int. J. Environ. Res. Public Health 2016, 13, 522. [Google Scholar] [CrossRef] [PubMed]
- Kones, R.; Rumana, U. Prevention of cardiovascular disease: Updating the immensity of the challenge and the role of risk factors. Hosp. Pract. (1995) 2014, 42, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kullo, I.J.; Pardi, D.S.; Loftus, E.J. Epidemiology, risk factors and management of cardiovascular diseases in IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Uthman, O.A.; Hartley, L.; Rees, K.; Taylor, F.; Ebrahim, S.; Clarke, A. Multiple risk factor interventions for primary prevention of cardiovascular disease in low- and middle-income countries. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Gan, R.Y.; Xu, X.R.; Song, F.L.; Kuang, L.; Li, H.B. Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. J. Med. Plants Res. 2010, 4, 2438–2444. [Google Scholar]
- Zhang, J.J.; Li, Y.; Zhou, T.; Xu, D.P.; Zhang, P.; Li, S.; Li, H.B. Bioactivities and health benefits of mushrooms mainly from China. Molecules 2016, 21, 938. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Umar, S.; Myint, P.K.; Mamas, M.A.; Loke, Y.K. Vegetarian diet, seventh day Adventists and risk of cardiovascular mortality: A systematic review and meta-analysis. Int. J. Cardiol. 2014, 176, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Naja, F.; Nasreddine, L.; Itani, L.; Dimassi, H.; Sibai, A.M.; Hwalla, N. Dietary patterns in cardiovascular diseases prevention and management: Review of the evidence and recommendations for primary care physicians in Lebanon. J. Med. Liban. 2014, 62, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Dutton, G.R.; Laitner, M.H.; Perri, M.G. Lifestyle interventions for cardiovascular disease risk reduction: A systematic review of the effects of diet composition, food provision, and treatment modality on weight loss. Curr. Atheroscler. Rep. 2014, 16. [Google Scholar] [CrossRef] [PubMed]
- Funtikova, A.N.; Navarro, E.; Bawaked, R.A.; Fito, M.; Schroder, H. Impact of diet on cardiometabolic health in children and adolescents. Nutr. J. 2015, 14. [Google Scholar] [CrossRef] [PubMed]
- USDA & USHHS. 2015–2020 Dietary Guidelines for Americans. Available online: http://health.gov/dietaryguidelines/2015/guidelines/executive-summary/ (access on 7 January 2015).
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. Br. Med. J. 2014, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravi-Boroujeni, H.; Mohammadifard, N.; Sarrafzadegan, N.; Sajjadi, F.; Maghroun, M.; Khosravi, A.; Alikhasi, H.; Rafieian, M.; Azadbakht, L. Potato consumption and cardiovascular disease risk factors among Iranian population. Int. J. Food Sci. Nutr. 2012, 63, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Park, Y. Intakes of vegetables and related nutrients such as vitamin B complex, potassium, and calcium, are negatively correlated with risk of stroke in Korea. Nutr. Res. Pract. 2010, 4, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Beunza, J.J.; Bes-Rastrollo, M.; Pajares, R.M.; Martinez-Gonzalez, M.A. Vegetable protein and fiber from cereal are inversely associated with the risk of hypertension in a Spanish cohort. Arch. Med. Res. 2006, 37, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Pollock, R.L. The effect of green leafy and cruciferous vegetable intake on the incidence of cardiovascular disease: A meta-analysis. JRSM Cardiovasc. Dis. 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Shu, X.O.; Xiang, Y.B.; Yang, G.; Li, H.L.; Gao, J.; Cai, H.; Gao, Y.T.; Zheng, W. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am. J. Clin. Nutr. 2011, 94, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.S.; Lin, Y.M.; Ho, T.J.; Chen, R.J.; Li, Y.H.; Tsai, F.J.; Tsai, C.H.; Day, C.H.; Chen, T.S.; Huang, C.Y. Genistein suppresses the isoproterenol-treated H9c2 cardiomyoblast cell apoptosis associated with P-38, Erk1/2, JNK, and NFkappaB signaling protein activation. Am. J. Chin. Med. 2013, 41, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Matori, H.; Umar, S.; Nadadur, R.D.; Sharma, S.; Partow-Navid, R.; Afkhami, M.; Amjedi, M.; Eghbali, M. Genistein, a soy phytoestrogen, reverses severe pulmonary hypertension and prevents right heart failure in rats. Hypertension 2012, 60, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Visavadiya, N.P.; Soni, B.; Dalwadi, N. Free radical scavenging and antiatherogenic activities of Sesamum indicum seed extracts in chemical and biological model systems. Food Chem. Toxicol. 2009, 47, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Nakano, D.; Ogura, K.; Miyakoshi, M.; Ishii, F.; Kawanishi, H.; Kurumazuka, D.; Kwak, C.J.; Ikemura, K.; Takaoka, M.; Moriguchi, S.; et al. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 2006, 70, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, C.; Naemura, A.; Hyodo, K.; Nakai, Y.; Katsuta, M.; Yamamoto, J. Experimental antithrombotic effects of sesame seed whole grains and extracts. Blood Coagul. Fibrinolysis 2011, 22, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Karimi, G.; Ramezani, M.; Abdi, A. Protective effects of lycopene and tomato extract against doxorubicin-induced cardiotoxicity. Phytother. Res. 2005, 19, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gan, R.; Li, S.; Zhou, Y.; Li, A.; Xu, D.; Li, H. