Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti-T. cruzi Activity
Abstract
:1. Introduction
2. Methods
2.1. Compounds
2.2. Growth of T. cruzi Strains
2.3. T. cruzi Strain Image-Based Assays to Assess Compound Activity
2.4. Replication of T. cruzi Strains
2.5. Calculation of Compound IC50 Values, Maximal Achievable Activity (Emax) and Statistical Analysis
3. Results
3.1. Compound Activity Following 48 h Incubation
3.2. Compound Activity Calculated Following 72 h Incubation
3.3. Number of Infected Cells, Host Cells and Replication of T. cruzi Strains over Time
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zingales, B.; Miles, M.A.; Moraes, C.B.; Luquetti, A.; Guhl, F.; Schijman, A.G.; Ribeiro, I. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Memórias Inst. Oswaldo Cruz 2014, 109, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Miles, M.A.; Campbell, D.A.; Tibayrenc, M.; Macedo, A.M.; Teixeira, M.M.; Schijman, A.G.; Llewellyn, M.S.; Lages-Silva, E.; Machado, C.R.; et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 2012, 12, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Neitz, R.J.; Chen, S.; Supek, F.; Yeh, V.; Kellar, D.; Gut, J.; Bryant, C.; Gallardo-Godoy, A.; Molteni, V.; Roach, S.L.; et al. Lead identification to clinical candidate selection: Drugs for Chagas disease. J. Biomol. Screen. 2015, 20, 101–111. [Google Scholar] [CrossRef]
- Kratz, J.M.; Goncalves, K.R.; Romera, L.M.; Moraes, C.B.; Bittencourt-Cunha, P.; Schenkman, S.; Chatelain, E.; Sosa-Estani, S. The translational challenge in Chagas disease drug development. Memórias Inst. Oswaldo Cruz 2022, 117, e200501. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E. Chagas disease drug discovery: Toward a new era. J. Biomol. Screen 2015, 20, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.D.; Mesquita, J.T.; da Costa Silva, T.A.; Romanelli, M.M.; da Gama Jaen Batista, D.; da Silva, C.F.; da Gama, A.N.S.; Neves, B.J.; Melo-Filho, C.C.; Soeiro, M.D.N.C.; et al. Efficacy of sertraline against Trypanosoma cruzi: An in vitro and in silico study. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 30. [Google Scholar] [CrossRef]
- Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592–2597. [Google Scholar] [CrossRef]
- Engel, J.C.; Ang, K.K.; Chen, S.; Arkin, M.R.; McKerrow, J.H.; Doyle, P.S. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob. Agents Chemother. 2010, 54, 3326–3334. [Google Scholar] [CrossRef]
- Alonso-Padilla, J.; Cotillo, I.; Presa, J.L.; Cantizani, J.; Pena, I.; Bardera, A.I.; Martin, J.J. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line. PLoS Negl. Trop. Dis. 2015, 9, e0003493. [Google Scholar] [CrossRef]
- Sykes, M.L.; Avery, V.M. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes. Int. J. Parasitol. Drug 2015, 5, 215–228. [Google Scholar] [CrossRef] [Green Version]
