Safety and Efficacy of Short Daily Hemodialysis with Physidia S3 System: Clinical Performance Assessment during the Training Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physidia S3 Description and Characteristics
2.2. Study Design
2.3. Ethics Approval and Consent to Participate
2.4. Patients
2.5. Hemodialysis Prescription
2.6. Calculations
- Dialysis dose.
- b.
- Solute mass removal.
- c.
- Percent reduction (PR) of solutes.
- d.
- Normalized Protein Catabolic Rate (nPCR).
2.7. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Operating Conditions—Treatment Characteristics
3.3. Treatment Sessions Analyzed
3.4. Safety and Difficulties Related to the Procedure during the Training Period
3.5. Clinical and Biological Performances
3.6. Patient Perception and Acceptance Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Dialysis Dose
- ■
- Single Pool Urea Kt/V (spKt/V) was calculated as follows:spKt/V = −Ln([urea]post/[urea]pre) − 0.008 × THD + ((4 − 3.5 × [urea]post/[urea]pre)(Weightpre − Weightpost)/Weightpost))
- ■
- Equilibrated Kt/V (eqKt/V) was calculated as follows:eqKt/V = spKt/V − (0.6 × spKt/V/THD) + 0.03
- ■
- Weekly standardized Kt/V (WkSdKt/V) was calculated as follows:WkSdKt/V = [10.080(1 − e−eqKt/V)/t]/[((1 − e−eqKt/V)/eqKt/V) + (10.080/Ft) − 1]
Appendix A.2. Solute Mass Removal
Appendix A.3. Normalized Protein Catabolic Rate (nPCR)
References
- Mehrotra, R.; Himmelfarb, J. Dialysis in 2012: Could longer and more frequent haemodialysis improve outcomes? Nat. Rev. Nephrol. 2013, 9, 74–75. [Google Scholar] [CrossRef]
- Nesrallah, G.E.; Lindsay, R.M.; Cuerden, M.S.; Garg, A.X.; Port, F.; Austin, P.C.; Moist, L.M.; Pierratos, A.; Chan, C.T.; Zimmerman, D.; et al. Intensive hemodialysis associates with improved survival compared with conventional hemodialysis. J Am. Soc. Nephrol. 2012, 23, 696–705. [Google Scholar] [CrossRef] [Green Version]
- Tennankore, K.K.; Na, Y.; Wald, R.; Chan, C.T.; Perl, J. Short daily-, nocturnal- and conventional-home hemodialysis have similar patient and treatment survival. Kidney Int. 2018, 93, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Woo, K.T.; Choong, H.L.; Foo, M.W.; Tan, H.K.; Wong, K.S.; Chan, C.M. Survival with daily hemodialysis. Kidney Int. 2014, 85, 478–479. [Google Scholar] [CrossRef] [Green Version]
- Lopot, F.; Nejedly, B.; Sulkova, S. Physiology in daily hemodialysis in terms of the time average concentration/time average deviation concept. Hemodial. Int. 2004, 8, 39–44. [Google Scholar] [CrossRef]
- Depner, T.A.; Bhat, A. Quantifying daily hemodialysis. Semin. Dial. 2004, 17, 79–84. [Google Scholar] [CrossRef]
- Culleton, B.F.; Walsh, M.; Klarenbach, S.W.; Mortis, G.; Scott-Douglas, N.; Quinn, R.R.; Tonelli, M.; Donnelly, S.; Friedrich, M.G.; Kumar, A.; et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: A randomized controlled trial. JAMA 2007, 298, 1291–1299. [Google Scholar] [CrossRef]
- Ayus, J.C.; Achinger, S.G.; Mizani, M.R.; Chertow, G.M.; Furmaga, W.; Lee, S.; Rodriguez, F. Phosphorus balance and mineral metabolism with 3 h daily hemodialysis. Kidney Int. 2007, 71, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, F.O.; Schiller, B.; Daoui, R.; Gehr, T.W.; Kraus, M.A.; Lea, J.; Lee, Y.; Miller, B.W.; Sinsakul, M.; Jaber, B.L. At-home short daily hemodialysis improves the long-term health-related quality of life. Kidney Int. 2012, 82, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Kader, K.; Unruh, M.L. Benefits of short daily home hemodialysis in the FREEDOM Study: Is it about person, place, time, or treatment? Kidney Int. 2012, 82, 511–513. [Google Scholar] [CrossRef] [Green Version]
- Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2020, 75, A6–A7. [Google Scholar] [CrossRef]
- Rapport Annuel REIN 2019 V1 Preliminary Report. Available online: https://www.agence-biomedecine.fr/IMG/pdf/rapport_rein_2019_2021-10-14.pdf (accessed on 6 June 2021).
