Unveiling Novel Urease Inhibitors for Helicobacter pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Database Curation
2.2. Pharmacophore Hypothesis
2.3. Structure-Based Virtual Screening
2.4. ADME Predictions
2.5. Molecular Dynamics Simulations
- CA1: Median RMSD of 2.76 Å and IQR of 0.24 Å.
- CA5: Median RMSD of 2.31 Å and IQR of 0.62 Å.
- CA6: Median RMSD of 1.97 Å and IQR of 0.66 Å.
- CA8: Median RMSD of 2.18 Å and IQR of 0.24 Å.
- CA12: Median RMSD of 2.30 Å and IQR of 0.26 Å.
- CA5:
- Median free energy almost 14.4 kcal/mol more favorable than DJM (−61.00 kcal/mol)
- IQR: ≈7 kcal/mol higher than DJM (51.1 kcal/mol)
- CA8:
- Median free energy almost 16 kcal/mol more favorable than DJM (−62.7 kcal/mol)
- IQR: ≈15 kcal/mol higher than DJM (59.8 kcal/mol)
- CA12:
- Median free energy almost 13.8 kcal/mol more favorable than DJM (−60.4 kcal/mol)
- IQR: ≈10 kcal/mol higher than DJM (54.9 kcal/mol)
3. Materials and Methods
3.1. Molecules Database Refinement
3.2. Pharmacophore-Based Virtual Screening
3.3. Protein Receptor Preparation
3.4. Structure-Based Virtual Screening and MM-GBSA Calculations
3.5. ADMET Calculations
3.6. Molecular Dynamics Simulations & MMGBSA Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kusters, J.G.; Van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter pylori virulence factors—Mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 2021, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Molaoa, S.Z. Prevalence of Helicobacter pylori infection and the incidence of the associated malignant and peptic ulcer disease (PUD) at Nelson Mandela Academic Hospital: A retrospective analysis. J. Drug Assess. 2021, 10, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Fowora, M.; Pellicano, R. Infections with Helicobacter pylori and challenges encountered in Africa. World J. Gastroenterol. 2019, 25, 3183–3195. [Google Scholar] [CrossRef]
- Uotani, T.; Miftahussurur, M.; Yamaoka, Y. Effect of bacterial and host factors on Helicobacter pylori eradication therapy. Expert. Opin. Ther. Targets 2015, 19, 1637–1650. [Google Scholar] [CrossRef]
- Vaira, D.; Fiorini, G.; Zullo, A.; Gatta, L.; Castelli, V.; Ricci, C.; Cassol, F. Newer agents for Helicobacter pylori eradication. Clin. Exp. Gastroenterol. 2012, 5, 109–112. [Google Scholar] [CrossRef]
- Lage, T.C.A.; Maciel, T.M.S.; Mota, Y.C.C.; Sisto, F.; Sabino, J.R.; Santos, J.C.C.; Figueiredo, I.M.; Masia, C.; de Fátima, A.; Fernandes, S.A.; et al. In vitro inhibition of Helicobacter pylori and interaction studies of lichen natural products with jack bean urease. New J. Chem. 2018, 42, 5356–5366. [Google Scholar] [CrossRef]
- Rego, Y.F.; Queiroz, M.P.; Brito, T.O.; Carvalho, P.G.; de Queiroz, V.T.; de Fatima, A.; Macedo, F., Jr. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J. Adv. Res. 2018, 13, 69–100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, Y.; Xu, Z.; Ma, R.; Ding, Y.; Bai, X.; Rong, Q.; Zhang, Y.; Li, B.; Ji, X. Mechanistic insight into the interaction between helicobacter pylori urease subunit a and its molecular chaperone Hsp60. Front. Microbiol. 2019, 10, 153. [Google Scholar] [CrossRef]
- Olofsson, A.; Vallström, A.; Petzold, K.; Tegtmeyer, N.; Schleucher, J.; Carlsson, S.; Haas, R.; Backert, S.; Wai, S.N.; Gröbner, G.; et al. Biochemical and functional characterization of Helicobacter pylori vesicles. Mol. Microbiol. 2010, 77, 1539–1555. [Google Scholar] [CrossRef]
- Tao, R.; Li, J.; Guan, Y.; Liang, Y.; Hu, B.; Lv, J.; Chu, G. Effects of urease and nitrification inhibitors on the soil mineral nitrogen dynamics and nitrous oxide (N2O) emissions on calcareous soil. Environ. Sci. Pollut. Res. 2018, 25, 9155–9164. [Google Scholar] [CrossRef]
- Martins, M.; Sant’anna, S.; Zaman, M.; Santos, R.; Monteiro, R.; Alves, B.; Jantalia, C.; Boddey, R.; Urquiaga, S. Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer-15N recovery and maize yield in a tropical soil. Agric. Ecosyst. Environ. 2017, 247, 54–62. [Google Scholar] [CrossRef]