- MacLean, L.M.; Thomas, J.; Lewis, M.D.; Cotillo, I.; Gray, D.W.; de Rycker, M. Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas’ disease drug discovery. PLoS Negl. Trop. Dis. 2018, 12, e0006612. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.B.; Giardini, M.A.; Kim, H.; Franco, C.H.; Araujo, A.M.; Schenkman, S.; Chatelain, E.; Freitas-Junior, L.H. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: Implications for Chagas disease drug discovery and development. Sci. Rep. 2014, 4, 4703. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.H.; Alcantara, L.M.; Chatelain, E.; Freitas-Junior, L.; Moraes, C.B. Drug Discovery for Chagas Disease: Impact of Different Host Cell Lines on Assay Performance and Hit Compound Selection. Trop. Med. Infect. Dis. 2019, 4, 82. [Google Scholar] [CrossRef] [PubMed]
- Mejia, A.M.; Hall, B.S.; Taylor, M.C.; Gomez-Palacio, A.; Wilkinson, S.R.; Triana-Chavez, O.; Kelly, J.M. Benznidazole-Resistance in Trypanosoma cruzi Is a Readily Acquired Trait That Can Arise Independently in a Single Population. J. Infect. Dis. 2012, 206, 220–228. [Google Scholar] [CrossRef]
- Campos, M.C.; Phelan, J.; Francisco, A.F.; Taylor, M.C.; Lewis, M.D.; Pain, A.; Clark, T.G.; Kelly, J.M. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Sci. Rep. 2017, 7, 14407. [Google Scholar] [CrossRef]
- Genovesio, A.; Giardini, M.A.; Kwon, Y.J.; de Macedo Dossin, F.; Choi, S.Y.; Kim, N.Y.; Kim, H.C.; Jung, S.Y.; Schenkman, S.; Almeida, I.C.; et al. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection. PLoS ONE 2011, 6, e19733. [Google Scholar] [CrossRef]
- Yang, G.S.; Lee, N.; Ioset, J.R.; No, J.H. Evaluation of Parameters Impacting Drug Susceptibility in Intracellular Trypanosoma cruzi Assay Protocols. SLAS Discov. 2017, 22, 125–134. [Google Scholar] [CrossRef]
- De Rycker, M.; Thomas, J.; Riley, J.; Brough, S.J.; Miles, T.J.; Gray, D.W. Identification of Trypanocidal Activity for Known Clinical Compounds Using a New Trypanosoma cruzi Hit-Discovery Screening Cascade. PLoS Neglect. Trop. Dis. 2016, 10, e000458. [Google Scholar] [CrossRef]
- Sanchez-Valdez, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife 2018, 7, e34039. [Google Scholar] [CrossRef]
- Harrison, J.R.; Sarkar, S.; Hampton, S.; Riley, J.; Stojanovski, L.; Sahlberg, C.; Appelqvist, P.; Erath, J.; Mathan, V.; Rodriguez, A.; et al. Discovery and Optimization of a Compound Series Active against Trypanosoma cruzi, the Causative Agent of Chagas Disease. J. Med. Chem. 2020, 63, 3066–3089. [Google Scholar] [CrossRef]
- Machado, F.C.; Franco, C.H.; Neto, J.V.D.; Dias-Teixeira, K.L.; Moraes, C.B.; Lopes, U.G.; Aktas, B.H.; Schenkman, S. Identification of di-substituted ureas that prevent growth of trypanosomes through inhibition of translation initiation. Sci. Rep. 2018, 8, 4857. [Google Scholar] [CrossRef] [PubMed]
- Cal, M.; Ioset, J.R.; Fugi, M.A.; Maser, P.; Kaiser, M. Assessing anti-T. cruzi candidates in vitro for sterile cidality. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, Q.; Wang, X. Transcriptional landscape of human cancers. Oncotarget 2017, 8, 34534–34551. [Google Scholar] [CrossRef] [PubMed]
- Andriani, G.; Chessler, A.D.; Courtemanche, G.; Burleigh, B.A.; Rodriguez, A. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLoS Negl. Trop. Dis. 2011, 5, e1298. [Google Scholar] [CrossRef] [PubMed]
