The Impact of OMEGA-3 Fatty Acids Supplementation on Insulin Resistance and Content of Adipocytokines and Biologically Active Lipids in Adipose Tissue of High-Fat Diet Fed Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. HOMA-IR Calculation
2.3. Adipose Tissue Bioactive Lipids
2.3.1. Ceramide
2.3.2. Diacylglycerols
2.3.3. Acyl-Carnitine
2.4. Protein and RNA Isolation
2.5. Western Blot
2.6. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
2.7. Adipocytokines Concentration
2.8. Statistical Analysis
3. Results
3.1. General Characteristic
3.2. Ceramide Content in Visceral and Subcutaneous Adipose Tissue
3.3. Diacylglycerol Content in Visceral and Subcutaneous Adipose Tissue
3.4. Acyl-Carnitine and Mitochondrial Protein Expression
3.5. Adipocytokines Expression and Concentration
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blachnio-Zabielska, A.U.; Chacinska, M.; Vendelbo, M.H.; Zabielski, P. The Crucial Role of C18-Cer in Fat-Induced Skeletal Muscle Insulin Resistance. Cell. Physiol. Biochem. 2016, 40, 1207–1220. [Google Scholar] [CrossRef]
- Zabielski, P.; Chacinska, M.; Charkiewicz, K.; Baranowski, M.; Gorski, J.; Blachnio-Zabielska, A.U. Effect of metformin on bioactive lipid metabolism in insulin-resistant muscle. J. Endocrinol. 2017, 233, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot. Essent. Fatty Acids 2008, 79, 101–108. [Google Scholar] [CrossRef]
- Harris, W.S. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 2007, 55, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Lien, E.; Agostoni, C.; Böhles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J. Perinat. Med. 2008, 36, 5–14. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Torres-Castillo, N.; Silva-Gómez, J.A.; Campos-Perez, W.; Barron-Cabrera, E.; Hernandez-Cañaveral, I.; Garcia-Cazarin, M.; Marquez-Sandoval, Y.; Gonzalez-Becerra, K.; Barron-Gallardo, C.; Martinez-Lopez, E. High Dietary ω-6:ω-3 PUFA Ratio Is Positively Associated with Excessive Adiposity and Waist Circumference. Obes. Facts 2018, 11, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E.; Rafraf, M.; Farzadi, L.; Asghari-Jafarabadi, M.; Sabour, S. Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac. J. Clin. Nutr. 2012, 21, 511–518. [Google Scholar]
- Tierney, A.C.; McMonagle, J.; Shaw, D.I.; Gulseth, H.L.; Helal, O.; Saris, W.H.; Paniagua, J.A.; Gołąbek-Leszczyñska, I.; Defoort, C.; Williams, C.M.; et al. Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome--LIPGENE: a European randomized dietary intervention study. Int. J. Obes. (Lond.) 2011, 35, 800–809. [Google Scholar] [CrossRef]
- Couet, C.; Delarue, J.; Ritz, P.; Antoine, J.M.; Lamisse, F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 637–643. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The impact of the Bellagio Report on healthy agriculture, healthy nutrition, healthy people: scientific and policy aspects and the International Network of Centers for Genetics, Nutrition and Fitness for Health. J. Nutrigenet. Nutrigenom. 2014, 7, 191–211. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.; Watts, G.F.; Nguyen, M.N.; Barrett, P.H. Factorial study of the effect of n-3 fatty acid supplementation and atorvastatin on the kinetics of HDL apolipoproteins A-I and A-II in men with abdominal obesity. Am. J. Clin. Nutr. 2006, 84, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Mostad, I.L.; Bjerve, K.S.; Bjorgaas, M.R.; Lydersen, S.; Grill, V. Effects of n-3 fatty acids in subjects with type 2 diabetes: reduction of insulin sensitivity and time-dependent alteration from carbohydrate to fat oxidation. Am. J. Clin. Nutr. 2006, 84, 540–550. [Google Scholar] [CrossRef]
- Storlien, L.H.; Jenkins, A.B.; Chisholm, D.J.; Pascoe, W.S.; Khouri, S.; Kraegen, E.W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 1991, 40, 280–289. [Google Scholar] [CrossRef]
- Lanza, I.R.; Blachnio-Zabielska, A.; Johnson, M.L.; Schimke, J.M.; Jakaitis, D.R.; Lebrasseur, N.K.; Jensen, M.D.; Sreekumaran Nair, K.; Zabielski, P. Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Wang, L.P.; Liu, S.H.; Chiang, M.T. Fish Oil Supplementation Alleviates the Altered Lipid Homeostasis in Blood, Liver, and Adipose Tissues in High-Fat Diet-Fed Rats. J. Agric. Food Chem. 2018, 66, 4118–4128. [Google Scholar] [CrossRef] [PubMed]
- Lepretti, M.; Martucciello, S.; Burgos Aceves, M.A.; Putti, R.; Lionetti, L. Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, R.R.; Zammit, V.A. Carnitine acyltransferases and their influence on CoA pools in health and disease. Mol. Asp. Med. 2004, 25, 475–493. [Google Scholar] [CrossRef] [PubMed]
- Longo, N.; Amat di San Filippo, C.; Pasquali, M. Disorders of carnitine transport and the carnitine cycle. Am. J. Med. Genet. C. Semin. Med. Genet. 2006, 142C, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Błachnio-Zabielska, A.U.; Baranowski, M.; Hirnle, T.; Zabielski, P.; Lewczuk, A.; Dmitruk, I.; Górski, J. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance. Lipids 2012, 47, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Błachnio-Zabielska, A.U.; Pułka, M.; Baranowski, M.; Nikołajuk, A.; Zabielski, P.; Górska, M.; Górski, J. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J. Cell. Physiol. 2012, 227, 550–557. [Google Scholar] [CrossRef]
- Blachnio-Zabielska, A.U.; Koutsari, C.; Tchkonia, T.; Jensen, M.D. Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance. Obesity 2012, 20, 2341–2347. [Google Scholar] [CrossRef] [PubMed]
- Proença, A.R.; Sertié, R.A.; Oliveira, A.C.; Campaña, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. New concepts in white adipose tissue physiology. Braz. J. Med. Biol. Res. 2014, 47, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, J.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P. Adipose tissue and its relation to inflammation: the role of adipokines. J. Ren. Nutr. 2005, 15, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Oswal, A.; Yeo, G. Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity 2010, 18, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Gray, B.; Steyn, F.; Davies, P.S.; Vitetta, L. Omega-3 fatty acids: a review of the effects on adiponectin and leptin and potential implications for obesity management. Eur. J. Clin. Nutr. 2013, 67, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Yaspelkis, B.B.; Davis, J.R.; Saberi, M.; Smith, T.L.; Jazayeri, R.; Singh, M.; Fernandez, V.; Trevino, B.; Chinookoswong, N.; Wang, J.; et al. Leptin administration improves skeletal muscle insulin responsiveness in diet-induced insulin-resistant rats. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E130–142. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lu, L.; Hu, Y.; Li, Q.; An, C.; Yu, X.; Shu, L.; Chen, A.; Niu, C.; Zhou, L.; et al. Resistin Induces Hypertension and Insulin Resistance in Mice via a TLR4-Dependent Pathway. Sci. Rep. 2016, 6, 22193. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Kubota, N.; Terauchi, Y.; Yamauchi, T.; Kubota, T.; Moroi, M.; Matsui, J.; Eto, K.; Yamashita, T.; Kamon, J.; Satoh, H.; et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 2002, 277, 25863–25866. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Kihara, S.; Funahashi, T.; Matsuzawa, Y.; Walsh, K. Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 2003, 14, 561–566. [Google Scholar] [CrossRef]
- Holland, W.L.; Miller, R.A.; Wang, Z.V.; Sun, K.; Barth, B.M.; Bui, H.H.; Davis, K.E.; Bikman, B.T.; Halberg, N.; Rutkowski, J.M.; et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011, 17, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Matute, P.; Marti, A.; Martínez, J.A.; Fernández-Otero, M.P.; Stanhope, K.L.; Havel, P.J.; Moreno-Aliaga, M.J. Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes: role of glucose metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1682–R1688. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Suganami, T.; Satoh, N.; Tanimoto-Koyama, K.; Yuan, X.; Tanaka, M.; Kawano, H.; Yano, T.; Aoe, S.; Takeya, M.; et al. Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1918–1925. [Google Scholar] [CrossRef] [PubMed]
- Carrapiso, A.I.; Luisa Timón, M.A.; Jesús Petrón, M.A.; Tejeda, J.F.; García, C. In situ transesterification of fatty acids from Iberian pig subcutaneous adipose tissue. Meat Sci. 2000, 56, 159–164. [Google Scholar] [CrossRef]
- Cacho, J.; Sevillano, J.; de Castro, J.; Herrera, E.; Ramos, M.P. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1269–1276. [Google Scholar] [CrossRef]
- Blachnio-Zabielska, A.U.; Persson, X.M.; Koutsari, C.; Zabielski, P.; Jensen, M.D. A liquid chromatography/tandem mass spectrometry method for measuring the in vivo incorporation of plasma free fatty acids into intramyocellular ceramides in humans. Rapid Commun. Mass Spectrom. 2012, 26, 1134–1140. [Google Scholar] [CrossRef]
- Blachnio-Zabielska, A.U.; Zabielski, P.; Jensen, M.D. Intramyocellular diacylglycerol concentrations and [U-13C]palmitate isotopic enrichment measured by LC/MS/MS. J. Lipid Res. 2013, 54, 1705–1711. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Cree, M.G.; Zhang, X.J.; Bøersheim, E.; Wolfe, R.R. Measurement of stable isotopic enrichment and concentration of long-chain fatty acyl-carnitines in tissue by HPLC-MS. J. Lipid Res. 2006, 47, 431–439. [Google Scholar] [CrossRef]
- Scherer, P.E. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 2006, 55, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Hernández, A.; Beneit, N.; Díaz-Castroverde, S.; Escribano, Ó. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int. J. Endocrinol. 2016, 2016, 1216783. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Lee, J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim. Biophys. Acta 2014, 1842, 446–462. [Google Scholar] [CrossRef] [PubMed]