- Hughes, J.P.; Rees, S.S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Kafarski, P.; Talma, M. Recent advances in design of new urease inhibitors: A review. J. Adv. Res. 2018, 13, 101–112. [Google Scholar] [CrossRef]
- Asghar, H.; Asghar, H.; Asghar, T. A Review on Anti-urease Potential of Coumarins. Curr. Drug Targets 2021, 22, 1926–1943. [Google Scholar] [CrossRef]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Maestro, S. Schrödinger Release 2021-1; LLC: New York, NY, USA, 2020–2021. [Google Scholar]
- Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des. 2006, 20, 647–671. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Cunha, E.S.; Chen, X.; Sanz-Gaitero, M.; Mills, D.J.; Luecke, H. Cryo-EM structure of Helicobacter pylori urease with an inhibitor in the active site at 2.0 Å resolution. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Ha, N.C.; Oh, S.T.; Sung, J.Y.; Cha, K.A.; Lee, M.H.; Oh, B.H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Biol. 2001, 8, 505–509. [Google Scholar] [CrossRef]
- Zhou, J.-T.; Li, C.-L.; Tan, L.-H.; Xu, Y.-F.; Liu, Y.-H.; Mo, Z.-Z.; Dou, Y.-X.; Su, R.; Su, Z.-R.; Huang, P.; et al. Inhibition of Helicobacter pylori and its associated urease by Palmatine: Investigation on the potential mechanism. PLoS ONE 2017, 12, e0168944. [Google Scholar] [CrossRef]
- Leporati, E. Complex formation equilibria between 2-amino-N-hydroxyacetamide and 2–amino-N-hydroxypentanamide and cobalt (II), nickel(II), copper(II), and hydrogen ions in aqueous solutions. J. Chem. Soc. Dalton Trans. 1986, 2587–2592. [Google Scholar] [CrossRef]
- Moltved, K.A.; Kepp, K.P. The chemical bond between transition metals and Oxygen: Electronegativity, d-Orbital Effects, and Oxophilicity as Descriptors of Metal-Oxygen Interactions. J. Phys. Chem. C 2019, 123, 18432–18444. [Google Scholar] [CrossRef]
- Khan, S.A.; Shahid, S.; Kanwal, S.; Hussain, G. Synthesis characterization and antibacterial activity of Cr (III), Co (III), Fe (II), Cu (II), Ni (III) complexes of 4-(2-(((2-hydroxy-5-nitrophenyl) diazenyl) (phenyl) methylene) hydrazinyl) benzene sulfonic acid based formazan dyes and their applications on leather. Dye Pigment. 2018, 148, 31–43. [Google Scholar] [CrossRef]
- Verma, C.; Alfantazi, A.; Quraishi, M.A.; Rhee, K.Y. Significance of Hammett and Taft substituent constants on bonding potential of organic corrosion inhibitors: Tailoring of reactivity and performance. Coord. Chem. Rev. 2023, 495, 215385. [Google Scholar] [CrossRef]
- Menteşe, E.; Bektaş, H.; Sokmen, B.B.; Emirik, M.; Çakır, D.; Kahveci, B. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1H-benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorg. Med. Chem. Lett. 2017, 27, 3014–3018. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Su, M.-M.; Zhang, X.-P.; Liu, Q.-X.; He, Z.-X.; Xu, C.; Zhu, H.-L. Developing potential Helicobacter pylori urease inhibitors from novel oxoindoline derivatives: Synthesis, biological evaluation and in silico study. Bioorg. Med. Chem. Lett. 2018, 28, 3182–3186. [Google Scholar] [CrossRef]
- Xiao, Z.-P.; Shi, W.-K.; Wang, P.-F.; Wei, W.; Zeng, X.-T.; Zhang, J.-R.; Zhu, N.; Peng, M.; Peng, B.; Lin, X.-Y.; et al. Synthesis and evaluation of N-analogs of 1,2-diarylethane as Helicobacter pylori urease inhibitors. Bioorg. Med. Chem. 2015, 23, 4508–4513. [Google Scholar] [CrossRef]
- Xiao, Z.P.; Shi, D.H.; Li, H.Q.; Zhang, L.N.; Xu, C.; Zhu, H.L. Polyphenols based on isoflavones as inhibitors of Helicobacter pylori urease. Bioorg. Med. Chem. 2007, 15, 3703–3710. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.-P.; Peng, Z.-Y.; Dong, J.-J.; He, J.; Ouyang, H.; Feng, Y.-T.; Lu, C.-L.; Lin, W.-Q.; Wang, J.-X.; Xiang, Y.-P.; et al. Synthesis, structure-activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem. 2013, 63, 685–695. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wei, W.; Wang, P.-F.; Yi, L.-C.; Shi, W.-K.; Xie, Y.-X.; Wu, L.-Z.; Tang, N.; Zhu, L.-S.; Peng, J.; et al. Synthesis, molecular docking and biological evaluation of 3-arylfuran-2(5H)-ones as anti-gastric ulcer agent. Bioorg. Med. Chem. 2015, 23, 4860–4865. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, W.-K.; Ren, S.-Z.; Ni, W.-W.; Li, W.-Y.; Chen, H.-M.; Liu, P.; Yuan, J.; He, X.-S.; Liu, J.-J.; et al. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur. J. Med. Chem. 2018, 156, 126–136. [Google Scholar] [CrossRef]