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Armoza, A.; Haim, Y.; Basiri, A.; Wolak, T.; Paran, E. Tomato extract and the carotenoids lycopene and lutein improve endothelial function and attenuate inflammatory NF-kappa B signaling in endothelial cells. J. Hypertens. 2013, 31, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, W.; Wen, Y.; Gong, G.; Zhao, Q.; Yu, G. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright. Fitoterapia 2010, 81, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Huang, B.; Du, D.; Guo, X.; Xin, G.; Xing, Z.; Liang, Y.; Chen, Y.; Chen, Q.; He, Y.; et al. Anti-thrombosis effect of diosgenyl saponins in vitro and in vivo. Steroids 2013, 78, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Ojewole, J.A.; Kamadyaapa, D.R.; Musabayane, C.T. Some in vitro and in vivo cardiovascular effects of Hypoxis hemerocallidea Fisch & CA Mey (Hypoxidaceae) corm (African potato) aqueous extract in experimental animal models. Cardiovasc. J. S. Afr. 2006, 17, 166–171. [Google Scholar] [PubMed]
- Robert, L.; Narcy, A.; Rock, E.; Demigne, C.; Mazur, A.; Remesy, C. Entire potato consumption improves lipid metabolism and antioxidant status in cholesterol-fed rat. Eur. J. Nutr. 2006, 45, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Ademiluyi, A.O.; Oboh, G. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (alpha-amylase and alpha-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp. Toxicol. Pathol. 2013, 65, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, H.G.; Diniz, Y.S.; Faine, L.A.; Galhardi, C.M.; Burneiko, R.C.; Almeida, J.A.; Ribas, B.O.; Novelli, E. Antioxidant effect of saponin: Potential action of a soybean flavonoid on glucose tolerance and risk factors for atherosclerosis. Int. J. Food Sci. Nutr. 2005, 56, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiary, A.; Yassin, Z.; Hanachi, P.; Rahmat, A.; Ahmad, Z.; Jalali, F. Effects of soy on metabolic biomarkers of cardiovascular disease in elderly women with metabolic syndrome. Arch. Iran. Med. 2012, 15, 462–468. [Google Scholar] [PubMed]
- Wong, J.M.; Kendall, C.W.; Marchie, A.; Liu, Z.; Vidgen, E.; Holmes, C.; Jackson, C.J.; Josse, R.G.; Pencharz, P.B.; Rao, A.V.; et al. Equol status and blood lipid profile in hyperlipidemia after consumption of diets containing soy foods. Am. J. Clin. Nutr. 2012, 95, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Miraghajani, M.S.; Najafabadi, M.M.; Surkan, P.J.; Esmaillzadeh, A.; Mirlohi, M.; Azadbakht, L. Soy milk consumption and blood pressure among type 2 diabetic patients with nephropathy. J. Ren. Nutr. 2013, 23, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Siniavskii, I.; Kraisman, V.A.; Suleimenova, Z. Using of a specialized fermented soy milk product on the basis of soybeans in cardiology practice. Vopr. Pitan. 2013, 82, 51–57. [Google Scholar] [PubMed]
- Jacques, P.F.; Lyass, A.; Massaro, J.M.; Vasan, R.S.; D’Agostino, R.S. Relationship of lycopene intake and consumption of tomato products to incident CVD. Br. J. Nutr. 2013, 110, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Sesso, H.D.; Wang, L.; Ridker, P.M.; Buring, J.E. Tomato-based food products are related to clinically modest improvements in selected coronary biomarkers in women. J. Nutr. 2012, 142, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Medina-Remon, A.; Vallverdu-Queralt, A.; Arranz, S.; Ros, E.; Martinez-Gonzalez, M.A.; Sacanella, E.; Covas, M.I.; Corella, D.; Salas-Salvado, J.; Gomez-Gracia, E.; et al. Gazpacho consumption is associated with lower blood pressure and reduced hypertension in a high cardiovascular risk cohort. Cross-sectional study of the PREDIMED trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 944–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeone, C.; Tavani, A.; Pelucchi, C.; Negri, E.; La Vecchia, C. Allium vegetable intake and risk of acute myocardial infarction in Italy. Eur. J. Nutr. 2009, 48, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Lian, F.; Wang, J.; Huang, X.; Wu, Y.; Cao, Y.; Tan, X.; Xu, X.; Hong, Y.; Yang, L.; Gao, X. Effect of vegetable consumption on the association between peripheral leucocyte telomere length and hypertension: A case-control study. Br. Med. J. Open 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Khosravi-Boroujeni, H.; Saadatnia, M.; Shakeri, F.; Keshteli, A.H.; Esmaillzadeh, A. A case-control study on potato consumption and risk of stroke in central Iran. Arch. Iran. Med. 2013, 16, 172–176. [Google Scholar] [PubMed]
- Sesso, H.D.; Gaziano, J.M.; Liu, S.; Buring, J.E. Flavonoid intake and the risk of cardiovascular disease in women. Am. J. Clin. Nutr. 2003, 77, 1400–1408. [Google Scholar] [PubMed]
- Lin, J.; Rexrode, K.M.; Hu, F.; Albert, C.M.; Chae, C.U.; Rimm, E.B.; Stampfer, M.J.; Manson, J.E. Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am. J. Epidemiol. 2007, 165, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Shu, X.O.; Li, H.; Yang, G.; Cai, Q.; Xiang, Y.B.; Ji, B.T.; Franke, A.A.; Gao, Y.T.; Zheng, W.; et al. Dietary isoflavones, urinary isoflavonoids, and risk of ischemic stroke in women. Am. J. Clin. Nutr. 2015, 102, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Borgi, L.; Rimm, E.B.; Willett, W.C.; Forman, J.P. Potato intake and incidence of hypertension: Results from three prospective US cohort studies. Br. Med. J. 2016, 353. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Lee, I.M.; Ajani, U.; Cole, S.R.; Buring, J.E.; Manson, J.E. Intake of vegetables rich in carotenoids and risk of coronary heart disease in men: The Physicians’ Health Study. Int. J. Epidemiol. 2001, 30, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Terao, J.; Kawai, Y.; Murcita, K. Vegetable flavonoids and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2008, 171, 291–293. [Google Scholar]
