Evaluating the Utility of ctDNA in Detecting Residual Cancer and Predicting Recurrence in Patients with Serous Ovarian Cancer
Abstract
:1. Introduction
2. Results
2.1. Germline Mutations
2.2. Tumor Mutations
2.3. ctDNA in Pre- and Post-Surgery Plasma Samples
3. Discussion
3.1. Study Limitations
3.2. Implications and Contributions to Knowledge
4. Methods and Materials
4.1. Sample Population
4.2. Laboratory Methods
4.3. Data Analysis
DNA Sequencing and Bioinformatics Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canadian Cancer Statistics. 2017. Available online: https://cancer.ca/Canadian-CancerStatistics-2017-EN.pdf (accessed on 13 June 2021).
- Kotsopoulos, J.; Rosen, B.; Fan, I.; Moody, J.; McLaughlin, J.R.; Risch, H.; May, T.; Sun, P.; Narod, S.A. Ten-year survival after epithelial ovarian cancer is not associated with BRCA mutation status. Gynecol. Oncol. 2016, 140, 42–47. [Google Scholar] [CrossRef]
- Ledermann, J.A.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.; Meier, W.; Shapira-Frommer, R.; Safra, T.; et al. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: An updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol. 2016, 17, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.A.; Raja, F.A.; Fotopoulou, C.; Gonzalez-Martin, A.; Colombo, N.; Sessa, C.; ESMO Guidelines Working Group. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24, vi24–vi32. [Google Scholar] [CrossRef] [PubMed]
- Sopik, V.; Rosen, B.; Giannakeas, V.; Narod, S.A. Why have ovarian cancer mortality rates declined? Part III. Prospects for the Future. Gynecol. Oncol. 2015, 138, 757–761. [Google Scholar] [CrossRef]
- Poveda, A.; Salazar, R.; Del Campo, J.M.; Mendiola, C.; Cassinello, J.; Ojeda, B.; Arranz, J.A.; Oaknin, A.; García-Foncillas, J.; Rubio, M.J.; et al. Update in the management of ovarian and cervical carcinoma. Clin. Transl. Oncol. 2007, 9, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Ozols, R.F. Treatment goals in ovarian cancer. Int. J. Gynecol. Cancer 2005, 15, 3–11. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2020. [Google Scholar]
- Bryant, A.; Hiu, S.; Kunonga, P.T.; Gajjar, K.; Craig, D.; Vale, L.; Winter-Roach, B.A.; Elattar, A.; Naik, R. Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery. Cochrane Database Syst. Rev. 2022, 9, CD015048. [Google Scholar] [CrossRef]
- Azaïs, H.; Vignion-Dewalle, A.-S.; Carrier, M.; Augustin, J.; Da Maïa, E.; Penel, A.; Belghiti, J.; Nikpayam, M.; Gonthier, C.; Ziane, L.; et al. Microscopic Peritoneal Residual Disease after Complete Macroscopic Cytoredu tive Surgery for Advanced High Grade Serous Ovarian Cancer. J. Clin. Med. 2020, 10, 41. [Google Scholar] [CrossRef]
- Sørensen, S.M.; Schnack, T.H.; Høgdall, C. Impact of residual disease on overall survival in women with Federation of Gynecology and Obstetrics stage IIIB-IIIC vs stage IV epithelial ovarian cancer after primary surgery. Acta Obstet. Gynecol. Scand. 2019, 98, 34–43. [Google Scholar] [CrossRef]
- Zuna, R.E.; Behrens, A. Peritoneal Washing Cytology in Gynecologic Cancers: Long-term Follow-up of 355 Patients. JNCI 1996, 88, 980–987. [Google Scholar] [CrossRef]