- You, Z.L.; Xian, D.M.; Zhang, M.; Cheng, X.S.; Li, X.F. Synthesis, biological evaluation, and molecular docking studies of 2,5-substituted-1,4-benzoquinone as novel urease inhibitors. Bioorg. Med. Chem. 2012, 20, 4889–4894. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.P.; Ma, T.W.; Fu, W.C.; Peng, X.C.; Zhang, A.H.; Zhu, H.L. The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem. 2010, 45, 5064–5070. [Google Scholar] [CrossRef]
- Macegoniuk, K.; Grela, E.; Palus, J.; Rudzinska-Szostak, E.; Grabowiecka, A.; Biernat, M.; Berlicki, Ł. 1,2-Benzisoselenazol-3(2H)-one Derivatives as a New Class of Bacterial Urease Inhibitors. J. Med. Chem. 2016, 59, 8125–8133. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Q.; Xiao, Z.P.; Yin-Luo; Yan, T.; Lv, P.C.; Zhu, H.L. Amines and oximes derived from deoxybenzoins as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem. 2009, 44, 2246–2251. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Ntie-Kang, F.; Lifongo, L.L.; Judson, P.N.; Sippl, W.; Efange, S.M.N. How ‘drug-like’ are naturally occurring anti-cancer compounds? J. Mol. Model. 2014, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.H.M.; SØndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput. 2019, 15, 1863–1874. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A Hierarchical Approach to All-Atom Protein Loop Prediction. Proteins Struct. Funct. Genet. 2004, 55, 351–367. [Google Scholar] [CrossRef]
- Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling. Proteins 2011, 79, 2794. [Google Scholar] [CrossRef]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; de Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef]
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef] [PubMed]
- RDKit: Open-Source Cheminformatics. Available online: https://www.rdkit.org (accessed on 15 January 2024).
- Sorkun, M.C.; Mullaj, D.; Koelman, J.M.V.A.; Er, S. ChemPlot, a Python Library for Chemical Space Visualization**. Chemistry-Methods 2022, 2, e202200005. [Google Scholar] [CrossRef]
Docking Algorithm | Input Molecules | Output Docking Poses | Cutoff | Preselected Molecules | Molecules without the Binding Site | Selected Molecules | Percent |
---|---|---|---|---|---|---|---|
LYN variant | |||||||
HTVS | 234,607 | 552,716 | <−4.5 | 156,814 | 13,345 | 143,469 | 26 |
SP | 143,469 | 429,972 | <−6.5 | 93,829 | 67 | 93,762 | 22 |
XP | 93,762 | 267,641 | <−8.5 | 11,368 | 0 | 11,368 | 4 |
KCX variant | |||||||
HTVS | 234,607 | 600,588 | <−4.5 | 196,349 | 9901 | 186,448 | 31 |
SP | 186,448 | 557,590 | <−6.5 | 105,364 | 138 | 105,226 | 19 |
XP | 105,226 | 297,494 | <−8.5 | 16,160 | 0 | 16,160 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Hormazabal, P.; Sepúlveda, R.V.; Alegría-Arcos, M.; Valdés-Muñoz, E.; Rojas-Pérez, V.; González-Bonet, I.; Suardíaz, R.; Galarza, C.; Morales, N.; Leddermann, V.; et al. Unveiling Novel Urease Inhibitors for Helicobacter pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations. Int. J. Mol. Sci. 2024, 25, 1968. https://doi.org/10.3390/ijms25041968
Valenzuela-Hormazabal P, Sepúlveda RV, Alegría-Arcos M, Valdés-Muñoz E, Rojas-Pérez V, González-Bonet I, Suardíaz R, Galarza C, Morales N, Leddermann V, et al. Unveiling Novel Urease Inhibitors for Helicobacter pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations. International Journal of Molecular Sciences. 2024; 25(4):1968. https://doi.org/10.3390/ijms25041968
Chicago/Turabian StyleValenzuela-Hormazabal, Paulina, Romina V. Sepúlveda, Melissa Alegría-Arcos, Elizabeth Valdés-Muñoz, Víctor Rojas-Pérez, Ileana González-Bonet, Reynier Suardíaz, Christian Galarza, Natalia Morales, Verónica Leddermann, and et al. 2024. "Unveiling Novel Urease Inhibitors for Helicobacter pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations" International Journal of Molecular Sciences 25, no. 4: 1968. https://doi.org/10.3390/ijms25041968