- Bettiol, E.; Samanovic, M.; Murkin, A.S.; Raper, J.; Buckner, F.; Rodriguez, A. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl. Trop. Dis. 2009, 3, e384. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, P.C.; Burleigh, B.A. Stress-Induced Proliferation and Cell Cycle Plasticity of Intracellular Trypanosoma cruzi Amastigotes. Mbio 2018, 9, e00673-18. [Google Scholar] [CrossRef]
- Aridgides, D.; Salvador, R.; PereiraPerrin, M. Trypanosoma cruzi highjacks TrkC to enter cardiomyocytes and cardiac fibroblasts while exploiting TrkA for cardioprotection against oxidative stress. Cell. Microbiol. 2013, 15, 1357–1366. [Google Scholar] [CrossRef]
- Buckner, F.S.; Wilson, A.J.; Van Voorhis, W.C. Detection of live Trypanosoma cruzi in tissues of infected mice by using histochemical stain for beta-galactosidase. Infect. Immun. 1999, 67, 403–409. [Google Scholar] [CrossRef]
- Guimaraes-Pinto, K.; Nascimento, D.O.; Correa-Ferreira, A.; Morrot, A.; Freire-de-Lima, C.G.; Lopes, M.F.; DosReis, G.A.; Filardy, A.A. Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Front. Immunol. 2018, 9, 1569. [Google Scholar] [CrossRef]
- Da Silva Lara, L.; Andrade-Lima, L.; Magalhaes Calvet, C.; Borsoi, J.; Lopes Alberto Duque, T.; Henriques-Pons, A.; Souza Pereira, M.C.; Pereira, L.V. Trypanosoma cruzi infection of human induced pluripotent stem cell-derived cardiomyocytes: An in vitro model for drug screening for Chagas disease. Microbes Infect. 2018, 20, 312–316. [Google Scholar] [CrossRef]
- Ricci, M.F.; Bela, S.R.; Moraes, M.M.; Bahia, M.T.; Mazzeti, A.L.; Oliveira, A.C.S.; Andrade, L.O.; Radi, R.; Piacenza, L.; Estaves Arantes, R.M.; et al. Neuronal Parasitism, Early Myenteric Neurons Depopulation and Continuous Axonal Networking Damage as Underlying Mechanisms of the Experimental Intestinal Chagas’ Disease. Front. Cell. Infect. Microbiol. 2020, 10, 58389. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.I.; Lewis, M.D.; Khan, A.A.; McCann, C.J.; Francisco, A.F.; Jayawardhana, S.; Taylor, M.C.; Kelly, J.M. In Vivo Analysis of Trypanosoma cruzi Persistence Foci a Single-Cell Resolution. Mbio 2020, 11, e01242-20. [Google Scholar] [CrossRef] [PubMed]
- MMV. About the Pathogen Box. Available online: https://www.mmv.org/mmv-open/pathogen-box/about-pathogen-box?gclid=EAIaIQobChMIoLGkkpz4_AIVxGOLCh01zgycEAAYASAAEgIhJPD_BwE (accessed on 22 January 2023).
- Sykes, M.L.; Avery, V.M. 3-pyridyl inhibitors with novel activity against Trypanosoma cruzi reveal in vitro profiles can aid prediction of putative cytochrome P450 inhibition. Sci. Rep. 2018, 8, 4901. [Google Scholar] [CrossRef]
- Chen, C.K.; Leung, S.S.; Guilbert, C.; Jacobson, M.P.; McKerrow, J.H.; Podust, L.M. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl. Trop. Dis. 2010, 4, e651. [Google Scholar] [CrossRef] [PubMed]