- Canaud, B.; Couchoud, C. Global Dialysis Perspective: France. Kidney360 2022, 3, 168–175. [Google Scholar] [CrossRef]
- Morita, P.P.; Huynh, K.; Zakir, A.; Cafazzo, J.A.; McQuillan, R.F.; Bargman, J.M.; Chan, C.T.M. Supporting the Establishment of New Home Dialysis Programs Through the Explore Home Dialysis Program. Kidney Int. Rep. 2019, 4, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.T.; Wallace, E.; Golper, T.A.; Rosner, M.H.; Seshasai, R.K.; Glickman, J.D.; Schreiber, M.; Gee, P.; Rocco, M.V. Exploring Barriers and Potential Solutions in Home Dialysis: An NKF-KDOQI Conference Outcomes Report. Am. J. Kidney Dis. 2019, 73, 363–371. [Google Scholar] [CrossRef]
- Tomori, K.; Okada, H. Home Hemodialysis: Benefits, Risks, and Barriers. Contrib. Nephrol. 2018, 196, 178–183. [Google Scholar] [CrossRef]
- Haroon, S.; Davenport, A. Haemodialysis at home: Review of current dialysis machines. Expert Rev. Med. Devices 2018, 15, 337–347. [Google Scholar] [CrossRef]
- Galland, R.; Vincent, E. Hémodialyse quotidienne courte à bas débit de dialysat [Short daily low dialysate flow hemodialysis]. Nephrol. Ther. 2015, 11, 326. [Google Scholar] [CrossRef]
- Mousseaux, C.; Mayet, V.; Poda, A.; Schwarz, C.; Saheb, S.; Tourret, J.; Galichon, P.; Arzouk, N.; Mohamadou, I.; Cazenave, M.; et al. Home dialysis machine use for emergency dialysis during the COVID-19 pandemic. Clin. Kidney J. 2020, 13, 900–902. [Google Scholar] [CrossRef]
- S3, P. Home Haemodialysis with Physidia S3 Monitor. Available online: https://wwwphysidiacom/en/home-haemodialysis-with-s3-monitor/ (accessed on 12 October 2020).
- Lee, K. Engineering perspective on the evolution of push/pull-based dialysis treatments. Expert Rev. Med. Devices 2013, 10, 611–620. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Simplified equations for monitoring Kt/V, PCRn, eKt/V, and ePCRn. Adv. Ren. Replace. Ther. 1995, 2, 295–304. [Google Scholar] [CrossRef]
- Daugirdas, J.T.; Leypoldt, J.K.; Akonur, A.; Greene, T.; Depner, T.A.; Group, F.H.N.T. Improved equation for estimating single-pool Kt/V at higher dialysis frequencies. Nephrol. Dial. Transpl. 2013, 28, 2156–2160. [Google Scholar] [CrossRef] [Green Version]
- Leypoldt, J.K. Urea standard Kt/V(urea) for assessing dialysis treatment adequacy. Hemodial. Int. 2004, 8, 193–197. [Google Scholar] [CrossRef]
- Potier, J.; Bowry, S.; Canaud, B. Clinical Performance Assessment of CorDiax Filters in Hemodialysis and Hemodiafiltration. Contrib. Nephrol. 2017, 189, 237–245. [Google Scholar] [CrossRef]
- Lim, P.S.; Lin, Y.; Chen, M.; Xu, X.; Shi, Y.; Bowry, S.; Canaud, B. Precise Quantitative Assessment of the Clinical Performances of Two High-Flux Polysulfone Hemodialyzers in Hemodialysis: Validation of a Blood-Based Simple Kinetic Model Versus Direct Dialysis Quantification. Artif. Organs. 2018, 42, E55–E66. [Google Scholar] [CrossRef]
- Garred, L.J.; Tang, W.; Barichello, D.L.; Canaud, B. Equations for the calculation of the protein catabolic rate from predialysis and postdialysis urea concentrations and residual renal clearance in stable hemodialysis patients. Blood Purif 1997, 15, 157–168. [Google Scholar] [CrossRef]
- ICD-9-CM. List of Primary Causes Of End Stage Renal Disease. 2005. Available online: https://www.cdc.gov/nchs/icd/icd9cm_addenda_guidelines.htm (accessed on 2 March 2022).
