Non-Small Cell Lung Cancer Treatment with Molecularly Targeted Therapy and Concurrent Radiotherapy—A Review
Abstract
:1. Introduction
2. Methodology
3. Targeted Therapy
4. Radiation Therapy
5. Radiobiological Bases of Combining Targeted Therapies with Radiotherapy in NSCLC Treatment
5.1. Anti-EGFR Treatment
5.2. Anti-Angiogenic Treatment
5.3. Immunotherapy
6. Overview of Clinical Trials Incorporating the Use of Monoclonal Antibodies or TKIs Targeting EGFR or VEGF in the Treatment of NSCLC
6.1. Palliative NSCLC Treatment
6.1.1. Anti-EGFR Treatment
6.1.2. Anti-Angiogenic Treatment
Trial ID, Ref. | Recruitment Criteria, Number of Patients Included in the Study | Treatment’s Scheme | Results | Conclusion |
---|---|---|---|---|
Choi HJ et al., 2011 [74] | NSCLC at IIB–IV stage; older or fragile patients, 15 pts | Palliative RTh + nimotuzumab (concurrent and maintenance) | RR = 46.7% LC = 100% | 100 mg/m2 dose well tolerated; doses > 200 mg/m2 cause pulmonary toxicity; |
Bebb G et al., 2011 [75] | NSCLC at III–IV stage; palliative chest RT proposed, 18 pts | like above | RR = 66% LC = 94% | well tolerated treatment—adverse effects only of grade 1 and 2 |
Chang CC et al., 2011 [76] | NSCLC at IIIB–IV stage; patients responding to gefitynib or erlotinib, 25 pts | RTh + gefitynib or erlotynib continuation RTh 40–50 Gy/16–20 fx.; | RR (to the RTh) = 84% PFS = 16 mth 3yOS = 62.5% | early RTh concurrent with TKIs may prevent TKIs resistance |
Swaminath et al., 2016 [77] | NSCLC at III–IV stage or recurrent,40 pts | erlotynib over 3 weeks + RTh since 2nd week (30 Gy/10 fx) | predicted QoL improvement not achieved (LCSS: actual = −12.5 U; predicted = 17.5 U); MS = 5.2 mth PFS = 3.2 mth | lack of clear benefit in terms of QoL |
Zhuang et al., 2014 [78] | NSCLC at III–IV stage, 24 pts | erlotynib + chest RTh (palliative or radical setting) | ILD of grade ≥ 2 in 37.5% of the pts; grade 5 (death) in 12.5% of the pts | concurrent treatment with erlotinib and chest RTh may be associated with more frequent RILI (ILD) occurrence |
Atmaca et al., 2014 [79] | NSCLC at IV stage, 1 patient—a case presentation | afatynib + palliative RTh delivered to primary and mediastinum | PR of irradiated and metastatic (not irradiated) lesions (!) | |
Martino et al., 2016 Pastina et al., 2017 [80,81] | NSCLC at IV stage, 69 pts | mPEBev (metronomical ChTh cisplatin, etopozid + bewacizumab) +/− palliative RTh of one or a few distant metastases | significant improvement of MS in RT group (MS = 22.1 vs. 12.1 mth) PFS- no difference | bewacizumab treatment probably led to synergistic effect with RTh; immune response triggered with activating DCs and Tc—abscopal effect ? |
6.2. Treatment of NSCLC with Radical Intent
6.2.1. Anti-EGFR Therapy
6.2.2. Anti-Angiogenic Treatment
6.3. NSCLC Treatment Escalation—Targeted Therapies and Radiochemotherapy Used Together
6.3.1. Anti-EGFR Treatment
6.3.2. Anti-VEGF Treatment
Trial ID, Ref. | Recruitment Criteria, Number of Patients Recruited | Treatment’s Scheme | Results | Conclusion |
---|---|---|---|---|
Blumenschein et al., RTOG 0324, 2011 [95] | NSCLC at III stage; ECOG 0, without substantial weight loss and without significant comorbidities; 75 pts | cetuximab + ChRTh (63 Gy) → cetuximab + ChTh until 17 weeks of treatment | RR = 62%; MS = 22.7 mth; 2yOS = 49.3%; five deaths; grade 4 hematological adverse events—20% grade 3–4 pneumonitis—7% grade 3 esophagitis—8% | 80% patients have been given whole the planned treatment which means good compliance; survival longer than reported by previous RTOG studies; |
