The Interactive Complex between Cytomegalovirus Kinase vCDK/pUL97 and Host Factors CDK7–Cyclin H Determines Individual Patterns of Transcription in Infected Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Assessing the Impact of Either Cyclin H KO or Inhibition of pUL97 or CDK7 on the Transcriptome of HCMV-Infected HFFs Using Differential RNA-Seq Analysis
2.2. Gene Ontology Analysis of Differentially Expressed Genes in Biological Pathways
2.3. Deciphering Transcriptional Patterns Provided by the Distinct Conditions of HCMV Infection
2.4. Structural Analysis
3. Materials and Methods
3.1. Cells, Viruses, and Antiviral Compounds
3.2. Total Transcriptome RNA-Seq Analysis
3.3. Structural Analysis
3.4. Reverse Transcriptase Quantitative PCR (RT-qPCR)
- CCNE1 forward
- 5′ AGGAAGAGGAAGGCAAACGTG;
- CCNE1 reverse
- 5′ AATAATCCGAGGCTTGCACG;
- CCNE1 probe
- 5′ CAGCCTTGGGACAATAATGC (5′ FAM and 3′ TAMRA);
- BEND3 forward
- 5′ GATGCTGCTCTGGACTGCTC;
- BEND3 reverse
- 5′ ATGCCTGCTAGGAGAGCCTC;
- BEND3 probe
- 5′ CTGCAGGACTCCAGCAAACG (5′ FAM and 3′ TAMRA).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boeckh, M.; Leisenring, W.; Riddell, S.R.; Bowden, R.A.; Huang, M.L.; Myerson, D.; Stevens-Ayers, T.; Flowers, M.E.; Cunningham, T.; Corey, L. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: Importance of viral load and T-cell immunity. Blood 2003, 101, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Rafailidis, P.I.; Mourtzoukou, E.G.; Varbobitis, I.C.; Falagas, M.E. Severe cytomegalovirus infection in apparently immunocompetent patients: A systematic review. J. Virol. 2008, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Steininger, C. Clinical relevance of cytomegalovirus infection in patients with disorders of the immune system. Clin. Microbiol. Infect. 2007, 13, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, P.E.; Nimonkar, A.V. Herpes virus replication. IUBMB Life 2003, 55, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Goodrum, F.; Britt, W.; Mocarski, E.S. Fields Virology: DNA Viruses, 7th ed.; LWW: Philadelphia, PA, USA, 2021; Volume 7, p. 760. [Google Scholar]
- Gugliesi, F.; Coscia, A.; Griffante, G.; Galitska, G.; Pasquero, S.; Albano, C.; Biolatti, M. Where do we Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020, 8, 685. [Google Scholar] [CrossRef]
- Revello, M.G.; Gerna, G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin. Microbiol. Rev. 2002, 15, 680–715. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, Y. Effects of cytomegalovirus infection on embryogenesis and brain development. Congenit. Anom. 2009, 49, 47–55. [Google Scholar] [CrossRef]
- Njue, A.; Coyne, C.; Margulis, A.V.; Wang, D.; Marks, M.A.; Russell, K.; Das, R.; Sinha, A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020, 13, 20. [Google Scholar] [CrossRef]
- Schütz, M.; Steingruber, M.; Socher, E.; Müller, R.; Wagner, S.; Kögel, M.; Sticht, H.; Marschall, M. Functional Relevance of the Interaction between Human Cyclins and the Cytomegalovirus-Encoded CDK-Like Protein Kinase pUL97. Viruses 2021, 13, 1248. [Google Scholar] [CrossRef]