- Naz, S.; Hashmi, A.A.; Ali, R.; Faridi, N.; Hussian, S.D.; Edhi, M.M.; Khan, M. Role of peritoneal washing cytology in ovarian malignancies: Correlation with histopathological parameters. World J. Surg. Oncol. 2015, 13, 315. [Google Scholar] [CrossRef]
- Swisher, E.M.; Wollan, M.; Mahtani, S.M.; Willner, J.B.; Garcia, R.; Goff, B.A.; King, M.-C. Tumor-specific p53 sequences in blood and peritoneal fluid of women with epithelial ovarian cancer. Am. J. Obstet. Gynecol. 2005, 193, 662–667. [Google Scholar] [CrossRef]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar]
- Mamon, H.; Hader, C.; Li, J.; Wang, L.; Kulke, M.; Amicarelli, G.; Shehi, E.; Adlerstein, D.; Roper, K.; Killion, L.; et al. Preferential amplification of apoptotic DNA from plasma: Potential for enhancing detection of minor DNA alterations in circulating DNA. Clin. Chem. 2008, 54, 1582–1584. [Google Scholar] [CrossRef]
- Forshew, T.; Murtaza, M.; Parkinson, C.; Gale, D.; Tsui, D.W.Y.; Kaper, F.; Dawson, S.-J.; Piskorz, A.M.; Jimenez-Linan, M.; Bentley, D.; et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 2012, 4, 136ra168. [Google Scholar] [CrossRef]
- Scholer, L.V.; Reinert, T.; Orntoff, M.W.; Kassentoft, C.G.; Arnadottir, S.S.; Vang, S.; Nordentoft, I.; Knudsen, M.; Lamy, P.; Andreasen, D.; et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin. Cancer Res. 2017, 23, 5437–5445. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Camacho-Vanegas, O.; Anand, S.; Sebra, R.; Camacho, S.C.; Garnar-Wortzel, L.; Nair, N.; Moshier, E.; Wooten, M.; Uzilov, A.; et al. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers. PLoS ONE 2015, 10, e0145754. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.R.; Groenendijk, F.H.; van Marion, R.; Beaufort, C.M.; Helmijr, J.C.; Jan Dubbink, H.; Dinjens, W.N.M.; Ewing-Graham, P.C.; Smolders, R.; van Doorn, H.C.; et al. TP53 Mutations in Serum Circulating Cell-Free Tumor DNA As Longitudinal Biomarker for High-Grade Serous Ovarian Cancer. Biomolecules 2020, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Lee, S.W.; Lee, Y.J.; Lee, H.-Y.; Lee, J.-E.; Choi, E.-K. Prospective study of the efficacy and utility of TP53 mutations in circulating tumor DNA as a non-invasive biomarker of treatment response monitoring in patients with high-grade serous ovarian carcinoma. J. Gynecol. Oncol. 2019, 30, e32. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Etemadmoghadam, D.; Temple, J.; Lynch, A.G.; Riad, M.; Sharma, R.; Stewart, C.; Fereday, S.; Caldas, C.; Defazio, A.; et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 2010, 221, 49–56. [Google Scholar] [CrossRef]
- Buller, R.E.; Lallas, T.A.; Shahin, M.S.; Sood, A.K.; Hatterman-Zogg, M.; Anderson, B.; Sorosky, J.I.; Kirby, P.A. The p53 mutational spectrum associated with BRCA1 mutant ovarian cancer. Clin. Cancer Res. 2001, 7, 831–838. [Google Scholar] [PubMed]
- Fallows, S.; Price, J.; Atkinson, R.J.; Johnston, P.G.; Hickey, I.; Russell, S.E. P53 mutation does not affect prognosis in ovarian epithelial malignancies. J. Pathol. 2001, 194, 68–75. [Google Scholar] [CrossRef]
- Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E.; et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, eaan2415. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.T.; Chin, Y.M.; Nakamura, Y.; Low, S.K. Clonal hematopoiesis in liquid biopsy: From biological noise to valuable clinical implications. Cancers 2020, 12, 2277. [Google Scholar] [CrossRef]
- Moding, E.J.; Nabet, B.Y.; Alizadeh, A.A.; Diehn, M. Detecting liquid remnants of solid tumors: Circulating tumor DNA minimal residual disease. Cancer Discov. 2021, 11, 2968–2986. [Google Scholar] [CrossRef]
- Chabon, J.J.; Hamilton, E.G.; Kurtz, D.M.; Esfahani, M.S.; Moding, E.J.; Stehr, H.; Schroers-Martin, J.; Nabet, B.Y.; Chen, B.; Chaudhuri, A.A.; et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 2020, 580, 245–251. [Google Scholar] [CrossRef]
- Sondka, Z.; Bamford, S.; Cole, C.G.; Ward, S.A.; Dunham, I. The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 2018, 18, 696–705. [Google Scholar] [CrossRef]
- Kurian, A.W.; Hughes, E.; Handorf, E.A.; Gutin, A.; Allen, B.; Hartman, A.-R.; Hall, M.J. Breast and Ovarian Cancer Penetrance Estimates Derived From Germline Multiple-Gene Sequencing Results in Women. JCO Precis. Oncol. 2017, 1, 1–12. [Google Scholar] [CrossRef]
- Smith, P.; McGuffog, L.; Easton, D.F.; Mann, G.J.; Pupo, G.M.; Newman, B.; Chenevix-Trench, G.; Southey, M.; Renard, H.; Odefrey, F.; et al. A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 2006, 45, 646–655. [Google Scholar]
- George, S.H.L.; Donenberg, T.; Alexis, C.; DeGennaro, V., Jr.; Yin, S.; Ali, J.; Butler, R.; Chin, S.N.; Curling, D.; Lowe, D.; et al. Gene Sequencing for Pathogenic Variants Among Adults With Breast and Ovarian Cancer in the Caribbean. JAMA Netw. Open 2021, 4, e210307. [Google Scholar] [CrossRef] [PubMed]
- Kendig, K.I.; Baheti, S.; Bockol, M.A.; Drucker, T.M.; Hart, S.N.; Heldenbrand, J.R.; Hernaez, M.; Hudson, M.E.; Kalmbach, M.T.; Klee, E.W.; et al. Sentieon DNASeq Variant Calling Workflow Demonstrates Strong Computational Performance and Accuracy. Front. Genet. 2019, 10, 736. [Google Scholar] [CrossRef] [PubMed]
- Wolber, P.K.; Collins, P.J.; Lucas, A.B.; De Witte, A.; Shannon, K.W. The Agilent in situ-synthesized microarray platform. Methods Enzymol. 2006, 410, 28–57. [Google Scholar] [CrossRef] [PubMed]
- SNP & Variation Suite ™, Version 8; Golden Helix, Inc.: Bozeman, MT, USA; Available online: http://www.goldenhelix.com (accessed on 1 June 2021).
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef]
Patient Characteristics | No. of Participants (%) |
---|---|
Age, mean (SD) | 58.9 (10.1) |
Menopausal Status | |
Premenopause | 7 (14.6%) |
Perimenopause | 3 (6.3%) |
Postmenopause | 37 (77.1%) |
Unknown | 1 (2.1%) |
Histopathological classification | |
Serous | 47 (97.9%) |
Mixed (serous/endometroid) | 1 (2.1%) |
Tumour stage | |
Stage I | 2 (4.2%) |
Stage II | 2 (4.2%) |
Stage IIIA | 2 (4.2%) |
Stage IIIB | 11 (22.9%) |
Stage IIIC | 28 (58.3%) |
Unknown | 3 (6.3%) |
Tumour grade | |
Low grade | 1 (2.1%) |
High grade | 47 (97.9%) |
Neoadjuvant treatment | |
Received chemotherapy | 0 |
Did not receive chemotherapy | 45 (93.8%) |