- Cai, Y.; Guo, K.; Chen, C.; Wang, P.; Zhang, B.; Zhou, Q.; Mei, F.; Su, Y. Soya isoflavone consumption in relation to carotid intima-media thickness in Chinese equol excretors aged 40–65 years. Br. J. Nutr. 2012, 108, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Messina, M. Soy foods, isoflavones, and the health of postmenopausal women. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 423–430. [Google Scholar] [CrossRef] [PubMed]
- Golzarand, M.; Bahadoran, Z.; Mirmiran, P.; Zadeh-Vakili, A.; Azizi, F. Consumption of nitrate-containing vegetables is inversely associated with hypertension in adults: A prospective investigation from the Tehran lipid and glucose study. J. Nephrol. 2016, 29, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Laerke, H.N.; Meyer, A.S.; Kaack, K.V.; Larsen, T. Soluble fiber extracted from potato pulp is highly fermentable but has no effect on risk markers of diabetes and cardiovascular disease in Goto-Kakizaki rats. Nutr. Res. 2007, 27, 152–160. [Google Scholar] [CrossRef]
- Guo, Y.J.; Deng, G.F.; Xu, X.R.; Wu, S.; Li, S.; Xia, E.Q.; Li, F.; Chen, F.; Ling, W.H.; Li, H.B. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct. 2012, 3, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Gan, R.Y.; Zhang, Y.; Xu, X.R.; Xia, E.Q.; Li, H.B. Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int. J. Mol. Sci. 2011, 12, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed]
- Song, F.L.; Gan, R.Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.B. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Li, H.B.; Wong, C.C.; Cheng, K.W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, S.K.; Gan, R.Y.; Song, F.L.; Kuang, L.; Li, H.B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crop. Prod. 2013, 51, 289–298. [Google Scholar] [CrossRef]
- Deng, G.F.; Xu, X.R.; Zhang, Y.; Li, D.; Gan, R.Y.; Li, H.B. Phenolic compounds and bioactivities of pigmented rice. Crit. Rev. Food Sci. Nutr. 2013, 53, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Miguez, A.C.; Francisco, J.C.; Barberato, S.H.; Simeoni, R.; Precoma, D.; Do, A.V.; Rodrigues, E.; Olandoski, M.; de Noronha, L.; Greca, F.H.; et al. The functional effect of soybean extract and isolated isoflavone on myocardial infarction and ventricular dysfunction: The soybean extract on myocardial infarction. J. Nutr. Biochem. 2012, 23, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Valeri, A.; Fiorenzani, P.; Rossi, R.; Aloisi, A.M.; Valoti, M.; Pessina, F. The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder. Pharmacol. Res. 2012, 66, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, N.; Venkataraman, A.C. Beneficial effect of genistein on lowering blood pressure and kidney toxicity in fructose-fed hypertensive rats. Br. J. Nutr. 2013, 109, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Sun, Z.; Yan, L.; Pan, L.; Yin, S. Effect of different dietary protein source and protein level on serum lipids profile in rats. Health Res. 2012, 41, 449–452. [Google Scholar]
- Marsh, T.G.; Straub, R.K.; Villalobos, F.; Hong, M.Y. Soy protein supports cardiovascular health by downregulating hydroxymethylglutaryl-coenzyme a reductase and sterol regulatory element-binding protein-2 and increasing antioxidant enzyme activity in rats with dextran sodium sulfate-induced mild systemic inflammation. Nutr. Res. 2011, 31, 922–928. [Google Scholar] [PubMed]
- Cai, D.; Liu, M.; Wei, X.; Li, X.; Wang, Q.; Nomura, C.T.; Chen, S. Use of bacillus amyloliquefaciens HZ-12 for High-Level production of the blood glucose lowering compound, 1-Deoxynojirimycin (DNJ), and nutraceutical enriched soybeans via fermentation. Appl. Biochem. Biotechnol. 2017, 181, 1108–1122. [Google Scholar] [CrossRef] [PubMed]
- Kwak, C.S.; Park, S.C.; Song, K.Y. Doenjang, a fermented soybean paste, decreased visceral fat accumulation and adipocyte size in rats fed with high fat diet more effectively than nonfermented soybeans. J. Med. Food 2012, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Hirooka, Y.; Sunagawa, K. Miso (Japanese soybean paste) soup attenuates salt-induced sympathoexcitation and left ventricular dysfunction in mice with chronic pressure overload. Fukuoka Igaku Zasshi. 2014, 105, 48–56. [Google Scholar] [PubMed]
- Tsai, T.Y.; Chen, L.Y.; Pan, T.M. Effect of probiotic-fermented, genetically modified soy milk on hypercholesterolemia in hamsters. J. Microbiol. Immunol. Infect. 2014, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Eser, O.; Songur, A.; Yaman, M.; Cosar, M.; Fidan, H.; Sahin, O.; Mollaoglu, H.; Buyukbas, S. The protective effect of avocado soybean unsaponifilables on brain ischemia/reperfusion injury in rat prefrontal cortex. Br. J. Neurosurg. 