- Schütz, M.; Müller, R.; Socher, E.; Wangen, C.; Full, F.; Wyler, E.; Wong, D.; Scherer, M.; Stamminger, T.; Chou, S.; et al. Highly Conserved Interaction Profiles between Clinically Relevant Mutants of the Cytomegalovirus CDK-like Kinase pUL97 and Human Cyclins: Functional Significance of Cyclin H. Int. J. Mol. Sci. 2022, 23, 11814. [Google Scholar] [CrossRef]
- Tyl, M.D.; Betsinger, C.N.; Cristea, I.M. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr. Opin. Virol. 2022, 52, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Lolli, G.; Johnson, L.N. CAK-Cyclin-dependent Activating Kinase: A key kinase in cell cycle control and a target for drugs? Cell Cycle 2005, 4, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M. Cyclin-dependent kinases. Genome Biol. 2014, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alonso, D.; Malumbres, M. Mammalian cell cycle cyclins. Semin. Cell Dev. Biol. 2020, 107, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Sava, G.P.; Fan, H.; Coombes, R.C.; Buluwela, L.; Ali, S. CDK7 inhibitors as anticancer drugs. Cancer Metastasis Rev. 2020, 39, 805–823. [Google Scholar] [CrossRef] [PubMed]
- Hume, A.J.; Finkel, J.S.; Kamil, J.P.; Coen, D.M.; Culbertson, M.R.; Kalejta, R.F. Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 2008, 320, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, S.; Umaña, A.C.; VanDeusen, H.R.; Kalejta, R.F. Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. J. Biol. Chem. 2017, 292, 6583–6599. [Google Scholar] [CrossRef]
- Baek, M.C.; Krosky, P.M.; Pearson, A.; Coen, D.M. Phosphorylation of the RNA polymerase II carboxyl-terminal domain in human cytomegalovirus-infected cells and in vitro by the viral UL97 protein kinase. Virology 2004, 324, 184–193. [Google Scholar] [CrossRef]
- Kuny, C.V.; Chinchilla, K.; Culbertson, M.R.; Kalejta, R.F. Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases. PLoS Pathog. 2010, 6, e1001092. [Google Scholar] [CrossRef]
- Steingruber, M.; Keller, L.; Socher, E.; Ferre, S.; Hesse, A.-M.; Couté, Y.; Hahn, F.; Büscher, N.; Plachter, B.; Sticht, H.; et al. Cyclins B1, T1, and H differ in their molecular mode of interaction with cytomegalovirus protein kinase pUL97. J. Biol. Chem. 2019, 294, 6188–6203. [Google Scholar] [CrossRef]
- Schütz, M.; Wangen, C.; Sommerer, M.; Kögler, M.; Eickhoff, J.; Degenhart, C.; Klebl, B.; Naing, Z.; Egilmezer, E.; Hamilton, S.T.; et al. Cytomegalovirus cyclin-dependent kinase ortholog vCDK/pUL97 undergoes regulatory interaction with human cyclin H and CDK7 to codetermine viral replication efficiency. Virus Res. 2023, 335, 199200. [Google Scholar] [CrossRef] [PubMed]
- Wild, M.; Hahn, F.; Brückner, N.; Schütz, M.; Wangen, C.; Wagner, S.; Sommerer, M.; Strobl, S.; Marschall, M. Cyclin-Dependent Kinases (CDKs) and the Human Cytomegalovirus-Encoded CDK Ortholog pUL97 Represent Highly Attractive Targets for Synergistic Drug Combinations. Int. J. Mol. Sci. 2022, 23, 2493. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; Hill, D.P.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef] [PubMed]
- Hertel, L.; Chou, S.; Mocarski, E.S. Viral and cell cycle–regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog. 2007, 3, e6. [Google Scholar] [CrossRef] [PubMed]
