Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selected Covalent BTK Inhibitors
2.2. Inhibitor Distribution
2.3. Artificial Intelligence-Assisted Inhibitor Design
2.4. BTK Inhibitor Design
2.4.1. Key 2 Structures
2.4.2. Value 2 and Value 1 Structures
2.4.3. Candidate Compounds
3. Materials and Methods
3.1. DeepSARM Training
3.2. Fragment Generation Using DeepSARM
3.3. Pharmacophore Modeling
3.4. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajorath, J.; Kearnes, S.; Walters, W.P.; Meanwell, N.A.; Georg, G.I.; Wang, S. Artificial Intelligence in Drug Discovery: Into the Great Wide Open. J. Med. Chem. 2020, 63, 8651–8652. [Google Scholar] [CrossRef] [PubMed]
- Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. ACS Cent. Sci. 2018, 4, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Skalic, M.; Jiménez, J.; Sabbadin, D.; De Fabritis, G. Shape-based Generative Modeling for De Novo Drug Design. J. Chem. Inf. Model. 2019, 59, 1205–1214. [Google Scholar] [CrossRef]
- Blaschke, T.; Arús-Pous, J.; Chen, H.; Margreitter, C.; Tyrchan, C.; Engkvist, O.; Papadopoulos, K.; Patronov, A. REINVENT 2.0: An AI Tool for De Novo Drug Design. J. Chem. Inf. Model. 2020, 60, 5918–5922. [Google Scholar] [CrossRef]
- Singh, J.; Petter, R.C.; Baillie, T.A.; Whitty, A. The Resurgence of Covalent Drugs. Nat. Rev. Drug Discov. 2011, 10, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Gehringer, M.; Laufer, S.A. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2019, 62, 5673–5724. [Google Scholar] [CrossRef] [PubMed]
- Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in Kinase Drug Discovery: Targets, Indications and Inhibitor Design. Nat. Rev. Drug Discov. 2021, 20, 839–861. [Google Scholar] [CrossRef] [PubMed]
- Chaikuad, A.; Koch, P.; Laufer, S.A.; Knapp, S. The Cysteinome of Protein Kinases as a Target in Drug Development. Angew. Chem. Int. Ed. 2018, 57, 4372–4385. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.J.; Yu, L.; Bäckesjö, C.-M.; Vargas, L.; Faryal, R.; Aints, A.; Christensson, B.; Berglöf, A.; Vihinen, M.; Nore, B.F.; et al. Bruton’s Tyrosine Kinase (BTK): Function, Regulation, and Transformation with Special Emphasis on the PH Domain. Immunol. Rev. 2009, 228, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Berg, L.J.; Finkelstein, L.D.; Lucas, J.A.; Schwartzberg, P.L. TEC Family Kinases in T Lymphocyte Development and Function. Annu. Rev. Immunol. 2005, 23, 549–600. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, R.W.; Yuvaraj, S.; Kil, L.P. Targeting Bruton’s Tyrosine Kinase in B Cell Malignancies. Nat. Rev. Cancer 2014, 14, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Tian, D.; Ren, X.; Ding, S.; Jia, M.; Xin, M.; Thareja, S. The Development of Bruton’s Tyrosine Kinase (BTK) Inhibitors from 2012 to 2017. Eur. J. Med. Chem. 2018, 151, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Ibrutinib: A Review in Chronic Lymphocytic Leukemia. Drugs 2017, 77, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; et al. The ChEMBL Bioactivity Database: An Update. Nucleic Acids Res. 2014, 42, D1083–D1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimori, A.; Bajorath, J. Deep SAR Matrix: SAR Matrix Expansion for Advanced Analog Design Using Deep Learning Architectures. Future Drug Discov. 2020, 2, FDD36. [Google Scholar] [CrossRef] [Green Version]
- Ketkar, N. Introduction to keras. In Deep Learning with Python; Apress: Berkeley, CA, USA, 2017; pp. 97–111. [Google Scholar]
- Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Candidate Compounds from the Design of Covalent Bruton’s Tyrosine Kinase (BTK) Inhibitors via Focused Deep Generative Modeling. Available online: https://doi.org/10.5281/zenodo.5848494 (accessed on 14 January 2022).