2011, 25, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cai, S.; Ma, J. Evaluation of cardio-protective effect of soybean oligosaccharides. Gene 2015, 555, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Jamarkattel-Pandit, N.; Pandit, N.R.; Kim, M.Y.; Park, S.H.; Kim, K.S.; Choi, H.; Kim, H.; Bu, Y. Neuroprotective effect of defatted sesame seeds extract against in vitro and in vivo ischemic neuronal damage. Planta Med. 2010, 76, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Jo, I.Y.; Park, S.H.; Kim, K.S.; Bae, J.; Park, J.W.; Lee, B.J.; Choi, H.Y.; Bu, Y. Defatted sesame seed extract reduces brain oedema by regulating aquaporin 4 expression in acute phase of transient focal cerebral ischaemia in rat. Phytother. Res. 2012, 26, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Kiyota, N.; Hori, M.; Matsushita, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Takeya, M.; Ikeda, T.; Nohara, T.; et al. Esculeogenin a, a new tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-deficient mice by inhibiting ACAT. Arterioscl. Throm. Vas. 2007, 27, 2400–2406. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Yoshitomi, M.; Horlad, H.; Ikeda, T.; Nohara, T.; Takeya, M.; Nagai, R. Tomatidine, a tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-Deficient mice by inhibiting Acyl-CoA:cholesterol acyl-transferase (ACAT). J. Agric. Food Chem. 2012, 60, 2472–2479. [Google Scholar] [CrossRef] [PubMed]
- Parvin, R.; Akhter, N. Protective effect of tomato against adrenaline-induced myocardial infarction in rats. Bangladesh Med. Res. Counc. Bull. 2008, 34, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Toyoshi, T.; Sano, A.; Izumi, T.; Fujii, T.; Konishi, C.; Inai, S.; Matsukura, C.; Fukuda, N.; Ezura, H.; et al. Antihypertensive effect of a gamma-aminobutyric acid rich tomato cultivar ‘DG03–9’ in spontaneously hypertensive rats. J. Agric. Food Chem. 2010, 58, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Cubedo, J.; Padro, T.; Casani, L.; Mendieta, G.; Gonzalez, A.; Badimon, L. Intake of cooked tomato sauce preserves coronary endothelial function and improves apolipoprotein A-I and apolipoprotein J protein profile in high-density lipoproteins. Transl. Res. 2015, 166, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.N.; He, X.C.; Ye, M.; Huang, H.; Chen, H.L.; Peng, W.L.; Zhao, Z.Z.; Yi, T.; Chen, H.B. Cardioprotective effect of total saponins from three medicinal species of Dioscorea against isoprenaline-induced myocardial ischemia. J. Ethnopharmacol. 2015, 175, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Chen, L.; Liu, J.L.; Ito, Y.; He, J.; Sun, W.J. Neuroprotection of total steroid saponins from Dioscorea zingiberensis against transient focal cerebral ischemia-reperfusion injury in rats via anti-inflammatory and antiapoptotic effects. Planta Med. 2014, 80, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Qin, Y.; Huang, W. Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis C.H. Wright in vitro and in vivo. Phytomedicine 2011, 18, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Wang, Z.H.; Hsu, C.C.; Lin, H.H.; Chen, J.H. In vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity. Nutrients 2015, 7, 4938–4954. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, K.S.; Vasanthi, H.R.; Rajamanickama, G.V. Flavonoid rich fraction of Dioscorea bulbifera Linn. (Yam) enhances mitochondrial enzymes and antioxidant status and thereby protects heart from isoproterenol induced myocardial infarction. Curr. Pharm. Biotechnol. 2010, 11, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.J.; Park, H.J.; Byeon, H.E.; Kwak, J.H.; Um, S.H.; Kwon, S.T.; Rhee, D.K.; Pyo, S. Chinese yam extracts containing beta-Sitosterol and ethyl linoleate protect against atherosclerosis in apolipoprotein E-Deficient mice and inhibit muscular expression of VCAM-1 in vitro. J. Food Sci. 2014, 79, H719–H729. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.C.; Yu, Y.M.; Wu, C.H.; Tseng, Y.H.; Wu, K.Y. Reduction of oxidative stress and atherosclerosis in hyperlipidemic rabbits by Dioscorea rhizome. Can. J. Physiol. Pharmacol. 2005, 83, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Amat, N.; Amat, R.; Abdureyim, S.; Hoxur, P.; Osman, Z.; Mamut, D.; Kijjoa, A. Aqueous extract of dioscorea opposita thunb. Normalizes the hypertension in 2K1C hypertensive rats. BMC Complement. Altern. Med. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Rizvi, S.I. Onion extract (Allium cepa L.), quercetin and catechin up-regulate paraoxonase 1 activity with concomitant protection against low-density lipoprotein oxidation in male Wistar rats subjected to oxidative stress. J. Sci. Food Agric. 2014, 94, 2752–2757. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tang, C.; Jin, H.; Du, J. Effects of onion extract on endogenous vascular H2S and adrenomedulin in rat atherosclerosis. Curr. Pharm. Biotechnol. 2011, 12, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Briggs, W.H.; Folts, J.D.; Osman, H.E.; Goldman, I.L. Administration of raw onion inhibits platelet-mediated thrombosis in dogs. J. Nutr. 2001, 131, 2619–2622. [Google Scholar] [PubMed]