- Warrilow, A.G.; Parker, J.E.; Kelly, D.E.; Kelly, S.L. Azole Affinity of Sterol 14 alpha-Demethylase (CYP51) Enzymes from Candida albicans and Homo sapiens. Antimicrob. Agents Chemother. 2013, 57, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Trochine, A.; Creek, D.J.; Faral-Tello, P.; Barrett, M.P.; Robello, C. Benznidazole Biotransformation and Multiple Targets in Trypanosoma cruzi Revealed by Metabolomics. PLoS Negl. Trop. Dis. 2014, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.S.; Bot, C.; Wilkinson, S.R. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J. Biol. Chem. 2011, 286, 13088–13095. [Google Scholar] [CrossRef]
- Sykes, M.L.; Kennedy, E.K.; Read, K.D.; Kaiser, M.; Avery, V.M. Temporal and Wash-Out Studies Identify Medicines for Malaria Venture Pathogen Box Compounds with Fast-Acting Activity against Both Trypanosoma cruzi and Trypanosoma brucei. Microorganisms 2022, 10, 1287. [Google Scholar] [CrossRef]
- Zuma, A.A.; Mendes, I.C.; Reignault, L.C.; Elias, M.C.; de Souza, W.; Machado, C.R.; Motta, M.C.M. How Trypanosoma cruzi handles cell cycle arrest promoted by camptothecin, a topoisomerase I inhibitor. Mol. Biochem. Parasitol. 2014, 193, 93–100. [Google Scholar] [CrossRef]
- Kaiser, M.; Maser, P.; Tadoori, L.P.; Ioset, J.R.; Brun, R. Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS ONE 2015, 10, 0135556. [Google Scholar] [CrossRef] [Green Version]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013, 7, 1157–1178. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, Y.; McDermott, S.P.; Wang, X.M.; Gronda, M.; Venugopal, A.; Wood, T.E.; Hurren, R.; Datti, A.; Batey, R.A.; Wrana, J.; et al. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 2019, 114, 3064–3073. [Google Scholar] [CrossRef] [PubMed]
- Mateus, J.; Guerrero, P.; Lasso, P.; Cuervo, C.; Gonzalez, J.M.; Puerta, C.J.; Cuellar, A. An Animal Model of Acute and Chronic Chagas Disease With the Reticulotropic Y Strain of Trypanosoma cruzi That Depicts the Multifunctionality and Dysfunctionality of T Cells. Front. Immunol. 2019, 10, 918. [Google Scholar] [CrossRef]
- Watkins, R. Comparison of Infections Produced by 2 Strains of Trypanosoma Cruzi in Mice. J. Parasitol. 1966, 52, 958–961. [Google Scholar] [CrossRef] [PubMed]
- Francisco, A.F.; Lewis, M.D.; Jayawardhane, S.; Taylor, M.C.; Chatelain, E.; Kelly, J.M. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging. Antimicrob. Agents Chemother. 2015, 59, 4653–4661. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.L.; Ferreira, E.R.; de Brito, M.V.; Salu, B.R.; Oliva, M.L.V.; Mortara, R.A.; Orikaza, C.M. BALB/c and C57BL/6 Mice Cytokine Responses to Trypanosoma cruzi Infection Are Independent of Parasite Strain Infectivity. Front. Microbiol. 2018, 9, 553. [Google Scholar] [CrossRef]
- Zingales, B.; Andrade, S.G.; Briones, M.R.; Campbell, D.A.; Chiari, E.; Fernandes, O.; Guhl, F.; Lages-Silva, E.; Macedo, A.M.; Machado, C.R.; et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Memórias Inst. Oswaldo Cruz 2009, 104, 1051–1054. [Google Scholar] [CrossRef]
- Chessler, A.D.C.; Unnikrishnan, M.; Bei, A.K.; Daily, J.P.; Burleigh, B.A. Trypanosoma cruzi Triggers an Early Type I IFN Response In Vivo at the Site of Intradermal Infection. J. Immunol. 2009, 182, 2288–2296. [Google Scholar] [CrossRef]