- ISCO-8. International Standard Classification of Occupations Structure, Group Definitions and Correspondence Tables. 2012. 1. International Labor Office. Available online: https://www.ilo.org/wcmsp5/groups/public/@dgreports/@dcomm/@publ/documents/publication/wcms_172572.pdf (accessed on 2 March 2022).
- Dellanna, F.; Wuepper, A.; Baldamus, C.A. Internal filtration—Advantage in haemodialysis? Dial. Transpl. 1996, 11 (Suppl. S2), 83–86. [Google Scholar] [CrossRef] [Green Version]
- Sakiyama, R.; Ishimori, I.; Akiba, T.; Mineshima, M. Effect of blood flow rate on internal filtration in a high-flux dialyzer with polysulfone membrane. J. Artif. Organs. 2012, 15, 266–271. [Google Scholar] [CrossRef]
- Schneditz, D.; Zierler, E.; Jantscher, A.; Vanholder, R.; Eloot, S. Internal filtration in a high-flux dialyzer quantified by mean transit time of an albumin-bound indicator. ASAIO J. 2013, 59, 505–511. [Google Scholar] [CrossRef]
- Casino, F.G.; Basile, C. A user-friendly tool for incremental haemodialysis prescription. Nephrol. Dial. Transpl. 2018, 33, 1046–1053. [Google Scholar] [CrossRef]
- Vartia, A. Residual renal function in incremental haemodialysis. Clin. Kidney. J. 2018, 11, 857–863. [Google Scholar] [CrossRef]
- Wong, J.; Vilar, E.; Davenport, A.; Farrington, K. Incremental haemodialysis. Nephrol. Dial. Transpl. 2015, 30, 1639–1648. [Google Scholar] [CrossRef] [Green Version]
- Flythe, J.E.; Kimmel, S.E.; Brunelli, S.M. Rapid fluid removal during dialysis is associated with cardiovascular morbidity and mortality. Kidney Int. 2011, 79, 250–257. [Google Scholar] [CrossRef] [Green Version]
- National Kidney, F. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 update. Am. J. Kidney Dis. 2015, 66, 884–930. [Google Scholar] [CrossRef] [Green Version]
- Teitelbaum, I.; Glickman, J.; Neu, A.; Neumann, J.; Rivara, M.B.; Shen, J.; Wallace, E.; Watnick, S.; Mehrotra, R. KDOQI US Commentary on the 2020 ISPD Practice Recommendations for Prescribing High-Quality Goal-Directed Peritoneal Dialysis. Am J. Kidney Dis. 2021, 77, 157–171. [Google Scholar] [CrossRef]
- Bieber, S.D.; Young, B.A. Home Hemodialysis: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 78, 876–885. [Google Scholar] [CrossRef]
- Brunati, C.C.M.; Gervasi, F.; Cabibbe, M.; Ravera, F.; Menegotto, A.; Querques, M.; Colussi, G. Single Session and Weekly Beta 2-Microglobulin Removal with Different Dialytic Procedures: Comparison between High-Flux Standard Bicarbonate Hemodialysis, Post-Dilution Hemodiafiltration, Short Frequent Hemodialysis with NxStage Technology and Automated Peritoneal Dialysis. Blood Purif 2019, 48, 86–96. [Google Scholar] [CrossRef]
Variables | Total | Male | Female |
---|---|---|---|
Demographic variables | |||
N patients (%) | 80 (100.0%) | 57 (71.3%) | 23 (28.8%) |
Incident | 12 (15.0%) | 9 (15.8%) | 3 (13.0%) |
Prevalent | 68 (85.0%) | 48 (84.2%) | 20 (87.0%) |
Age (years) | 54.0 (43.0–63.8) | 60.0 (44.0–66.5) | 47.0 (38.0–53.0) |
Height (cm) | 170 (165–176) | 172.5 (168.0–178.3) | 162.5 (156.8–165.8) |
Residual Diuresis (≥0.5 L/d) | 47 (58.8%) | 34 (59.6%) | 13 (56.5%) |