- Yamada, K.; Naemura, A.; Sawashita, N.; Noguchi, Y.; Yamamoto, J. An onion variety has natural antithrombotic effect as assessed by thrombosis/thrombolysis models in rodents. Thromb. Res. 2004, 114, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Moon, J.; Chung, J.H.; Cha, Y.J.; Shin, M.J. Effect of quercetin-rich onion peel extracts on arterial thrombosis in rats. Food Chem. Toxicol. 2013, 57, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Murakami, T.; Yamamoto, Y. Antihypertensive effects of onion on NO synthase inhibitor-induced hypertensive rats and spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 2003, 67, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Naseri, M.K.; Arabian, M.; Badavi, M.; Ahangarpour, A. Vasorelaxant and hypotensive effects of Allium cepa peel hydroalcoholic extract in rat. Pak. J. Biol. Sci. 2008, 11, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.H.; Imenshahidi, M.; Mohajeri, S.A. Antihypertensive effect of celery seed on rat blood pressure in chronic administration. J. Med. Food 2013, 16, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Guo, S.; Fang, Y.; Qin, S.; Li, F.; Zhang, Y.; Jiao, P.; Zhang, C.; Gao, L. Celery seed extract blocks peroxide injury in macrophages via Notch1/NF-kappaB pathway. Am. J. Chin. Med. 2015, 43, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Dianat, M.; Veisi, A.; Ahangarpour, A.; Moghaddam, H.F. The effect of hydro-alcoholic celery (Apiumgraveolens) leaf extract on cardiovascular parameters and lipid profile in animal model of hypertension induced by fructose. Avicenna J. Phytomed. 2015, 5, 203–209. [Google Scholar] [PubMed]
- Sanae, M.; Yasuo, A. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats. J. Agric. Food Chem. 2013, 61, 5520–5525. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Remesy, C. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Pace, R.D.; Dawkins, N.L.; Willian, K.R. Diets containing traditional and novel green leafy vegetables improve liver fatty acid profiles of spontaneously hypertensive rats. Lipids Health Dis. 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Rahman, M.A.; Uddin, M.M.; Rahman, M.M.; Uddin, M.Z.; Dash, R.; Layzu, C. Effects of organic extracts and their different fractions of five Bangladeshi plants on in vitro thrombolysis. BMC Complement. Altern. Med. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Iwasaki, M.; Usui, H.; Ohinata, K.; Marczak, E.D.; Lipkowski, A.W.; Yoshikawa, M. Rapakinin, an anti-hypertensive peptide derived from rapeseed protein, dilates mesenteric artery of spontaneously hypertensive rats via the prostaglandin IP receptor followed by CCK(1) receptor. Peptides 2010, 31, 909–914. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Malomo, S.A.; Girgih, A.T.; Ju, X.; Aluko, R.E. Glycinyl-histidinyl-serine (GHS), a novel rapeseed protein-derived peptide has blood pressure-lowering effect in spontaneously hypertensive rats. J. Agric. Food Chem. 2013, 61, 8396–8402. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Alashi, A.; Malomo, S.A.; Girgih, A.T.; Chao, D.; Ju, X.; Aluko, R.E. Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chem. 2013, 141, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, E.; Lomnitski, L.; Nyska, A.; Malik, Z.; Bergman, M.; Sofer, Y.; Haseman, J.K.; Grossman, S. Effects of water-soluble antioxidant from spinach, NAO, on doxorubicin-induced heart injury. Hum. Exp. Toxicol. 2001, 20, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Marczak, E.D.; Yokoo, M.; Usui, H.; Yoshikawa, M. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco. J. Agric. Food Chem. 2003, 51, 4897–4902. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Marczak, E.D.; Usui, H.; Kawamura, Y.; Yoshikawa, M. Antihypertensive properties of spinach leaf protein digests. J. Agric. Food Chem. 2004, 52, 2223–2225. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.I.; Apostolidis, E.; Kim, Y.C.; Shetty, K. Health benefits of traditional corn, beans, and pumpkin: In vitro studies for hyperglycemia and hypertension management. J. Med. Food 2007, 10, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.H.; Shaheen, F.; Saeed, S.A.; Bibi, S.; Irfanullah; Sadiq, M.; Faizi, S. Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine 2000, 7, 423–426. [Google Scholar] [CrossRef]
- Nicolle, C.; Gueux, E.; Lab, C.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Remesy, C. Lyophilized carrot ingestion lowers lipemia and beneficially affects cholesterol metabolism in cholesterol-fed C57BL/6J mice. Eur. J. Nutr. 2004, 43, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Naemura, A.; Ijiri, Y.; Ogawa, K.; Suzuki, T.; Shimada, Y.; Giddings, J.C. The antithrombotic effects of carrot filtrates in rats and mice. Blood Coagul. Fibrinolysis 2008, 19, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Noyan, A.M.; Facci, M.; Wang, R.; Paterson, P.G.; Ferrie, A.; Juurlink, B.H. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc. Natl. Acad. Sci. USA 2004, 101, 7094–7099. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Gangopadhyay, H.; Das, D.K. Broccoli: A unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. J. Agric. Food Chem. 2008, 56, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M.; Bandy, B. Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion. Plant Foods Hum. Nutr. 2010, 65, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Lekli, I.; Ray, D.; Gangopadhyay, H.; Raychaudhuri, U.; Das, D.K. Comparison of the protective effects of steamed and cooked broccolis on ischaemia-reperfusion-induced cardiac injury. Br. J. Nutr. 2010, 103, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tao, G.; Liu, P.; Liu, J. Peptide with angiotensin I-converting enzyme inhibitory activity from hydrolyzed corn gluten meal. J. Agric. Food Chem. 2007, 55, 7891–7895. [Google Scholar] [CrossRef] [PubMed]