Bradley et al., RTOG 0617, 2015 [96] | NCSLC at III stage, 544 pts | cetuximab + ChRTh (60 vs. 70 Gy) vs. ChRTh (60 vs. 70 Gy) | MS 25 mth in ChRTh + cetuximab groups vs. 24 mth in ChRTh without antibody groups; Grade ≥ 3 AE: 86% ChRTh with cetuximab vs. 70% ChRTh alone | addition of cetuximab to the RchTh has increased level of toxicity, without survival rates improvement; |
Edelman et al., RTOG 0839, 2017 [97] | NSCLC at IIIA stage (potentially resectable), 71 pts (of 94 pts planned, due to early recruitment closure) | ChRTh (60 Gy) ±panitumumab→ surgery → ChTh | PCR = 50.0% in panitumumab arm vs. 58.7% in ChRTh alone arm; death rate 10.5% in experimental arm vs. 0% in control arm; | early recruitment closure because of unacceptable toxicity and no improvement of treatment results |
Rothschild et al., 2011 [94] | inoperable NSCLC at III stage, 9 pts | gefitynib + ChRTh (63 Gy, ChTh- cisplatin) | 2 patients (22.2%) reactions limiting dose: (1) dyspnea, dehydration connected with neutropenia resulting in pneumonia (2) liver enzymes elevation; | significant level of toxicity has made treatment difficult to conduct as planned |
Center et al., 2010 [99] | inoperable NSCLC at III stage, ECOG 0-1, 16 pts | gefitinib + ChRTh (70 Gy, docetaxel) → ChT+gefitinib | RR = 46%; MS = 21 mth; grade 3–4 AE: esophagitis—27%, pulmonary—20% | The scheme possible to deliver, moderate toxicity, docetaxel dose should not exceed 20 mg/m2/week |
Stinchcombe et al., 2008 [100] | unresectable NSCLC at III stage, 23 pts | ChT (carboplatin, irinotecan, paclitaxel)→ gefitinib +ChRTh (74 Gy, carboplatin and paclitaxel) | PFS = 9 mth; MS = 16 mth; AE: grade 3 esophagitis– 19.5%, atrial fibrillation– 9.5% | quite well tolerated, but without improvement of survival and TTP; |
Ready et al., CALGB 30106, 2010 [101] | unresectable NSCLC at III stage: ‘better prognosis’ group: ECOG 0-1, without substantial weight loss; ‘worse prognosis’ group: ECOG 2 or weight loss >5%, 63 pts | gefitinib + ChRTh (66 Gy, carboplatin and paclitaxel, concurrent or sequential depending on prognostic group) → gefitinib until progression | ‘better prognosis’ group: PFS = 9,2 mth; MS = 13 mth; ‘worse prognosis’ group: PFS = 13,4 mth; MS = 19 mth; toxicity comparable to the literature data on ChRTh without TKIs | disappointing results in concurrent ChRTh group—no benefit achieved with gefitinib addition (even in the EGFR mutated group); promising results in ‘worse prognosis’ group, given sequential ChRTh with gefitinib; |
Choong et al., 2008 [102] | unresectable NSCLC at III stage, 17 pts | erlotinib (50/100/150 mg) + ChRTh (66 Gy, arm A: cisplatin and navelbin or arm B: k carboplatin and paclitaxel) | MS = 10.2 mth arm A; MS = 13.7 mth arm B; 3y OS = 53% in a group experiencing rash, 10% in a group with no rash; | manageable even at a dose of 150 mg erlotinib, without noticeable increase in toxicity; survival rates disappointing, there is a premise to withdrawal from further testing such a scheme; |
Komaki et al., 2015 [103] | locally advanced, inoperable NSCLC, 48 pts | erlotinib + ChRTh (63 Gy, carboplatin and paclitaxel) | MTTP = 14 mth MS = 36.5 mth 1yOS = 82.6% 2yOS = 67.4% 5yOS = 35.9% AE: grade 5: zero patients, grade 4: one patient, grade 3: 11 patients; | low toxicity and long overall survival, but primary endpoint of the study—MTTP—lower than expected |
Ramella et al., 2013 [104] | locally advanced or disseminated NSCLC, previously ChTh treated, 60 pts | erlotinib + ChRTh (primary tumor RTh) | grade 3–4 AE: esophagitis– 2%, RILI–8%; MS = 23.3 mth; PFS = 4.7 mth; no activating mutation in the EGFR gene present (but only 32% of the patients tested) | manageable scheme, however, recruitment to further studies should be based on identification of population with activating mutations in the EGFR gene confirmed |