- Ball, C.B.; Parida, M.; Li, M.; Spector, B.M.; Suarez, G.A.; Meier, J.L.; Price, D.H. Human Cytomegalovirus Infection Elicits Global Changes in Host Transcription by RNA Polymerases I, II, and III. Viruses 2022, 14, 779. [Google Scholar] [CrossRef]
- Spector, D.H. Human cytomegalovirus riding the cell cycle. Med. Microbiol. Immunol. 2015, 204, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, F.; Chetlangia, N.; Kamran, M.; Redon, C.E.; Pongor, L.; Sun, Q.; Lin, Y.C.; Mohan, V.; Shaqildi, O.; Asoudegi, D.; et al. BEND3 safeguards pluripotency by repressing differentiation-associated genes. Proc. Natl. Acad. Sci. USA 2022, 119, e2107406119. [Google Scholar] [CrossRef]
- Wang, D.; Li, G.; Schauflinger, M.; Nguyen, C.C.; Hall, E.D.; Yurochko, A.D.; von Einem, J.; Kamil, J.P. The ULb’ region of the human cytomegalovirus genome confers an increased requirement for the viral protein kinase UL97. J. Virol. 2013, 87, 6359–6376. [Google Scholar] [CrossRef]
- Kapasi, A.J.; Spector, D.H. Inhibition of the cyclin-dependent kinases at the beginning of human cytomegalovirus infection specifically alters the levels and localization of the RNA polymerase II carboxyl-terminal domain kinases cdk9 and cdk7 at the viral transcriptosome. J. Virol. 2008, 82, 394–407. [Google Scholar] [CrossRef]
- Tamrakar, S.; Kapasi, A.J.; Spector, D.H. Human cytomegalovirus infection induces specific hyperphosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II that is associated with changes in the abundance, activity, and localization of cdk9 and cdk7. J. Virol. 2005, 79, 15477–15493. [Google Scholar] [CrossRef] [PubMed]
- Spector, B.M.; Parida, M.; Li, M.; Ball, C.B.; Meier, J.L.; Luse, D.S.; Price, D.H. Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes. Nat. Commun. 2022, 13, 2006. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qi, Y.; Wu, Z.; Wang, X.; Li, J.; Zhao, D.; Hou, H.; Li, Y.; Yu, Z.; Liu, W.; et al. Structural insights into preinitiation complex assembly on core promoters. Science 2021, 372, eaba8490. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Biological Process (Accession Number) & | DMSO-Treated Compared to | |||||
---|---|---|---|---|---|---|
Cyclin H KO | LDC4297-Treated | MBV-Treated | ||||
DE Genes | Bonferroni p-Value | DE Genes | Bonferroni p-Value | DE Genes | Bonferroni p-Value | |
Cell cycle (0007049) | 158 | 8.5 × 10−11 | 64 | 0 * | 17 | 1.1 × 10−9 |
| 36 | 1.7 × 10−4 | 21 | 1.8 × 10−14 | ||
| 32 | 0.012 | 18 | 9.2 × 10−11 | ||
| 36 | 1.7 × 10−4 | 21 | 1.8 × 10−14 | ||
| 36 | 1.7 × 10−4 | 21 | 1.8 × 10−14 | ||
Organelle organization (0006996) | ||||||
| 36 | 1.7 × 10−4 | 21 | 1.8 × 10−14 | ||
| 36 | 1.7 × 10−4 | 21 | 1.8 × 10−14 | ||
Catabolic process (0009056) | ||||||
| 11 | 0.010 | ||||
| 11 | 0.010 | ||||
| 11 | 0.010 | ||||
| 11 | 0.010 | ||||
| 11 | 1.3 × 10−4 | ||||
Biological regulation (0065007) | 494 | 3.2 × 10−8 | ||||
| 454 | 1.2 × 10−8 | ||||
| 454 | 1.2 × 10−8 | ||||
| 454 | 1.2 × 10−8 | ||||
Response to stimulus (0050896) | 361 | 4.8 × 10−9 | ||||
| 361 | 4.8 × 10−9 | ||||
Developmental process (0032502) | 354 | 3.7 × 10−4 | ||||
| 290 | 2.5 × 10−4 | ||||
| 58 | 0.012 | ||||
| 58 | 0.012 | ||||
| 214 | 0.045 | ||||
Immune system process (0002376) | 205 | 4.5 × 10−5 | ||||
Locomotion (0040011) | 126 | 3.8 × 10−4 | ||||