- Da Silva, C.V.; Luquetti, A.O.; Rassi, A.; Mortara, R.A. Involvement of Ssp-4-related carbohydrate epitopes in mammalian cell invasion by Trypanosoma cruzi amastigotes. Microbes Infect. 2006, 8, 2120–2129. [Google Scholar] [CrossRef]
- Cruz, M.C.; Souza-Melo, N.; da Silva, C.V.; Darocha, W.D.; Bahia, D.; Araujo, P.R.; Teixeira, S.R.; Mortara, S.R. Trypanosoma cruzi: Role of delta-amastin on extracellular amastigote cell invasion and differentiation. PLoS ONE 2012, 7, e51804. [Google Scholar] [CrossRef] [Green Version]
- Mortara, R.A.; Andreoli, W.K.; Taniwaki, N.N.; Fernandes, A.B.; Silva, C.V.; Fernandes, M.C.; L’Abbate, C.; Da Silva, S. Mammalian cell invasion and intracellular trafficking by Trypanosoma cruzi infective forms. An. Acad. Bras. Cienc. 2005, 77, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.A.; Saosa, J.S.; da Silva, G.K.; Martins, F.A.; da Silva, A.A.; Souza Neto, C.P.; Horta, C.V.; Zamboni, D.S.; da Silva, J.S.; Ferro, E.A.V.; et al. IFN-gamma plays a unique role in protection against low virulent Trypanosoma cruzi strain. PLoS Negl. Trop. Dis. 2012, 6, e1598. [Google Scholar] [CrossRef] [PubMed]
- Sykes, M.L.; Hilko, D.H.; Kung, L.I.; Poulsen, S.A.; Avery, V.M. Investigation of pyrimidine nucleoside analogues as chemical probes to assess compound effects on the proliferation of Trypanosoma cruzi intracellular parasites. PLoS Negl. Trop. Dis. 2020, 14, e0008068. [Google Scholar] [CrossRef] [PubMed]
- Contreras, V.T.; Navarro, M.C.; De Lima, A.R.; Duran, F.; Arteaga, R.; Franco, Y. Early and late molecular and morphologic changes that occur during the in vitro transformation of Trypanosoma cruzi metacyclic trypomastigotes to amastigotes. Biol. Res. 2002, 35, 47–58. [Google Scholar] [CrossRef]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Lovitt, C.J.; Hilko, D.H.; Avery, V.M.; Poulsen, S.A. Development of ethynyl-2′-deoxyuridine chemical probes for cell proliferation. Bioorgan. Med. Chem. 2016, 24, 4272–4280. [Google Scholar] [CrossRef]
- Buck, S.B.; Bradford, J.; Gee, K.R.; Agnew, B.J.; Clarke, S.T.; Salic, A. Detection of S-phase cell cycle progression using 5-ethynyl-2’-deoxyuridine incorporation with click chemistry an alternative to using 5-bromo-2’-deoxyuridine antibodies. BioTechniques 2008, 44, 927–929. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Parasites—American Trypanosomiasis (Also Known as Chagas Disease); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Planer, J.D.; Hulverson, M.A.; Arif, J.A.; Ranade, R.M.; Don, R.; Buckner, F.S. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Negl. Trop. Dis. 2014, 8, e2977. [Google Scholar] [CrossRef]
- Ferreira, E.R.; Bonfim-Melo, A.; Mortara, R.A.; Bahia, D. Trypanosoma cruzi extracellular amastigotes and host cell signaling: More pieces to the puzzle. Front. Immunol. 2012, 3, 363. [Google Scholar] [CrossRef]
