Antioxidant Potential of Antiviral Drug Umifenovir
Abstract
:1. Introduction
2. Results
2.1. The Antioxidant Capacity of Umifenovir Assessed by Modified TRAP Method
2.2. The Antioxidant Activity of Umifenovir Studied with Computer Simulation
- (1)
- ABAP + Lum → R• (rate constant kR)
- (2)
- R• → P + light, (kLum)
- (3)
- R• + In → P (kIn),
- (3’)
- R• + In1 → P (kIn1)
- (4)
- R• + In2 → P (kIn2)
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Chen, F.; Liu, T.; Liu, S.; Yang, J. The role of oxidative stress in influenza virus infection. Microbes Infect. 2017, 19, 580–586. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Imamura, H.; Taku, T.; Kuroki, T.; Kawaguchi, A.; Ishikawa, K.; Nakada, K.; Koshiba, T. LR-mediated antiviral innate immunity requires oxidative phosphorylation activity. Sci. Rep. 2017, 7, 5379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocic, G.; Sokolovic, D.; Jevtovic, T.; Veljkovic, A.; Kocic, R.; Nikolic, G.; Basic, J.; Stojanovic, D.; Cencic, A.; Stojanovic, S. Hyperglycemia, oxidative and nitrosative stress affect antiviral, inflammatory and apoptotic signaling of cultured thymocytes. Redox. Rep. 2010, 15, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Noshy, M.M.; Hussien, N.A.; El-Ghor, A.A. Evaluation of the role of the antioxidant silymarin in modulating the in vivo genotoxicity of the antiviral drug ribavirin in mice. Mutat. Res. 2013, 752, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Panchal, R.G.; Reid, S.P.; Tran, J.P.; Bergeron, A.A.; Wells, J.; Kota, K.P.; Aman, J.; Bavari, S. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral. Res. 2012, 93, 23–29. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Spencer, J.P.; Rossi, R.; Aeschbach, R.; Khan, A.; Mahmood, N.; Munoz, A.; Murcia, A.; Butler, J.; Halliwell, B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food Chem. Toxicol. 1996, 34, 449–456. [Google Scholar] [CrossRef]
- Lin, C.C.; Cheng, H.Y.; Yang, C.M.; Lin, T.C. Antioxidant and antiviral activities of Euphorbia thymifolia L. J. Biomed. Sci. 2002, 9, 656–664. [Google Scholar] [CrossRef]
- Shahat, A.A.; Cos, P.; de Bruyne, T.; Apers, S.; Hammouda, F.M.; Ismail, S.I.; Azzam, S.; Claeys, M.; Goovaerts, E.; Pieters, L.; et al. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Planta Med. 2002, 68, 539–541. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci. Biotechnol. 2017, 26, 1675–1683. [Google Scholar] [CrossRef]
- Vasil’ev, A.N. Antioxidant impact on specific antiviral activity of human recombinant interferon alpha-2b with respect to Herpes simplex in cell culture. Antibiot. Khimioter. 2010, 55, 20–25. [Google Scholar]
- Fedoreyev, S.A.; Krylova, N.V.; Mishchenko, N.P.; Vasileva, E.A.; Pislyagin, E.A.; Iunikhina, O.V.; Lavrov, V.F.; Svitich, O.A.; Ebralidze, L.K.; Leonova, G.N. Antiviral and Antioxidant Properties of Echinochrome A. Mar. Drugs 2018, 16, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camini, F.C.; da Silva, T.F.; da Silva Caetano, C.C.; Almeida, L.T.; Ferraz, A.C.; Vitoreti, V.M.; de Mello Silva, B.; de Queiroz Silva, S.; de Magalhães, J.C.; de Brito Magalhães, C.L. Antiviral activity of silymarin against Mayaro virus and protective effect in virus-induced oxidative stress. Antiviral. Res. 2018, 158, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Akaike, T.; Hamamoto, T.; Suzuki, F.; Hirano, T.; Maeda, H. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 1989, 244, 974–976. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.; Morens, D.M. The pathology of influenza virus infection. Ann. Rev. Pathol. 2008, 3, 499–522. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Wang, S.; Yao, W.F.; Wu, H.Z.; Meng, S.N.; Weiю, M.J. Pharmacokinetic properties and bioequivalence of two formulations of arbidol: An open-label, single-dose, randomized-sequence, two-period crossover study in healthy Chinese male volunteers. Clin. Ther. 2009, 31, 784–792. [Google Scholar] [CrossRef]
