Anti-Glycation Activities of Phenolic Constituents from Silybum marianum (Milk Thistle) Flower in Vitro and on Human Explants
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Silybum marianum Flower Extract on AGEs Formation
2.2. Topical Anti-Glycation Activity of Silybum marianum Extract
2.3. Phytochemical Analysis of Silybum marianum Flower
2.4. The Chemical Components in the Extract of Silybum marianum Flower
2.5. The Effect of Silibinin on AGEs Formation
2.6. The Effects of Silibinin on Protein Oxidation
Experimental Groups | Protein Carbonyl Contents (nmol/mg Protein) | Inhibitory Effect (%) |
---|---|---|
BSA/glucose | 2.31 ± 0.00 | |
BSA/glucose/silibinin (1 µg/mL) | 2.09 ± 0.04 b | 9.9 ± 1.7 |
BSA/glucose/silibinin (10 µg/mL) | 1.89 ± 0.03 a | 18.3 ± 1.5 |
BSA/glucose/silibinin (50 µg/mL) | 1.79 ± 0.11 b | 22.8 ± 4.6 |
BSA/glucose/silibinin(100 µg/mL) | 1.61 ± 0.01 a | 30.2 ± 0.4 |
BSA/glucose/AG (500 µg/mL) | 1.82 ± 0.03 a | 21.3 ± 1.4 |
2.7. The Effects of Silibinin on CML Formation
2.8. Human Skin Primary Irritation Test of Silibinin
No. | Test Material | 48 h | 72 h | Reaction grade b | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± | 1+ | 2+ | 3+ | 4+ | ± | 1+ | 2+ | 3+ | 4+ | 48 h | 72 h | Mean | ||
1 | Squalene | - a | - | - | - | - | - | - | - | - | - | 0 | 0 | 0 |
2 | Silibinin (0.1%) | - | - | - | - | - | - | - | - | - | - | 0 | 0 | 0 |
3. Experimental Section
3.1. Chemicals and Antibodies
3.2. Plant Preparation and Extraction
3.3. High Performance Liquid Chromatography
3.4. Measurement of Total Polyphenolic Content
3.5. Measurement of Total Flavonoid Content
3.6. In Vitro Glycation of Bovine Serum Albumin (BSA)
3.7. Determination of AGEs Formation
3.8. Determination of Protein Carbonyl Content
3.9. Determination of Nε-(carboxymethyl) Lysine (CML)
3.10. Human Skin Explants
3.11. Antiglycation Activity in Human Skin Explants
3.12. Human Skin Primary Irritation Test
3.13. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Pageon, H. Reaction of glycation and human skin: the effects on the skin and its components, reconstructed skin as a model. Pathol. Biol. (Paris) 2010, 58, 226–231. [Google Scholar] [CrossRef]
- Jeanmaire, C.; Danoux, L.; Pauly, G. Glycation during human dermalintrinsic and actinic ageing: An in vivo and in vitro model study. Br. J. Dermal. 2001, 145, 10–18. [Google Scholar] [CrossRef]
- Bucala, R.; Cerami, A. Advanced glycosylation chemistry, biology and implications for diabetes and aging. Adv. Pharmacol. 1992, 23, 1–4. [Google Scholar] [PubMed]
- Hayachi, C.M.; Nagai, R.; Miyazaki, K.; Hayase, F.; Araki, T.; Ono, T.; Horiuchi, S. Conversion of Amadori product of the mailard reaction to Nϵ -(carboxymethyl) lysine by short-term heating: possible detection of artefacts by immunohistochemistry. Lab. Investig. 2002, 82, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Kueper, T.; Grune, T.; Prahl, S.; Lenz, H.; Welge, V.; Biernoth, T.; Vogt, Y.; Muhr, G.M.; Gaemlich, A.; Jung, T.; et al. Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging. J. Biol. Chem. 2007, 282, 23427–23436. [Google Scholar] [CrossRef] [PubMed]
- Gasser, P.; Arnold, F.; Peno-Mazzarino, L.; Bouzoud, D.; Luu, M.T.; Lati, E.; Mercier, M. Glycation induction and antiglycation activity of skin care ingredients on living human skin explants. Int. J. Cosmet Sci. 2011, 33, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Thornalley, P.J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys. 2003, 419, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chen, J.; Ma, J.; Jiang, Y.; Wang, M.; Ren, G.; Chen, F. Cynarin-rich sunflower (Helianthus annuus) sprouts possess both antiglycative and antioxidant activities. J. Agric. Food Chem. 2012, 60, 3260–3265. [Google Scholar] [CrossRef] [PubMed]