- Shindo, M.; Kasai, T.; Abe, A.; Kondo, Y. Effects of dietary administration of plant-derived anthocyanin-rich colors to spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 2007, 53, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Toufektsian, M.C.; de Lorgeril, M.; Nagy, N.; Salen, P.; Donati, M.B.; Giordano, L.; Mock, H.P.; Peterek, S.; Matros, A.; Petroni, K.; et al. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J. Nutr. 2008, 138, 747–752. [Google Scholar] [PubMed]
- Masini, E.; Pierpaoli, S.; Marzocca, C.; Mannaioni, P.F.; Pietrangeli, P.; Mateescu, M.A.; Zelli, M.; Federico, R.; Mondovi, B. Protective effects of a plant histaminase in myocardial ischaemia and reperfusion injury in vivo. Biochem. Biophys. Res. Commun. 2003, 309, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Masini, E.; Cuzzocrea, S.; Bani, D.; Mazzon, E.; Muja, C.; Mastroianni, R.; Fabrizi, F.; Pietrangeli, P.; Marcocci, L.; Mondovi, B.; et al. Beneficial effects of a plant histaminase in a rat model of splanchnic artery occlusion and reperfusion. Shock 2007, 27, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Burguieres, E.; Mccue, P.; Kwon, Y.I.; Shetty, K. Health-related functionality of phenolic-enriched pea sprouts in relation to diabetes and hypertension management. J. Food Biochem. 2008, 32, 3–14. [Google Scholar] [CrossRef]
- Aukema, H.M.; Gauthier, J.; Roy, M.; Jia, Y.; Li, H.; Aluko, R.E. Distinctive effects of plant protein sources on renal disease progression and associated cardiac hypertrophy in experimental kidney disease. Mol. Nutr. Food Res. 2011, 55, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Parolini, C.; Manzini, S.; Busnelli, M.; Rigamonti, E.; Marchesi, M.; Diani, E.; Sirtori, C.R.; Chiesa, G. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats. Br. J. Nutr. 2013, 110, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Grann, K.; Li, M.; Jiang, Z. A pilot study to evaluate the effect of soy isolate protein on the serum lipid profile and other potential cardiovascular risk markers in moderately hypercholesterolemic Chinese adults. Ecol. Food Nutr. 2011, 50, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, C.M.; Reynolds, K.; Wofford, M.R.; Chen, J.; Kelly, T.N.; Mei, H.; Whelton, P.K.; He, J. Effect of soybean protein on novel cardiovascular disease risk factors: A randomized controlled trial. Eur. J. Clin. Nutr. 2013, 67, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Dettmer, M.; Alekel, D.L.; Lasrado, J.A.; Messina, M.; Carriquiry, A.; Heiberger, K.; Stewart, J.W.; Franke, W. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals. J. Am. Coll. Nutr. 2012, 31, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Ho, S.C.; Chen, Y.M.; Woo, J. A six-month randomized controlled trial of whole soy and isoflavones daidzein on body composition in equol-producing postmenopausal women with prehypertension. J. Obes. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Ho, S.C.; Chen, Y.M.; Tomlinson, B.; Ho, S.; To, K.; Woo, J. Effect of whole soy and purified daidzein on ambulatory blood pressure and endothelial function--a 6-month double-blind, randomized controlled trial among Chinese postmenopausal women with prehypertension. Eur. J. Clin. Nutr. 2015, 69, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Hodis, H.N.; Mack, W.J.; Kono, N.; Azen, S.P.; Shoupe, D.; Hwang-Levine, J.; Petitti, D.; Whitfield-Maxwell, L.; Yan, M.; Franke, A.A.; et al. Isoflavone soy protein supplementation and atherosclerosis progression in healthy postmenopausal women: A randomized controlled trial. Stroke 2011, 42, 3168–3175. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Ho, S.C.; Chen, Y.M.; Ho, Y.P. The effects of isoflavones combined with soy protein on lipid profiles, C-reactive protein and cardiovascular risk among postmenopausal Chinese women. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hodgson, J.M.; Puddey, I.B.; Belski, R.; Burke, V.; Croft, K.D. Sesame supplementation does not improve cardiovascular disease risk markers in overweight men and women. Nutr. Metab. Cardiovasc. 2009, 19, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Engelhard, Y.N.; Gazer, B.; Paran, E. Natural antioxidants from tomato extract reduce blood pressure inpatients with grade-1 hypertension: A double-blind, placebo-controlled pilot study. Am. Heart J. 2006, 151. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, F.J.; Jorge-Vidal, V.; Ros, G.; Periago, M.J. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women. Eur. J. Nutr. 2012, 51, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Valderas-Martinez, P.; Chiva-Blanch, G.; Casas, R.; Arranz, S.; Martinez-Huelamo, M.; Urpi-Sarda, M.; Torrado, X.; Corella, D.; Lamuela-Raventos, R.M.; Estruch, R. Tomato sauce enriched with olive oil exerts greater effects on cardiovascular disease risk factors than raw tomato and tomato sauce: A randomized trial. Nutrients 2016, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Thies, F.; Masson, L.F.; Rudd, A.; Vaughan, N.; Tsang, C.; Brittenden, J.; Simpson, W.G.; Duthie, S.; Horgan, G.W.; Duthie, G. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, B.; Muguerza, N.B.; Petersen, A.M.; Kveiborg, B.; Madsen, C.R.; Thomas, H.; Ihlemann, N.; Sorensen, J.C.; Kober, L.; Sorensen, H.; et al. Ingestion of broccoli sprouts does not improve endothelial function in humans with hypertension. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Medina, S.; Dominguez-Perles, R.; Moreno, D.A.; Garcia-Viguera, C.; Ferreres, F.; Gil, J.I.; Gil-Izquierdo, A. The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chem. 2015, 173, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Tsuge, N.; Sawada, H.; Higashi, Y. Chronic intake of onion extract containing quercetin improved postprandial endothelial dysfunction in healthy men. J. Am. Coll. Nutr. 2013, 32, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Bruell, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Mueller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S.; et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-) hypertension: A randomised double-blinded placebo-controlled cross-over trial. Br. J. Nutr. 2015, 114, 1263–1277. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Monforte, M.; Flores-Mateo, G.; Sanchez, E. Dietary patterns and CVD: A systematic review and meta-analysis of observational studies. Br. J. Nutr. 2015, 114, 1341–1359. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hou, L.N.; Chen, W.; Chen, P.L.; Lei, C.Y.; Wei, Q.; Tan, W.L.; Zheng, S.B. Associations of dietary patterns with the risk of all-cause, CVD and stroke mortality: A meta-analysis of prospective cohort studies. Br. J. Nutr. 2015, 113, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Diet quality as assessed by the healthy eating index, the alternate healthy eating index, the dietary approaches to stop hypertension score, and health outcomes: A systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 2015, 115, 780–800. [Google Scholar] [CrossRef] [PubMed]
- Siervo, M.; Lara, J.; Chowdhury, S.; Ashor, A.; Oggioni, C.; Mathers, J.C. Effects of the dietary approach to stop hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Hartley, L.; Flowers, N.; Clarke, A.; Hooper, L.; Thorogood, M.; Stranges, S. Mediterranean dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
Vegetables | Subjects | Effects | References |
---|---|---|---|
Vegetables with carotenoids | U.S. male physicians aged 40–84 years (n = 15,220) | Lowered the risks of CHD | [60] |
Onion quercetin | Incorporated into the atherosclerotic region, acted as a complementary antioxidant | [61] | |
soybean isoflavones | Chinese adults (n = 572) | Lowered serum TAG, carotid artery intima-media thickness, increased HDL-C | [62] |
soybean foods, isoflavones | (Meta-analysis) | reduced ischemic heart disease, lowered blood LDL-C, improved endothelial function, slowed the progression of subclinical atherosclerosis | [63] |
Green leafy vegetables | (Meta-analysis) | Reduced incidence of CVDs significantly (15.8%) | [29] |
Nitrate-containing vegetables | Non-hypertensive subjects aged 20–70 years (n = 1546) | Had a protective effect against development of hypertension | [64] |
Vegetables | Subjects | Effects and Mechanisms | References |
---|---|---|---|
Apium graveolens (seed) | Rats | Decreased blood pressure, increased heart rate | [109] |
Celery (seed) | RAW264.7 macrophages | Lessened lipid droplets and TC content, decreased secretion of inflammatory cytokine TNF-α and interleukin (IL)-6, promoted cell viability, inhibited apoptosis, suppressed NF-κB, p65 and notch1 protein expressions | [110] |
Apium graveolens (leaf) | Sprague Dawley rats | Decreased systolic blood pressure, cholesterol, TG, LDL and VLDL | [111] |
Asparagus officinalis | SHRs | Lowered systolic blood pressure, urinary protein excretion/creatinine excretion ratio, creatinine clearance and ACE activity | [112] |
Lettuce | Rats | Decreased LDL/HDL ratio and liver cholesterol levels, increased fecal total steroid excretion, depressed apparent absorption of dietary cholesterol, improved VE/TG ratio in plasma, limited lipid peroxidation in heart | [113] |
Collard greens | SHRs | Modulated liver fatty acid composition, protected against elevations in atherogenic fatty acids | [114] |
Brassica oleracea L. | In vitro thrombolytic model | Showed clot lysis activity | [115] |
Rape (seed) | SHRs | Inhibited ACE, dilated mesenteric artery | [116] |
Rape (seed) | SHRs | Inhibited ACE and renin activities, lowered blood pressure | [117] |
Rape (seed) | SHRs | Reduced surface hydrophobicity, scavenged oxygen radicals, inhibited ACE, lowered blood pressure | [118] |
Spinach | Balb/c mice | Decreased catalase, increased SOD activities, protected against doxorubicin-induced heart injury | [119] |
Spinach | SHRs | Exerted anti-hypertensive activity | [120] |
Spinach (leaf) | SHRs | Inhibited ACE, exerted anti-hypertensive activity | [121] |
Pumpkin | In vitro | Antioxidant, inhibited α-glucosidase and ACE, anti-diabetic- and anti-hypertension | [122] |
Daucus carota | In vitro, normotensive anesthetized rats | Lowered arterial blood pressure, inhibited spontaneously beating guinea pig atria and K+ -induced contractions of rabbit aorta | [123] |
Lyophilized carrot | C57BL/6J mice | Increased total neutral sterols fecal excretion, increased antioxidant status and VE/TG ratio, lowered lipemia, regulated cholesterol metabolism | [124] |
Carrot | In vitro, mice | Anti-thrombosis | [125] |
Broccoli | stroke-prone SHRs | Attenuated oxidative stress, hypertension and inflammation | [126] |
Broccoli | Rats | Protected mammalian hearts, activated survival proteins, improved post-ischemic ventricular function and pro-caspase 3 activities and redox cycling of thioredoxins, reduced myocardial infarct size, cardiomyocyte apoptosis and cytochrome c release | [127] |