- Leneva, I.A.; Russell, R.J.; Boriskin, Y.S.; Hay, A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antivir. Res. 2009, 81, 132–140. [Google Scholar] [CrossRef]
- Brooks, M.J.; Burtseva, E.I.; Ellery, P.J.; Marsh, G.A.; Lew, A.M.; Slepushkin, A.N.; Crowe, S.M.; Tannock, G.A. Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J. Med. Virol. 2012, 84, 170–181. [Google Scholar] [CrossRef]
- Kiselev, O.I.; Maleev, V.V.; Deeva, E.G.; Leneva, I.A.; Selkova, E.P.; Osipov, E.A.; Obukhov, A.A.; Nadorov, S.A.; Kulikova, E.V. Clinical efficacy of arbidol (umifenovir) in the therapy of influenza in adults: Preliminary results of the multicenter double-blind randomized placebo-controlled study ARBITR. Terapevticheskii Arkhiv 2015, 87, 88–96. [Google Scholar] [CrossRef]
- Leneva, I.A.; Fedyakina, I.T.; Eropkin, M.Y.; Gudova, N.V.; Romanovskaya, A.A.; Danilenko, D.M.; Vinogradova, S.M.; Lepeshkin, A.Y.; Shestopalov, A.M. Study of the antiviral activity of domestic anti-influenza chemotherapy in cell culture and animal models. Voprosy Virusologii 2010, 55, 19–27. [Google Scholar]
- Leneva, I.A.; Falynskova, I.N.; Leonova, E.I.; Fedyakina, I.T.; Makhmudova, N.R.; Osipova, E.A.; Lepekha, L.N.; Mikhailova, N.A.; Zverev, V.V. Umifenovir (Arbidol) efficacy in experimental mixed viral and bacterial pneumonia of mice. Antibiot. Khimioter. 2014, 59, 17–24. [Google Scholar]
- Haviernik, J.; Stefanik, M.; Fojtikova, M.; Kali, S.; Tordo, N.; Rudolf, I.; Hubalek, Z.; Eyer, L.; Ruzek, D. Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses 2018, 10, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leneva, I.A.; Falynskova, I.N.; Makhmudova, N.R.; Poromov, A.A.; Yatsyshina, S.B.; Maleev, V.V. Umifenovir susceptibility monitoring and characterization of influenza viruses isolated during ARBITR clinical study. J. Med. Virol. 2019, 91, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Khamitov, R.A.; Loginova, S.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Voprosy Virusologii 2008, 53, 9–13. [Google Scholar] [PubMed]
- Pshenichnaya, N.Y.; Bulgakova, V.A.; Lvov, N.I.; Poromov, A.A.; Selkova, E.P.; Grekova, A.I.; Shestakova, I.V.; Maleev, V.V.; Leneva, I.A. Clinical efficacy of umifenovir in influenza and ARVI (study ARBITR). Terapevticheskii Arkhiv 2019, 91, 56–63. [Google Scholar] [CrossRef]
- Bulgakova, V.A.; Poromov, A.A.; Grekova, A.I.; Pshenichnaya, N.Y.; Selkova, E.P.; Leneva, I.A.; Shestakova, I.V.; Maleev, V.V. Pharmacoepidemiological study of influenza and other acute respiratory viral infections in risk groups. Terapevticheskii Arkhiv 2017, 89, 61–72. [Google Scholar] [CrossRef]
- Kubar, O.I.; Stepanova, L.A.; Safonova, L.S. IV Russian National Congress “Man and Medicine”. VIDOX LLC: Moscow, Russia, 1997; p. 269. [Google Scholar]
- Du, Q.; Gu, Z.; Leneva, I.; Jiang, H.; Li, R.; Deng, L.; Yang, Z. The antiviral activity of arbidol hydrochloride against herpes simplex virus type II (HSV-2) in a mouse model of vaginitis. Int. Immunopharmacol. 2019, 68, 58–67. [Google Scholar] [CrossRef]