- Mittendorfer, B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, F. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit. Biomed. Res. Int. 2015, 2015, 581469. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Claycombe, K.; Newman, S.J.; Stewart, T.; Siriwardhana, N.; Matthan, N.; Lichtenstein, A.H.; Moustaid-Moussa, N. Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J. Nutr. 2010, 140, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008, 134, 933–944. [Google Scholar] [CrossRef]
- Eissing, L.; Scherer, T.; Tödter, K.; Knippschild, U.; Greve, J.W.; Buurman, W.A.; Pinnschmidt, H.O.; Rensen, S.S.; Wolf, A.M.; Bartelt, A.; et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 2013, 4, 1528. [Google Scholar] [CrossRef]
- Hady, H.R.; Dadan, J.; Gołaszewski, P. 100 obese patients after laparoscopic adjustable gastric banding—The influence on BMI, gherlin and insulin concentration, parameters of lipid balance and co-morbidities. Adv. Med. Sci. 2012, 57, 58–64. [Google Scholar] [CrossRef]
- Bartelt, A.; Weigelt, C.; Cherradi, M.L.; Niemeier, A.; Tödter, K.; Heeren, J.; Scheja, L. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning. Biochim. Biophys. Acta 2013, 1831, 934–942. [Google Scholar] [CrossRef]
- Ghafoorunissa; Ibrahim, A.; Rajkumar, L.; Acharya, V. Dietary (n-3) long chain polyunsaturated fatty acids prevent sucrose-induced insulin resistance in rats. J. Nutr. 2005, 135, 2634–2638. [Google Scholar] [CrossRef]
- Gondim, P.N.; Rosa, P.V.; Okamura, D.; Silva, V.O.; Andrade, E.F.; Biihrer, D.A.; Pereira, L.J. Benefits of Fish Oil Consumption over Other Sources of Lipids on Metabolic Parameters in Obese Rats. Nutrients 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Matravadia, S.; Zabielski, P.; Chabowski, A.; Mutch, D.M.; Holloway, G.P. LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R619–R630. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef]
- Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef]
- Staiger, H.; Tschritter, O.; Machann, J.; Thamer, C.; Fritsche, A.; Maerker, E.; Schick, F.; Häring, H.U.; Stumvoll, M. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes. Res. 2003, 11, 368–372. [Google Scholar] [CrossRef]
- Tsiotra, P.C.; Tsigos, C.; Anastasiou, E.; Yfanti, E.; Boutati, E.; Souvatzoglou, E.; Kyrou, I.; Raptis, S.A. Peripheral mononuclear cell resistin mRNA expression is increased in type 2 diabetic women. Mediat. Inflamm. 2008, 2008, 892864. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M.; Boettner, A.; Seidel, B.; Lammert, A.; Bär, J.; Schuster, E.; Thiery, J.; Kiess, W.; Kratzsch, J. Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. J. Clin. Endocrinol. Metab. 2005, 90, 4503–4509. [Google Scholar] [CrossRef]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Winnicki, M.; Somers, V.K.; Accurso, V.; Phillips, B.G.; Puato, M.; Palatini, P.; Pauletto, P. Fish-rich diet, leptin, and body mass. Circulation 2002, 106, 289–291. [Google Scholar] [CrossRef]