Unknown | 3 (6.2%) |
Adjuvant treatment | |
Received chemotherapy | 48 (100.0%) |
Did not receive chemotherapy | 0 |
Ascites | |
Ascites present | 30 (62.5%) |
No ascites | 15 (31.3%) |
Unknown | 3 (6.2%) |
Ascites drainage | |
Yes | 26 (54.2%) |
No | 17 (35.4%) |
Unknown | 5 (10.4%) |
Sample ID | Gene | Affected Transcript | Affected Protein | VAF in Germline (%) | Tumour Loss of Heterozygosity (LOH) | VAF in Tumour (%) |
---|---|---|---|---|---|---|
4 | BRCA1 | NM_007294.4: c.68_69delAG | p.Glu23fs | 43.75 | Yes | 90.1 |
6 | RAD51C | NM_058216.3: c.414G > C | p.Leu138Phe | 47.9 | Yes | 77.9 |
CHEK2 | NM_007194.4: c.1100delC | p.Thur367fs | 48.3 | Yes | 79.3 | |
7 | BRCA1 | NM_007294.4: c.2709_2710delTG | p.Cys903_Glu904delinsTer | 47.5 | Yes | 79 |
MSH6 | NM_001281492.1: c.3569_3572delCAAG | p.Ala1190fs | 43.7 | No | 36.9 | |
8 | BRCA1 | NM_007294.4: c.68_69delAG | p.Glu23fs | 47.1 | Yes | 72.7 |
9 | RAD50 | NM_005732.4: c.2498_2499delAA | p.Gln833Argfs*11 | 50.2 | No | 46.8 |
14 | BRCA1 | NM_007294.3: c.5266C > T | p.Gln1756Ter | 47.2 | Yes | 80.3 |
15 | BRCA2 | NM_000059.4: c.7806-2A > G | - | 47.6 | Yes | 86.1 |
17 | BRCA1 | NM_007294.4: c.2241delC | p.Asp749fs | 45.9 | Yes | 61.7 |
18 | BRCA1 | NM_007294.4: c.2241delC | p.Asp749fs | 28.4 | Yes | 71.4 |
20 | BRCA2 | NM_000059.3: c.2409T > G | p.Tyr803Ter | 50.3 | Yes | 82.5 |
23 | BRCA2 | NM_000059.3: c.1332_1333delTT | p.Ser445fs | 45.6 | Yes | 71.1 |
27 | BRCA1 | NM_007294.3: c.5266C > T | p.Gln1756Ter | 43.3 | Yes | 77.8 |
28 | BRCA1 | NM_007294.3: c.5266C > T | p.Gln1756Ter | 47.7 | Yes | 71.8 |
29 | BRCA2 | NM_000059.3: c.8297del | p.Thr2766fs | 42.4 | Yes | 75 |
33 | BRCA1 | NM_007294.4: c.4666C > T | p.Gln1556Ter | 50.4 | Yes | 93.7 |
36 | BRCA1 | NM_007294.4: c.2241delC | p.Asp749fs | 49.1 | Yes | 88.8 |
40 | BRCA2 | NM_000059.3: c.1332_1333delTT | p.Ser445fs | 45.6 | Yes | 74.3 |
41 | BRCA1 | NM_007294.4: c.2999delA | p.Glu1000fs | 48.9 | Yes | 82.2 |
44 | RAD51C | NM_058216.3: c.397C > T | p.Gln133Ter | 50.2 | Yes | 86.4 |
46 | BRCA1 | NM_007294.3: c.1439dupA | p.Asn480Lysfs | 45 | Yes | 67.6 |
47 | BRCA2 | NM_000059.3: c.5946_5949delTGGA | p.Ser1982fs | 46.3 | Yes | 75.2 |
48 | BRCA2 | NM_000059.3: c.1332_1333delTT | p.Ser445fs | 47.4 | Yes | 75.6 |
Germline Mutation | |||||
---|---|---|---|---|---|
Somatic Mutation | BRCA1 | BRCA2 | Other Genes | No Mutation | |
BRCA1 | 0 | 1 | 0 | 1 | |
BRCA2 | 1 | 1 | 1 | 3 | |
P53 | 9 | 5 | 3 | 11 | |
Other Genes | 1 | 0 | 0 | 4 | |
No Mutation | 3 | 1 | 1 | 12 |
Sample ID | Gene | Affected Transcript | Affected Protein | VAF of TSV (%) |
---|---|---|---|---|
1 | TP53 | NM_000546.5:c.711G > T | p.Met237Ile | 96.4 |
2 | TP53 | NM_000546.5:c.713G > C | p.Cys238Ser | 80.3 |
3 | BRCA2 | NM_000059.4:c.8009C > T | p.Ser2670Leu | 1.9 |
5 | TP53 | NM_000546.5:c.916C > T | p.Arg306Ter | 43.5 |
BRCA1 | NM_007294.4:c.4357 + 1G > T | - | 1.5 | |
BRCA2 | NM_000059.3(BRCA2):c.3376G > T | p.Glu1126Ter | 2.2 | |
7 | TP53 | NM_000546.5:c.782 + 1G > A | - | 65 |
8 | TP53 | NM_000546.6:c.524G > A | p.Arg175His | 51.5 |
9 | BRCA2 | NM_000059.3:c.8297del | p.Thr2766fs | 49.9 |