Cellular component organization (0071840) | ||||||
| 60 | 4.3 × 10−5 | ||||
| 60 | 4.3 × 10−5 | ||||
| 92 | 0.042 | ||||
| 92 | 0.042 | ||||
Cellular process (0009987) | ||||||
| 91 | 4.7 × 10−4 | ||||
| 88 | 6.7 × 10−4 | ||||
| 106 | 0.023 | ||||
| 67 | 0.015 |
Differentially Expressed Gene, Protein Name & | DMSO-Treated Compared with | |||||
---|---|---|---|---|---|---|
MBV | Cyclin H KO | Mock-Inf. | ||||
Fold Change | FDR p-Value | Fold Change | FDR p-Value | Fold Change | FDR p-Value | |
Viral proteins | ||||||
UL74, envelope glycoprotein O (virus entry) | 2.3 (−) | 2.2 × 10−18 | 1.8 (−) | 4.8 × 10−10 | 778.1 (+) | 3.2 × 10−22 |
US28, envelope protein US28 (GPCR signaling) | 1.9 (−) | 1.9 × 10−7 | 2.0 (−) | 1.4 × 10−11 | 2913.5 (+) | 1.5 × 10−57 |
UL18, membrane glycoprotein UL18 (immune evasion) | 1.9 (−) | 1.5 × 10−3 | 2.4 (−) | 1.3 × 10−7 | 1114.6 (+) | 2.3 × 10−4 |
US8, membrane glycoprotein US8 (immune evasion) | 1.7 (−) | 1.6 × 10−11 | 2.4 (−) | 3.1 × 10−34 | 2785.9 (+) | 2.0 × 10−18 |
US18, membrane protein US18 (immune evasion) | 1.6 (−) | 5.6 × 10−12 | 2.4 (−) | 2.8 × 10−41 | 1586.4 (+) | 4.8 × 10−170 |
UL78, envelope protein UL78 (GPCR-like signaling) | 1.6 (−) | 1.9 × 10−9 | 2.7 (−) | 1.8 × 10−51 | 1593.9 (+) | 1.3 × 10−170 |
UL72, deoxyuridine triphosphatase UL72 (nucleotide metabolism) | 1.5 (−) | 3.2 × 10−10 | 2.0 (−) | 6.0 × 10−29 | 1215.6 (+) | 2.7 × 10−57 |
UL114, uracil-DNA glycosylase UL114 (DNA repair) | 1.5 (−) | 1.3 × 10−7 | 2.4 (−) | 7.8 × 10−36 | 1858.4 (+) | 1.7 × 10−28 |
UL133, protein UL133 (establishment of latency) | 1.5 (−) | 1.3 × 10−3 | 2.6 (−) | 3.6 × 10−18 | 1789.6 (+) | 6.9 × 10−5 |
RL6, protein RL6 (establishment of latency) | 1.5 (−) | 1.7 × 10−3 | 3.2 (−) | 4.4 × 10−28 | 1136.3 (+) | 1.5 × 10−14 |
RL11, membrane glycoprotein RL11 (immune evasion) | 1.5 (−) | 1.9 × 10−2 | 2.5 (−) | 7.7 × 10−14 | 874.9 (+) | 6.8 × 10−105 |
UL40, membrane glycoprotein UL40 (immune evasion) | 12.6 (+) | 4.4 × 10−2 | 36.2 (+) | 5.6 × 10−5 | 13.2 (+) | 5.2 × 10−2 |
Human proteins (cell cycle regulation) | ||||||
CCNE1, cyclin E1 (G1-S phase transition) | 1.9 (−) | 2.8 × 10−6 | 1.9 (−) | 7.6 × 10−8 | 3.4 (+) | 3.6 × 10−20 |
Human proteins (DNA replication, DNA repair, and transcription) | ||||||
MCM2, minichromosome maintenance complex component 2 (initiation of DNA replication) | 1.7 (−) | 6.7 × 10−9 | 1.6 (−) | 2.4 × 10−10 | 2.6 (+) | 1.1 × 10−31 |
UBE2T, ubiquitin conjugating enzyme E2 T (DNA repair) | 1.5 (−) | 2.0 × 10−3 | 1.9 (−) | 3.4 × 10−8 | 3.0 (+) | 6.3 × 10−20 |
HELLS, helicase, lymphoid specific (chromatin remodeling) | 1.7 (−) | 2.6 × 10−4 | 1.6 (−) | 2.5 × 10−4 | 2.9 (+) | 3.7 × 10−17 |
GINS2, GINS complex subunit 2 (DNA replication) | 1.6 (−) | 1.1 × 10−2 | 1.8 (−) | 9.3 × 10−5 | 2.4 (+) | 3.1 × 10−9 |
BEND3, BEN domain containing 3 (histone modification, transcriptional repressor) | 1.6 (−) | 2.1 × 10−2 | 2.3 (−) | 3.0 × 10−8 | 4.3 (+) | 2.5 × 10−18 |
Human proteins (signal transduction) | ||||||
PASK, PAS domain containing Ser/Thr kinase (energy homeostasis) | 1.7 (−) | 4.4 × 10−2 | 1.7 (−) | 5.3 × 10−3 | 2.4 (+) | 4.6 × 10−6 |
NETO2, neuropilin and tolloid like 2 (neurological functioning) | 1.7 (−) | 1.9 × 10−7 | 1.9 (−) | 6.0 × 10−12 | 4.0 (+) | 3.2 × 10−40 |