- Pérez-Matute, P.; Pérez-Echarri, N.; Martínez, J.A.; Marti, A.; Moreno-Aliaga, M.J. Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-alpha. Br. J. Nutr. 2007, 97, 389–398. [Google Scholar] [CrossRef]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Kaji, H.; Takahashi, Y.; Iida, K.; Mizuno, I.; Okimura, Y.; Abe, H.; Chihara, K. Stimulation by eicosapentaenoic acids of leptin mRNA expression and its secretion in mouse 3T3-L1 adipocytes in vitro. Biochem. Biophys. Res. Commun. 2000, 270, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Miyahara, H.; Takeo, J.; Hatanaka, A.; Katayama, M. Pollock oil supplementation modulates hyperlipidemia and ameliorates hepatic steatosis in mice fed a high-fat diet. Lipids Health Dis. 2011, 10, 189. [Google Scholar] [CrossRef] [PubMed]


Component | SD | HFD | HFD+FO | |||
g/kg | kJ% | g/kg | kJ% | g/kg | kJ% | |
Protein | 190 | 20 | 260 | 20 | 260 | 20 |
Carbohydrate | 670 | 70 | 260 | 20 | 260 | 20 |
Fat | 40 | 10 | 350 | 60 | 350 | 60 |
Energy density, kJ/g | 15.9 | 21.8 | 21.8 | |||
Individual ingredient | SD | HFD | HFD+FO | |||
g/kg | kJ | g/kg | kJ | g/kg | kJ | |
Casein, 80 Mesh | 200 | 3347 | 200 | 3347 | 200 | 3347 |
L-Cystine | 3 | 50 | 3 | 50 | 3 | 50 |
Corn Starch | 225 | 3586 | 0 | 0 | 0 | 0 |
Maltodextrin 10 | 125 | 2092 | 125 | 2092 | 125 | 2092 |
Sucrose | 68.8 | 1151 | 68.8 | 1151 | 68.8 | 1151 |
Cellulose | 50 | 0 | 50 | 0 | 50 | 0 |
Corn Oil | 15 | 565 | 15 | 565 | 15 | 565 |
Lard | 30 | 1130 | 255 | 9602 | 193 | 7268 |
Menhaden Oil | 0 | 0 | 0 | 0 | 62 | 2335 |
Mineral Mix | 10 | 0 | 10 | 0 | 10 | 0 |
Dicalcium Phosphate | 13 | 0 | 13 | 0 | 13 | 0 |
Calcium Carbonate | 5.5 | 0 | 5.5 | 0 | 5.5 | 0 |
Potassium Citrate | 16.5 | 0 | 16.5 | 0 | 16.5 | 0 |
Vitamin Mix | 10 | 167 | 10 | 167 | 10 | 167 |
Choline Bitartrate | 2 | 0 | 2 | 0 | 2 | 0 |
Age | SD | HFD | HFD+FO |
---|---|---|---|
13 weeks | 13 weeks | 13 weeks | |
Initial body weight (g) | 101.74 ± 15.67 | 112.14 ± 14.49 | 119.86 ± 12.33 |
Final body weight (g) | 369.94 ± 27.51 | 417.12 ± 32.85 | 435.71 b ± 60.28 |
Glucose (mg/dL) | 102.50 ± 11.03 | 127.00 c ± 4.18 | 123.50 b ± 5.43 |
Insulin (µU/mL) | 42.41 ± 3.10 | 64.73 c ± 6.88 | 52.66 c# ± 2.94 |
HOMA-IR | 1.79 ± 0.24 | 3.39 c ± 0.44 | 2.68 c# ± 0.22 |
VAT | C14:0-Cer | C16:0-Cer | C18:1-Cer | C18:0-Cer | C20:0-Cer | C22:0-Cer | C24:1-Cer | C24:0-Cer | Total Cer |
SD | 0.18 ± 0.02 | 18.91 ± 2.31 | 0.08 ± 0.01 | 1.3 ± 0.15 | 0.75 ± 0.06 | 1.79 ± 0.22 | 2.74 ± 0.36 | 6.42 ± 0.87 | 32.17 ± 2.26 |
HFD | 0.13 c ± 0.01 | 19.04 ± 2.71 | 0.12 c ± 0.01 | 3.15 c ± 0.29 | 1.39 c ± 0.09 | 2.82 c ± 0.28 | 2.66 ± 0.19 | 12.05 c ± 1.19 | 41.36 c ± 2.58 |
HFD+FO | 0.14 b ± 0.01 | 20.59 ± 1.68 | 0.07 ^ ± 0.00 | 2.78 c* ± 0.25 | 0.78 ^ ± 0.08 | 1.84 ^ ± 0.18 | 4.94 c^ ± 0.40 | 7.94 b^ ± 0.65 | 39.08 c ± 1.50 |
SAT | C14:0- Cer | C16:0- Cer | C18:1- Cer | C18:0- Cer | C20:0- Cer | C22:0- Cer | C24:1- Cer | C24:0- Cer | Total Cer |
SD | 0.19 ± 0.02 | 26.35 ± 2.21 | 0.08 ± 0.01 | 2.56 ± 0.20 | 1.05 ± 0.10 | 1.75 ± 0.13 | 3.25 ± 0.27 | 5.41 ± 0.59 | 40.63 ± 2.41 |
HFD | 0.07 c ± 0.01 | 24.79 ± 1.35 | 0.07 ± 0.01 | 4.36 c ± 0.38 | 1.55 c ± 0.21 | 2.11 b ± 0.21 | 2.93 ± 0.29 | 12.26 c ± 0.30 | 48.15 c ± 1.65 |