- Glushkov, R.G.; Gus’kova, T.A.; Krylova, L.I.; Nikolaeva, I.S. Mechanisms of arbidole’s immunomodulating action. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk 1999, 3, 36–40. [Google Scholar]
- Huang, L.; Zhang, L.; Liu, Y.; Luo, R.; Zeng, L.; Telegina, I.; Vlassov, V.V. Arbidol for preventing and treating influenza in adults and children. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Vasil’eva, O.V.; Liubitskii, O.B.; Gus’kova, T.A.; Glushkov, R.G.; Medvedev, O.S.; Vladimirov, Y.A. Antioxidant properties of arbidol and its structural analogs. Voprosy Meditsinskoi Khimii 1999, 45, 326–331. [Google Scholar]
- Lissi, E.; Salim-Hanna, M.; Pascual, C.; del Castillo, M.D. Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic. Biol. Med. 1995, 18, 153–158. [Google Scholar] [CrossRef]
- Magin, D.V.; Izmailov, D.Y.; Popov, I.N.; Levin, G.; Vladimirov, Y.A. Photochemiluminescent study of the antioxidant activity in biological systems. Mathematical modeling. Voprosy Meditsinskoi Khimii 2000, 46, 419–425. [Google Scholar] [PubMed]
- Vladimirov, Y.A.; Proskurnina, E.V.; Izmajlov, D.Y. Kinetic chemiluminescence as a method for study of free radical reactions. Biophysics (Moscow) 2011, 56, 1055–1062. [Google Scholar] [CrossRef]
- Alekseev, A.V.; Proskurnina, E.V.; Vladimirov, Y.A. Determination of Antioxidants by Sensitized Chemiluminescence Using 2,2’_azo_bis(2_amidinopropane). Mosc. Univ. Chem. Bull. 2012, 67, 127–132. [Google Scholar] [CrossRef]
- Izmailov, D.Y. Determination of antioxidant activity by measuring the chemiluminescence kinetics. Fotobiologiya I Fotomeditsina 2011, 7, 70–76. [Google Scholar]
- Niki, E.; Kawakami, A.; Saito, M.; Yamamoto, Y.; Tsuchiya, J.; Kamiya, Y. Effect of phytyl side chain of vitamin E on its antioxidant activity. J. Biol. Chem. 1985, 260, 2191–2196. [Google Scholar] [PubMed]
- Ohlsson, A.B.; Berglund, T.; Komlos, P.; Rydstrom, J. Plant defense metabolism is increased by the free radical-generating compound AAPH. Free Radic. Biol. Med. 1995, 19, 319–327. [Google Scholar] [CrossRef]
Sample Availability: All substances were obtained from specified commercial sources and are available for purchase. |
Concentration of Umifenovir | Antioxidant Capacity in μM of Trolox, Mean ± Standard Deviation, n = 9 |
---|---|
0.1 μM | S1 = 0.049 ± 0.004 (“Fast” capacity) S2 = 0.095 ± 0.010 (“Slow” capacity) S = 0.14 ± 0.12 (Total capacity) |
0.9 μM (maximal concentration of Umifenovir in blood after taking 200 mg per os) | S1 = 0.45 ± 0.04 (“Fast” capacity) S2 = 1.20 ± 0.13 (“Slow” capacity) S = 1.65 ± 0.18 (Total capacity) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proskurnina, E.V.; Izmailov, D.Y.; Sozarukova, M.M.; Zhuravleva, T.A.; Leneva, I.A.; Poromov, A.A. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules 2020, 25, 1577. https://doi.org/10.3390/molecules25071577
Proskurnina EV, Izmailov DY, Sozarukova MM, Zhuravleva TA, Leneva IA, Poromov AA. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules. 2020; 25(7):1577. https://doi.org/10.3390/molecules25071577
Chicago/Turabian StyleProskurnina, Elena V., Dmitry Yu. Izmailov, Madina M. Sozarukova, Tatiana A. Zhuravleva, Irina A. Leneva, and Artem A. Poromov. 2020. "Antioxidant Potential of Antiviral Drug Umifenovir" Molecules 25, no. 7: 1577. https://doi.org/10.3390/molecules25071577
APA StyleProskurnina, E. V., Izmailov, D. Y., Sozarukova, M. M., Zhuravleva, T. A., Leneva, I. A., & Poromov, A. A. (2020). Antioxidant Potential of Antiviral Drug Umifenovir. Molecules, 25(7), 1577. https://doi.org/10.3390/molecules25071577