- Molina, I.; Gomez i Prat, J.; Salvador, F.; Trevino, B.; Sulleiro, E.; Serre, N.; Pou, D.; Roure, S.; Cabezos, J.; Valerio, L.; et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N. Engl. J. Med. 2014, 370, 1899–1908. [Google Scholar] [CrossRef]
- Lepesheva, G.I.; Villalta, F.; Waterman, M.R. Targeting Trypanosoma cruzi sterol 14alpha-demethylase (CYP51). Adv. Parasitol. 2011, 75, 65–87. [Google Scholar] [PubMed]
- Moreno, M.; D’avila, D.A.; Silva, M.N.; Galvao, L.M.C.; Macedo, A.M.; Chiari, E.; Gontijo, E.D.; Zingales, B. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease. Memórias Inst. Oswaldo Cruz 2010, 105, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Bahia, M.T.; de Andrade, I.M.; Martins, T.A.; do Nascimento, A.F.; Diniz Lde, F.; Caldas, I.S.; Talvani, A.; Trunz, B.B.; Torreele, E.; Ribeiro, I. Fexinidazole: A potential new drug candidate for Chagas disease. PLoS Negl. Trop. Dis. 2012, 6, e1870. [Google Scholar] [CrossRef]
- Soeiro Mde, N.; de Souza, E.M.; da Silva, C.F.; Batista Dda, G.; Batista, M.M.; Pavao, B.P.; Araujo, J.S.; Fortes Aiub, C.A.; da Silva, P.B.; Lionel, J.; et al. In vitro and in vivo studies of the antiparasitic activity of sterol 14alpha-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob. Agents Chemother. 2013, 57, 4151–4163. [Google Scholar] [CrossRef]
- Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of Replication Forks by Drug-Stabilized Topoisomerase I-DNA Cleavable Complexes as a Mechanism of Cell Killing by Camptothecin. Cancer Res. 1989, 49, 5077–5082. [Google Scholar]
- Bodley, A.L.; Shapiro, T.A. Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on trypanosomes and Leishmania. Proc. Natl. Acad. Sci. USA 1995, 92, 3726–3730. [Google Scholar] [CrossRef]
- Lacombe, O.K.; Zuma, A.A.; da Silva, C.C.; de Souza, W.; Motta, M.C. Effects of camptothecin derivatives and topoisomerase dual inhibitors on Trypanosoma cruzi growth and ultrastructure. J. Negat. Results Biomed. 2014, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Zuma, A.A.; Cavalcanti, D.P.; Maia, M.C.; de Souza, W.; Motta, M.C. Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi. Int. J. Antimicrob. Agents 2011, 37, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.C.; Ward, A.; Olmo, F.; Jayawardhana, S.; Francisco, A.F.; Lewis, M.D.; Kelly, J.M. Intracellular DNA replication and differentiation of Trypanosoma cruzi is asynchronous within individual host cells in vivo at all stages of infection. PLoS Negl. Trop. Dis. 2020, 14, 0008007. [Google Scholar] [CrossRef]
- Lima, F.M.; Oliveira, P.; Mortara, R.A.; Silveira, J.F.; Bahia, D. The challenge of Chagas’ disease Has the human pathogen, Trypanosoma cruzi, learned how to modulate signaling events to subvert host cells? New Biotechnol. 2010, 27, 837–843. [Google Scholar] [CrossRef]
- Costales, J.A.; Daily, J.P.; Burleigh, B.A. Cytokine-dependent and-independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling. BMC Genom. 2009, 10, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, C.N.; Medei, E.; Bozza, M.T. ROS and Trypanosoma cruzi: Fuel to infection, poison to the heart. PLoS Pathog. 2018, 14, e1006928. [Google Scholar] [CrossRef] [PubMed]