Incident | 12 (100.0%) | 9 (100.0%) | 3 (100.0%) |
Prevalent | 35 (51.5%) | 25 (52.1%) | 10 (50.0%) |
Treatment prescription and clinical parameters | |||
N sessions per week | 6 (5–6) | 6 (5–6) | 6 (5–6) |
Treatment time (min) | 120 (120–146) | 120 (120–150) | 120 (120–120) 1 |
Body Weight Pre (kg) | 76.5 ± 17.6 | 81.3 ± 16.2 | 64.8 ± 15.4 |
Body Weight Post (kg) | 75.2 ± 17.5 | 79.9 ± 16.2 | 63.6 ± 15.2 |
Body Mass Index (kg/m2) | 24.9 (21.9–29.3) | 25.0 (22.429.7) | 24.1 (20.5–28.3) |
Qb (mL/min) | 280 (280–300) | 280 (280–300) | 280 (280–300) |
Qd (mL/min) | 180 (180–180) | 180 (180–180) | 180 (180–180) |
Convective Volume (L) | 3.0 (2.0–3.0) | 3.0 (2.0–3.0) | 2.2 (2.0–3.0) |
Parameter | Mean Value ± SD/Median (25–75) |
---|---|
N session analyzed | 249 |
Body Weight predialysis (kg) | 79.8 ± 19.4 |
Body Weight postdialysis (kg) | 78.4 ± 19.3 |
Total ultrafiltration volume (L) | 1.3 ± 0.8 |
Ultrafiltration rate (mL/h/kg) | 8.5 (4.0–12.1) |
Parameter | Mean Value ± SD/Median (25–75) | |
---|---|---|
Pre-dialysis | Post-dialysis | |
Urea (mmol/L) | 19.3 (15.3–24.9) | 10.2 (7.6–14.0) |
Creatinine (µmol/L) | 717.5 (547.5–930.0) | 370.0 (265.5–493.0) |
Potassium (mmol/L) | 4.6 (4.1–5.1) | 3.6 (3.2–3.9) |
Calcium (mmol/L) | 2.2 (2.0–2.3) | 2.4 (2.3–2.6) |
Phosphate (mmol/L) | 1.5 (1.2–1.9) | 0.7 (0.6–0.9) |
Serum Albumin (g/L) | 39.4 ± 5.7 | - |
Hemoglobin (g/dL) | 11.6 ± 1.4 | - |
Hematocrit (%) | 35.8 ± 4.5 | - |
Parameter | Mean Value ± SD/Median (25–75) |
---|---|
N session analyzed | 249 |
PR Urea (%) | 44.3 (38.7–52.9) |
Urea TAC (mmol/L) | 14.2 (11.4–18.7) |
spKt/V | 0.66 (0.55–0.83) |
eqKt/V | 0.59 (0.49–0.75) |
WkSdKt/V 1 | 2.22 (1.95–2.61) |
Urea Mass (mmol/session) | 383 (283–515) |
nPCR (g/kg/24 h) | 0.93 (0.73–1.18) |
PR Creatinine (%) | 46.0 (40.0–54.5) |
Creatinine Mass (mmol/session) | 4.6 (3.4–6.5) |
PR Phosphate (%) | 44.4 ± 16.7 |
Phosphate Mass (mmol/session) | 28.3 ± 13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fessi, H.; Szelag, J.-C.; Courivaud, C.; Nicoud, P.; Aguilera, D.; Gilbert, O.; Morena, M.; Thomas, M.; Canaud, B.; Cristol, J.-P. Safety and Efficacy of Short Daily Hemodialysis with Physidia S3 System: Clinical Performance Assessment during the Training Period. J. Clin. Med. 2022, 11, 2123. https://doi.org/10.3390/jcm11082123
Fessi H, Szelag J-C, Courivaud C, Nicoud P, Aguilera D, Gilbert O, Morena M, Thomas M, Canaud B, Cristol J-P. Safety and Efficacy of Short Daily Hemodialysis with Physidia S3 System: Clinical Performance Assessment during the Training Period. Journal of Clinical Medicine. 2022; 11(8):2123. https://doi.org/10.3390/jcm11082123
Chicago/Turabian StyleFessi, Hafedh, Jean-Christophe Szelag, Cécile Courivaud, Philippe Nicoud, Didier Aguilera, Olivia Gilbert, Marion Morena, Michel Thomas, Bernard Canaud, and Jean-Paul Cristol. 2022. "Safety and Efficacy of Short Daily Hemodialysis with Physidia S3 System: Clinical Performance Assessment during the Training Period" Journal of Clinical Medicine 11, no. 8: 2123. https://doi.org/10.3390/jcm11082123