Broccoli | Rats | Protected against myocardial oxidative damage and cell death during I/R, inhibited markers of necrosis and apoptosis, decreased oxidative stress | [128] |
Broccoli | Rats | Improved post-ischemic ventricular function, reduced MI and cardiomyocyte apoptosis | [129] |
Corn | SHRs, in vitro | Inhibited ACE, lowered systolic blood pressure | [130] |
Corn | In vitro | Antioxidant, inhibited a-glucosidase and ACE, anti-diabetic- and anti-hypertension | [122] |
Purple corn | SHRs | Decreased blood pressure and heart rate | [131] |
Maize | Wistar rats | Reduced infarct size, increased myocardial glutathione levels, modulated cardiac antioxidant defenses | [132] |
Pea | Rats | Reduced MDA, tissue calcium concentration, myeloperoxidase and apoptosis indicator caspase-3, protected hearts from I/R injury | [133] |
Latyrus cicera | Rats | Hindered free radical-mediated tissue injury, endothelial dysfunction and leukocyte recruitment, protected against splanchnic artery I/R-induced splanchnic injury | [134] |
Pea | In vitro | Inhibited α-amylase and α-glucosidase and ACE | [135] |
Pea | Weanling Han:SPRD-cy rats | Lowered serum creatinine and renal chemokine receptor 2 level | [136] |
Pea | Rats | lowered plasma TC concentrations, affected cellular cholesterol homeostasis | [137] |
Cardioprotective Effects | Mechanisms |
---|---|
Lower blood pressure | Inhibit ACE activity and hypothalamic MR-ATIR pathway, alleviate sympathoexcitation; improve protein kinase C-β II activity; modify relative telomere length of peripheral leucocyte, increase NOS expression; inhibit Ca2+ influx and K+ -induced contractions. |
Regulate lipid metabolism | Decrease TC, TG, TAG, VLDL-C, TC/HDL-C ratio and atherosclerotic plaque formation, increase LDL-C/TG and VE/TG ratio; inhibit fatty acid synthase and ACAT activity, modulate energy producing mitochondrial enzymes; modify expression of ACAT and sterol regulatory element-binding protein-2 and its downstream genes. |
Antioxidant | Scavenge free radicals (NO, superoxide, hydroxyl, TBARS); increase endogenous aortic H2S production; improve SOD, catalase, GPx, carnitine palmitoyltransferase-1 and paraoxonase 1 activity. |
Improve endothelial function | Decrease endothelin and artery intima-media thickness, increase NO, improve apolipoprotein A-I and apolipoprotein J protein profile; inhibit endothelin-converting enzyme; diminish DNA damage. |
Anti-inflammatory | Attenuate TNF-α induced leukocytes adhesion; reduce NF-κB, IL-6; inhibit expression of AM. |
Anti-platelet | Prolong APTT, TT, PT, bleeding time and clotting time; inhibit MAPK, ESRK, factor VIII activities and c-Jun N-terminal kinase signaling pathways. |
Attenuate myocardial damage | Decrease MDA, water content leakage and infarct size, increase cyclic guanosine monophosphate; inhibit creatine kinase, aspartate transaminase, lactate dehydrogenase and CPKMB activity, modulate protein kinase A, p38, and phosphodiesterase-5 activity; inhibit Bad, Bax, caspase-8, caspase-9, and caspase-3 and aquaporin 4 expression, increase phosphor (p)-Akt, p-Bad, p-Erk1/2, Bcl-2, p-JAK2 and p-STAT3. |
Regulate blood glucose | Inhibit α-amylase and α-glucosidase activity; improve hemoglobin A1c and high fasting blood sugar level. |
Vegetables | Subjects | Effects | References |
---|---|---|---|
Sesame | Overweight or obese men and women (n = 33) | No improvement in markers of CVD risk | [145] |
Tomato | Patients with grade-1 hypertension (n = 31) | Decreased blood pressure and TBARS level | [146] |
Tomato | Healthy women (n = 18) | Improved serum antioxidant status, decreased vascular AM 1 | [147] |
Tomato | Healthy subjects (n = 40) | Decrease plasma TC, TG and several cellular and plasma inflammatory biomarkers, increase plasma HDL-C and IL-10 | [148] |
Tomato | Healthy middle-aged volunteers (n = 225) | No change in inflammatory markers, insulin resistance and sensitivity, lipid concentrations and arterial stiffness | [149] |
Broccoli | Hypertensive individuals (n = 40) | No significant change in blood pressure and endothelial function measured by flow mediated dilation | [150] |
Broccoli | Healthy Caucasian volunteers (n = 24) | Increased the urinary concentrations of sulforaphane metabolites and vitamin C, decreased the urinary concentrations of tetranor-PGEM, 11β-PGF2α and 11-dehydro-TXB2 | [151] |
Onion | Healthy men (n = 23) | Improved postprandial but not fasting flow-mediated vasodilation; did not alter systemic and forearm hemodynamics | [152] |
Onion | Overweight-to-obese patients (n = 70) | Decreased 24 h, daytime and night-time systolic blood pressure in hypertensives; did not affect vasoactive biomarkers | [153] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, G.-Y.; Meng, X.; Li, Y.; Zhao, C.-N.; Liu, Q.; Li, H.-B. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients 2017, 9, 857. https://doi.org/10.3390/nu9080857
Tang G-Y, Meng X, Li Y, Zhao C-N, Liu Q, Li H-B. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients. 2017; 9(8):857. https://doi.org/10.3390/nu9080857
Chicago/Turabian StyleTang, Guo-Yi, Xiao Meng, Ya Li, Cai-Ning Zhao, Qing Liu, and Hua-Bin Li. 2017. "Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms" Nutrients 9, no. 8: 857. https://doi.org/10.3390/nu9080857
APA StyleTang, G.-Y., Meng, X., Li, Y., Zhao, C.-N., Liu, Q., & Li, H.-B. (2017). Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients, 9(8), 857. https://doi.org/10.3390/nu9080857