RAB3IP, RAB3A interacting protein (exocytosis and secretion) | 1.6 (−) | 4.4 × 10−2 | 1.7 (−) | 1.4 × 10−3 | 5.2 (+) | 4.3 × 10−17 |
Human proteins (membrane proteins) | ||||||
ULBP2, UL16 binding protein 2 (immune response) | 1.7 (−) | 8.6 × 10−3 | 1.6 (−) | 4.0 × 10−3 | 5.3 (+) | 1.1 × 10−19 |
CLCA2, chloride channel accessory 2 (ion transport) | 1.7 (+) | 2.5 × 10−2 | 24.6 (+) | 2.7 × 10−115 | 1.8 (−) | 6.8 × 10−4 |
Human proteins (cellular structure) | ||||||
TTLL7, tubulin tyrosine ligase like 7 (tubulin polyglutamylation) | 1.5 (−) | 1.1 × 10−2 | 1.8 (−) | 2.6 × 10−6 | 1.8 (+) | 3.7 × 10−6 |
Human proteins (extracellular components) | ||||||
ASPN, asporin (extracellular matrix formation) | 1.8 (+) | 2.7 × 10−2 | 2.0 (+) | 3.6 × 10−4 | 2.9 (−) | 2.4 × 10−8 |
Human proteins (cellular organelles) | ||||||
BRI3BP, BRI3 binding protein (mitochondria viability) | 1.7 (−) | 8.9 × 10−5 | 1.6 (−) | 3.9 × 10−5 | 2.6 (+) | 6.1 × 10−16 |
Human proteins (pseudogenes) | ||||||
PPIAP22, peptidylprolyl isomerase A pseudogene 22 | 1.5 (+) | 2.1 × 10−3 | -2.2 (+) | 7.5 × 10−15 | −1.5 (−) | 1.4 × 10−4 |
PDE4DIP, phosphodiesterase 4D interacting protein pseudogene 2 | 1.8 (+) | 1.3 × 10−2 | -2.1 (+) | 5.0 × 10−5 | −1.8 (−) | 2.0 × 10−3 |
RPL14P1, ribosomal protein L14 pseudogene 1 | 1.9 (+) | 3.8 × 10−8 | 1.6 (+) | 5.0 × 10−5 | −2.1 (−) | 4.1 × 10−13 |
RPL15P3, ribosomal protein L15 pseudogene 3 | 5.4 (+) | 9.1 × 10−3 | 19.5 (+) | 4.4 × 10−10 | −6.3 (−) | 3.1 × 10−4 |
RPL41P1, ribosomal protein L41 pseudogene 1 | 17.3 (+) | 1.4 × 10−2 | 30.9 (+) | 9.9 × 10−5 | −13.5 (−) | 5.2 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütz, M.; Cordsmeier, A.; Wangen, C.; Horn, A.H.C.; Wyler, E.; Ensser, A.; Sticht, H.; Marschall, M. The Interactive Complex between Cytomegalovirus Kinase vCDK/pUL97 and Host Factors CDK7–Cyclin H Determines Individual Patterns of Transcription in Infected Cells. Int. J. Mol. Sci. 2023, 24, 17421. https://doi.org/10.3390/ijms242417421
Schütz M, Cordsmeier A, Wangen C, Horn AHC, Wyler E, Ensser A, Sticht H, Marschall M. The Interactive Complex between Cytomegalovirus Kinase vCDK/pUL97 and Host Factors CDK7–Cyclin H Determines Individual Patterns of Transcription in Infected Cells. International Journal of Molecular Sciences. 2023; 24(24):17421. https://doi.org/10.3390/ijms242417421
Chicago/Turabian StyleSchütz, Martin, Arne Cordsmeier, Christina Wangen, Anselm H. C. Horn, Emanuel Wyler, Armin Ensser, Heinrich Sticht, and Manfred Marschall. 2023. "The Interactive Complex between Cytomegalovirus Kinase vCDK/pUL97 and Host Factors CDK7–Cyclin H Determines Individual Patterns of Transcription in Infected Cells" International Journal of Molecular Sciences 24, no. 24: 17421. https://doi.org/10.3390/ijms242417421
APA StyleSchütz, M., Cordsmeier, A., Wangen, C., Horn, A. H. C., Wyler, E., Ensser, A., Sticht, H., & Marschall, M. (2023). The Interactive Complex between Cytomegalovirus Kinase vCDK/pUL97 and Host Factors CDK7–Cyclin H Determines Individual Patterns of Transcription in Infected Cells. International Journal of Molecular Sciences, 24(24), 17421. https://doi.org/10.3390/ijms242417421