- Adisakwattana, S.; Thilavech, T.; Chusak, C. Mesona chinensis Benth extract prevents AGE formation and protein oxidation against fructose-induced protein glycation in vitro. BMC Complement Altern Med. 2014, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Huang, S.M.; Yen, G.C. Silymarin: A novel antioxidant with antiglycation and anti-inflammatory properties in vitro and in vivo. Antioxid. Redox Signal. 2011, 14, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Huseini, H.F.; Larijani, B.; Heshmat, R.; Fakhzadeh, H.; Radjabipour, B.; Toliat, T.; Raza, M. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytother. Res. 2006, 20, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Skottová, N.; Kazdová, L.; Oliyarnyk, O.; Vecera, R.; Sobolová, L.; Ulrichová, J. Phenolics-rich extracts from Silybum marianum and Prunella vulgaris reduce a high-sucrose diet induced oxidative stress in hereditary hypertriglyceridemic rats. Pharmacol. Res. 2004, 50, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, J.M.; Stanimirović, B.D.; Mandić, L.M. The role of the thiol group in protein modification with methylglyoxal. J. Serb. Chem. Soc. 2009, 74, 867–883. [Google Scholar]
- Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med. 2003, 9, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Mäkynen, K.; Jitsaardkul, S.; Tachasamran, P.; Sakai, N.; Puranachoti, S.; Nirojsinlapachai, N.; Chattapat, V.; Caengprasath, N.; Ngamukote, S.; Adisakwattana, S. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food Chem. 2013, 139, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, M. The determination of flavonoid contents of mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Sompong, W.; Meeprom, A.; Ngamukote, S.; Yibchok-Anun, S. Cinnamic Acid and its derivatives inhibit fructose-mediated protein glycation. Int. J. Mol. Sci. 2012, 13, 1778–1789. [Google Scholar] [CrossRef] [PubMed]
- Meeprom, A.; Sompong, W.; Chan, C.B.; Adisakwattana, S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules 2013, 18, 6439–6454. [Google Scholar] [CrossRef] [PubMed]
- Frosch, P.J.; Kligman, A.M. The soap chamber test. A new method for assessing the irritancy of soaps. J. Am. Acad. Dermatol. 1979, 1, 35–41. [Google Scholar] [CrossRef] [PubMed]
- CTFA Safety Testing Guideline; The Cosmetic, Toiletry and Fragrance Association, Inc.: Washington, DC, USA, 1981; p. 20005.
- Rondeau, P.; Bourdon, E. The glycation of albumin: Structual and functional impacts. Biochimie 2011, 93, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.R.; Thornalley, P.J. Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. Eur. J. Biochem. 1992, 210, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Nagai, R.; Ikeda, K.; Higashi, T.; Sano, H.; Jinnouchi, Y.; Araki, T.; Horiuchi, S. Hydroxyl radical mediates Nε-(Carboxymethyl) lysine formation from Amadori product. Biochem. Biophys. Res. Commun. 1997, 234, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Huang, S.M.; Yen, G.C. Inhibition of advanced glycation endproduct formation by foodstuffs. Food Func. 2011, 2, 224–234. [Google Scholar] [CrossRef]
- Ardestani, A.; Yazdanparast, R. Cyperus rotundus suppresses age formation and protein oxidation in a model of fructose-mediated protein glycoxidation. Int. J. Biol. Macromol. 2007, 41, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Nicklett, E.J.; Ferrucci, L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the Silybum marianum flower extract are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Lee, J.-A.; Kim, M.; Kum, H.; Jung, E.; Park, D. Anti-Glycation Activities of Phenolic Constituents from Silybum marianum (Milk Thistle) Flower in Vitro and on Human Explants. Molecules 2015, 20, 3549-3564. https://doi.org/10.3390/molecules20033549
Shin S, Lee J-A, Kim M, Kum H, Jung E, Park D. Anti-Glycation Activities of Phenolic Constituents from Silybum marianum (Milk Thistle) Flower in Vitro and on Human Explants. Molecules. 2015; 20(3):3549-3564. https://doi.org/10.3390/molecules20033549
Chicago/Turabian StyleShin, Seoungwoo, Jung-A Lee, Minkyung Kim, Hyunwoo Kum, Eunsun Jung, and Deokhoon Park. 2015. "Anti-Glycation Activities of Phenolic Constituents from Silybum marianum (Milk Thistle) Flower in Vitro and on Human Explants" Molecules 20, no. 3: 3549-3564. https://doi.org/10.3390/molecules20033549