Protein Kinase | # of Inhibitors with Warhead | # of BTK Inhibitors with Warhead |
---|---|---|
Epidermal growth factor receptor erbB1 | 35 | 1 |
Tyrosine-protein kinase BTK | 34 | 34 |
Tyrosine-protein kinase JAK1 | 9 | 5 |
Tyrosine-protein kinase JAK3 | 8 | 6 |
Tyrosine-protein kinase JAK2 | 7 | 4 |
Receptor protein-tyrosine kinase erbB-4 | 4 | 3 |
Tyrosine-protein kinase ITK/TSK | 4 | 2 |
Tyrosine-protein kinase TYK2 | 4 | 4 |
Receptor protein-tyrosine kinase erbB-2 | 3 | 2 |
Tyrosine-protein kinase BLK | 3 | 3 |
Tyrosine-protein kinase BMX | 3 | 2 |
Tyrosine-protein kinase TEC | 2 | 1 |
Fibroblast growth factor receptor 1 | 2 | 0 |
Fibroblast growth factor receptor 2 | 2 | 1 |
Tyrosine-protein kinase TXK | 2 | 2 |
Tyrosine-protein kinase receptor RET | 1 | 1 |
Dual specificity mitogen-activated protein kinase kinase 1 | 1 | 1 |
Tyrosine-protein kinase SRC | 1 | 0 |
Tyrosine-protein kinase Lyn | 1 | 1 |
Tyrosine-protein kinase LCK | 1 | 1 |
Key 2 Fragments | # of Covalent BTK Inhibitors | # of All BTK Inhibitors | # of Kinase Inhibitors | # of All ChEMBL Compounds |
---|---|---|---|---|
Key2-01 | 24 | 110 | 1021 | 2463 |
Key2-02 | 1 | 10 | 33 | 97 |
Key2-03 | 1 | 63 | 2239 | 2799 |
Key2-04 | 0 | 0 | 1 | 1 |
Key2-06 | 0 | 0 | 0 | 0 |
Key2-10 | 0 | 0 | 0 | 0 |
Key2-13 | 0 | 0 | 0 | 0 |
Key2-18 | 0 | 0 | 0 | 82 |
Key2-21 | 0 | 0 | 227 | 342 |
Key2-25 | 0 | 0 | 0 | 0 |
Key2-27 | 0 | 0 | 153 | 769 |
Key2-29 | 0 | 0 | 25 | 471 |
Key2-38 | 0 | 0 | 0 | 81 |
Key2-40 | 0 | 0 | 3 | 61 |
Key2-46 | 24 | 110 | 1021 | 2463 |
Key2-47 | 0 | 0 | 0 | 0 |
Key2-49 | 0 | 0 | 2 | 76 |
Key2-57 | 0 | 0 | 0 | 0 |
Σ inhibitors in datasets | 34 | 963 | 56,288 | 272,896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimori, A.; Miljković, F.; Bajorath, J. Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling. Molecules 2022, 27, 570. https://doi.org/10.3390/molecules27020570
Yoshimori A, Miljković F, Bajorath J. Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling. Molecules. 2022; 27(2):570. https://doi.org/10.3390/molecules27020570
Chicago/Turabian StyleYoshimori, Atsushi, Filip Miljković, and Jürgen Bajorath. 2022. "Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling" Molecules 27, no. 2: 570. https://doi.org/10.3390/molecules27020570
APA StyleYoshimori, A., Miljković, F., & Bajorath, J. (2022). Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling. Molecules, 27(2), 570. https://doi.org/10.3390/molecules27020570