TP53 | NM_000546.6:c.524G > A | p.Arg175His | 2.6 | |
12 | TP53 | NM_000546.5:c.455del | p.Pro152fs | 44.2 |
13 | TP53 | NM_000546.5:c.455del | p.Pro152fs | 78.1 |
14 | BRCA2 | NM_000059.4:c.7007G > A | p.Arg2336His | 1.3 |
TP53 | NM_000546.5:c.455del | p.Pro152fs | 74.6 | |
15 | TP53 | NM_000546.6:c.524G > A | p.Arg175His | 87.8 |
16 | TP53 | NM_000546.5:c.455del | p.Pro152fs | 44.3 |
17 | TP53 | NM_000546.6:c.844C > T | p.Arg282Trp | 43.7 |
18 | TP53 | NM_000546.5:c.763A > T | p.Ile255Phe | 67.2 |
20 | BRCA2 | NM_000059.4:c.5197_5198del | p.Ser1733fs | 1.0 |
21 | TP53 | NM_000546.5:c.577C > G | p.His193Asp | 54.6 |
23 | TP53 | NM_000546.5:c.537T > G | p.His179Gln | 62 |
27 | MSH2 | NM_000251.2:c.1861C > T | p.Arg621Ter | 1.2 |
TP53 | NM_000546.5:c.569C > T | p.Pro190Leu | 73.1 | |
28 | TP53 | NM_000546.5:c.711del | p.Met237fs | 68.5 |
29 | TP53 | NM_000546.6:c.524G > A | p.Arg175His | 65.8 |
BRCA1 | NM_007294.4:c.5096G > A | p.Arg1699Gln | 1.2 | |
31 | TP53 | NM_000546.5:c.469_471del | p.Val157delVal | 64.2 |
32 | TP53 | NM_000546.6:c.524G > A | p.Arg175His | 86.9 |
RB1 | NM_000321.3:c.1981C > T | p.Arg661Trp | 88.8 | |
33 | TP53 | NM_000546.6:c.1010G > C | p.Arg337Pro | 1.7 |
34 | BRIP1 | NM_032043.2:c.1741C > T | p.Arg581Ter | 1.0 |
35 | BRAF | NM_004333.6:c.1796C > T | p.Thr599Ile | 34.5 |
38 | BRCA2 | NM_000059.3:c.6814del | p.Arg2272fs | 1.1 |
TP53 | NM_000546.5:c.844C > G | p.Arg282Gly | 40.7 | |
40 | TP53 | NM_000546.6:c.742C > T | p.Arg248Trp | 74.6 |
41 | TP53 | NM_000546.5:c.488A > G | p.Tyr163Cys | 84.3 |
43 | TP53 | NM_000546.5:c.713G > C | p.Cys238Ser | 81.7 |
44 | TP53 | NM_001126112.2:c.216dup | p.Val73fs | 54.9 |
47 | TP53 | NM_000546.5:c.725G > A | p.Cys242Tyr | 80.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.W.; Wong, F.; Szymiczek, A.; Ene, G.E.V.; Zhang, S.; May, T.; Narod, S.A.; Kotsopoulos, J.; Akbari, M.R. Evaluating the Utility of ctDNA in Detecting Residual Cancer and Predicting Recurrence in Patients with Serous Ovarian Cancer. Int. J. Mol. Sci. 2023, 24, 14388. https://doi.org/10.3390/ijms241814388
Zhu JW, Wong F, Szymiczek A, Ene GEV, Zhang S, May T, Narod SA, Kotsopoulos J, Akbari MR. Evaluating the Utility of ctDNA in Detecting Residual Cancer and Predicting Recurrence in Patients with Serous Ovarian Cancer. International Journal of Molecular Sciences. 2023; 24(18):14388. https://doi.org/10.3390/ijms241814388
Chicago/Turabian StyleZhu, Jie Wei, Fabian Wong, Agata Szymiczek, Gabrielle E. V. Ene, Shiyu Zhang, Taymaa May, Steven A. Narod, Joanne Kotsopoulos, and Mohammad R. Akbari. 2023. "Evaluating the Utility of ctDNA in Detecting Residual Cancer and Predicting Recurrence in Patients with Serous Ovarian Cancer" International Journal of Molecular Sciences 24, no. 18: 14388. https://doi.org/10.3390/ijms241814388
APA StyleZhu, J. W., Wong, F., Szymiczek, A., Ene, G. E. V., Zhang, S., May, T., Narod, S. A., Kotsopoulos, J., & Akbari, M. R. (2023). Evaluating the Utility of ctDNA in Detecting Residual Cancer and Predicting Recurrence in Patients with Serous Ovarian Cancer. International Journal of Molecular Sciences, 24(18), 14388. https://doi.org/10.3390/ijms241814388