HFD+FO | 0.12 c^ ± 0.01 | 19.40 c^ ± 2.14 | 0.08 ± 0.01 | 2.25 a^ ± 0.17 | 1.02 ^ ± 0.10 | 1.88 ± 0.29 | 4.19 c^ ± 0.33 | 7.33 c^ ± 0.60 | 36.28 b^ ± 2.25 |
VAT | 18:2/18:2-DAG | 16:0/18:2-DAG | 18:0/18:2-DAG | 18:1/18:2-DAG | 16:0/16:0-DAG | 16:0/18:0-DAG | 16:0/18:1-DAG | 18:1/18:1-DAG | 18:0/18:1-DAG | 18:0/18:0-DAG | Total DAG |
SD | 5.61 ± 0.68 | 3.68 ± 0.49 | 5.06 ± 1.04 | 5.81 ± 0.57 | 4.02 ± 0.51 | 4.30 ± 0.63 | 4.69 ± 0.26 | 6.83 ± 0.88 | 0.66 ± 0.13 | 0.15 ± 0.02 | 40.80 ± 3.27 |
HFD | 10.44 c ± 0.62 | 2.92 b ± 0.25 | 6.06 ± 0.53 | 6.68 a ± 0.61 | 1.79 c ± 0.22 | 2.89 c ± 0.26 | 3.02 c ± 0.26 | 6.08 ± 0.43 | 1.35 c ± 0.13 | 0.32 c ± 0.03 | 41.55 ± 1.91 |
HFD+FO | 7.30 c^ ± 0.68 | 2.88 b ± 0.38 | 4.32 ^ ± 0.43 | 4.66 b^ ± 0.40 | 2.37 c# ± 0.30 | 2.63 c ± 0.27 | 3.02 c ± 0.28 | 5.28 b ± 0.75 | 1.35 c ± 0.14 | 0.32 c ± 0.03 | 34.14 b^ ± 2.70 |
SAT | 18:2/18:2-D AG | 16:0/18:2-D AG | 18:0/18:2-D AG | 18:1/18:2-D AG | 16:0/16:0-D AG | 16:0/18:0-D AG | 16:0/18:1-D AG | 18:1/18:1-D AG | 18:0/18:1-D AG | 18:0/18:0-D AG | Tot al D AG |
SD | 6.27 ± 0.55 | 3.72 ± 0.29 | 4.91 ± 0.43 | 4.90 ± 0.36 | 3.86 ± 0.19 | 5.06 ± 0.61 | 4.69 ± 0.15 | 6.03 ± 0.64 | 0.87 ± 0.11 | 0.17 ± 0.02 | 40.48 ± 0.72 |
HFD | 9.95 c ± 1.37 | 3.38 ± 0.52 | 6.57 b ± 0.85 | 6.25 a ± 0.95 | 3.12 c ± 0.26 | 3.39 c ± 0.09 | 3.47 c ± 0.47 | 6.86 ± 0.86 | 2.26 c ± 0.24 | 0.39 c ± 0.06 | 45.64 a ± 3.50 |
HFD+FO | 8.19 c* ± 0.42 | 2.89 b ± 0.43 | 4.42 ^ ± 0.61 | 4.61 # ± 0.62 | 2.64 c* ± 0.34 | 3.07 c ± 0.29 | 3.11 c ± 0.18 | 4.23 c^ ± 0.51 | 1.53 c^ ± 0.15 | 0.26 c# ± 0.04 | 34.95 b^ ± 2.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacińska, M.; Zabielski, P.; Książek, M.; Szałaj, P.; Jarząbek, K.; Kojta, I.; Chabowski, A.; Błachnio-Zabielska, A.U. The Impact of OMEGA-3 Fatty Acids Supplementation on Insulin Resistance and Content of Adipocytokines and Biologically Active Lipids in Adipose Tissue of High-Fat Diet Fed Rats. Nutrients 2019, 11, 835. https://doi.org/10.3390/nu11040835
Chacińska M, Zabielski P, Książek M, Szałaj P, Jarząbek K, Kojta I, Chabowski A, Błachnio-Zabielska AU. The Impact of OMEGA-3 Fatty Acids Supplementation on Insulin Resistance and Content of Adipocytokines and Biologically Active Lipids in Adipose Tissue of High-Fat Diet Fed Rats. Nutrients. 2019; 11(4):835. https://doi.org/10.3390/nu11040835
Chicago/Turabian StyleChacińska, Marta, Piotr Zabielski, Monika Książek, Przemysław Szałaj, Katarzyna Jarząbek, Iwona Kojta, Adrian Chabowski, and Agnieszka Urszula Błachnio-Zabielska. 2019. "The Impact of OMEGA-3 Fatty Acids Supplementation on Insulin Resistance and Content of Adipocytokines and Biologically Active Lipids in Adipose Tissue of High-Fat Diet Fed Rats" Nutrients 11, no. 4: 835. https://doi.org/10.3390/nu11040835
APA StyleChacińska, M., Zabielski, P., Książek, M., Szałaj, P., Jarząbek, K., Kojta, I., Chabowski, A., & Błachnio-Zabielska, A. U. (2019). The Impact of OMEGA-3 Fatty Acids Supplementation on Insulin Resistance and Content of Adipocytokines and Biologically Active Lipids in Adipose Tissue of High-Fat Diet Fed Rats. Nutrients, 11(4), 835. https://doi.org/10.3390/nu11040835