- Mina, J.G.M.; Charlton, R.L.; Alpizar-Sosa, E.; Escrivani, D.O.; Brown, C.; Alqaisi, A.; Borsodi, M.P.G.; Figueiredo, C.P.; de Lima, E.V.; Dickie, E.A.; et al. Antileishmanial Chemotherapy through Clemastine Fumarate Mediated Inhibition of the Leishmania Inositol Phosphorylceramide Synthase. ACS Infect. Dis. 2021, 7, 47–63. [Google Scholar] [CrossRef] [PubMed]
IC50 Value against T. cruzi Strains (µM) | ||||
---|---|---|---|---|
Compound | Tulahuen | Y | G | CL |
Posaconazole 1 | 1.6 × 10−3 ± 9.6 × 10−4 | 0.71 × 10−3 ± 1.2 × 10−4 | 0.94 × 10−3 ± 8.5 × 10−4 | 0.74 × 10−3 ± 9.5 × 10−5 |
E155-0206 1 | 1.03 ± 0.35 | 1.2 ± 0.15 | 1.4 ± 0.79 | 0.503 ± 0.045 |
Clotrimazole 1 | 0.072 ± 0.050 | 0.11 ± 0.041 | 0.14 ± 0.037 | 0.023 ± 0.0021 |
Clemastine Fumarate | 0.65 ± 0.046 | 0.66 ± 0.015 | 0.44 ± 0.19 | 0.36 ± 0.13 |
Camptothecin 1 | 0.205 ± 0.012 | 0.46 ± 0.029 | 0.28 ± 0.13 | 0.14 ± 0.01 |
Ciclopirox olamine | 2.9 ± 0.63 | 1.9 ± 1.1 | 1.5 ± 0.22 | 1.8 ± 0.27 |
Nifurtimox | 1.6 ± 0.34 | 1.7 ± 0.23 | 2.5 ± 0.73 | 0.81 ± 0.040 |
Benznidazole | 8.01 ± 0.25 | 6.6 ± 0.73 | 4.3 ± 1.2 | 5.5 ± 0.78 |
MMV688958 | 0.61 ± 0.027 | 0.56 ± 0.025 | 0.65 ± 0.037 | 0.61 ± 0.017 |
MMV688796 | 0.57 ± 0.042 | 0.51 ± 0.018 | 0.61 ± 0.15 | 0.81 ± 0.16 |
Significance 2 | TULA/Y (CPT) | See CL/TULA | See CL | CL/G (CTZ) CL/Y (E155-0206, CPT) |
IC50 Value against T. cruzi Strains (µM) | ||||
---|---|---|---|---|
Compound | Tulahuen | Y | G | CL |
Posaconazole | 0.97 × 10−3 ± 3.9 × 10−5 | 1.6 × 10−3 ± 2.02 × 10−4 | 2.03 × 10−3 ± 5.02 × 10−4 | 0.89 × 10−3 ± 0.89 × 10−4 |
E155-0206 | 0.70 ± 0.032 | 0.67 ± 0.048 | 0.53 ± 0.043 | 0.33 ± 0.014 |
Clotrimazole | 0.057 ± 0.013 | 0.069 ± 0.019 | 0.077 ± 0.042 | 0.033 ± 0.0064 |
Clemastine fumarate | 0.99 ± 0.22 | 0.72 ± 0.14 | 0.66 ± 0.082 | 0.49 ± 0.048 |
Ciclopirox olamine | 2.03 ± 0.13 | 0.89 ± 0.081 | 0.60 ± 0.013 | 0.81 ± 0.013 |
Camptothecin 1,2 | 0.16 ± 0.015 | 0.37 ± 0.15 | 0.22 ± 0.002 | 0.093 ± 0.004 |
Nifurtimox | 1.3 ± 0.15 | 1.3 ± 0.12 | 1.0 ± 0.20 | 0.46 ± 0.020 |
Benznidazole | 8.3 ± 1.04 | 6.0 ± 0.043 | 6.4 ± 0.91 | 3.04 ± 0.17 |
MMV688958 | 0.80 ± 0.12 | 0.69 ± 0.057 | 0.69 ± 0.095 | 0.62 ± 0.025 |
MMV688796 | 1.6 ± 0.053 | 1.2 ± 0.022 | 1.05 ± 0.0701 | 1.05 ± 0.0067 |
Significance 3 | See CL | See CL | See CL | CL/Y, TULA (E155-0206) CL/G (CTZ) CL/TULA (CPX) CL/all (NFX) CL/all (BZ) CL/G (CPT) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sykes, M.L.; Kennedy, E.K.; Avery, V.M. Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti-T. cruzi Activity. Microorganisms 2023, 11, 476. https://doi.org/10.3390/microorganisms11020476
Sykes ML, Kennedy EK, Avery VM. Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti-T. cruzi Activity. Microorganisms. 2023; 11(2):476. https://doi.org/10.3390/microorganisms11020476
Chicago/Turabian StyleSykes, Melissa L., Emily K. Kennedy, and Vicky M. Avery. 2023. "Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti-T. cruzi Activity" Microorganisms 11, no. 2: 476. https://doi.org/10.3390/microorganisms11020476