Spigel et al., 2010 [105] | NSCLC, 5 patients (early recruitment closure because of safety regards) | ChRTh + bevacizumab | tracheoesophageal fistulae formation | high risk of life-threatening reactions |
Wozniak AJ et al., SWOG S0533 2015 [106] | unresectable stage III NSCLC ECOG PS 0-1, 26 pts: 11 of ‘High Risk’ of bleeding and 15 of ‘Low Risk’ * | ‘Cohort1’: ChRTh -> consolidation treatment with ChTh (DTX) and bevacizumab;‘Cohort 2’: ChRth+bevacizumab | grade 5 pulmonary hemorrhage: two patients (both of ‘High Risk’, one with squamous histology and second with cavitation of tumor), grade 3 gastrointestinal haemorrhage: one patient, grade 3 pneumonitis: two patients, grade 3 and 4 anemia: two patients; | Seven of ‘High Risk’ pts after completing ChRTh obtained consolidation treatment, and two of them died because of fatal hemorrhage—unacceptable toxicity. ‘Cohort 2’ has been limited to ‘Low Risk” pts, but the trial was closed due to slow accrual; |
7. Combination of Radiotherapy with Immunotherapy/Immunochemotherapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casal-Mouriño, A.; Ruano-Ravina, A.; Lorenzo-Gonzalez, M.; Rodrigues-Martinez, A.; Giraldo-Osorio, A.; Varela-Lema, L.; Pereiro-Brea, T.; Barros-Dios, J.M.; Valdes-Cuadrado, L.; Perez-Rios, M. Epidemiology of stage III lung cancer: Frequency, diagnostic characteristics, and survival. Transl. Lung Cancer Res. 2021, 10, 506–518. [Google Scholar] [CrossRef]
- Krzakowski, M.; Jassem, J.; Antczak, A.; Chorostowska-Wynimko, J.; Dziadziuszko, R.; Głogowski, M.; Tomasz, G.; Dariusz, K.; Włodzimierz, O.; Tadeusz, O. Cancer of the lung, pleura and mediastinum. Oncol. Clin. Pract. 2022, 18, 20–50. [Google Scholar]
- Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011, 12, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Nagano, T.; Tachihara, M.; Nishimura, Y. Molecular Mechanisms and Targeted Therapies Including Immunotherapy for Non-Small Cell Lung Cancer. Curr. Cancer Drug Targets 2019, 19, 595–630. [Google Scholar] [CrossRef] [PubMed]
- Amelia, T.; Kartasasmita, R.E.; Ohwada, T.; Tjahjono, D.H. Structural Insight and Development of EGFR Tyrosine Kinase Inhibitors. Molecules 2022, 27, 819. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.-H.; Wu, Y.-L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.-P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus Cisplatin-Based Chemotherapy for EGFR Mutation-Positive Lung Adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of Overall Survival Data from Two Randomised, Phase 3 Trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-L.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Tsuji, F.; Linke, R.; Rosell, R.; Corral, J.; et al. Dacomitinib versus Gefitinib as First-Line Treatment for Patients with EGFR-Mutation-Positive Non-Small-Cell Lung Cancer (ARCHER 1050): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2017, 18, 1454–1466. [Google Scholar] [CrossRef]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Yang, J.C.-H.; Reckamp, K.L.; Kim, Y.-C.; Novello, S.; Smit, E.F.; Lee, J.-S.; Su, W.-C.; Akerley, W.L.; Blakely, C.M.; Groen, H.J.M.; et al. Efficacy and Safety of Rociletinib Versus Chemotherapy in Patients With EGFR-Mutated NSCLC: The Results of TIGER-3, a Phase 3 Randomized Study. JTO Clin. Res. Rep. 2021, 2, 100114. [Google Scholar] [CrossRef]
- Cho, B.C.; Felip, E.; Hayashi, H.; Thomas, M.; Lu, S.; Besse, B.; Sun, T.; Martinez, M.; Sethi, S.N.; Shreeve, S.M.; et al. MARIPOSA: Phase 3 study of thirs simertinid simer simertiniib lazer simertinib osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncol. 2022, 18, 639–647. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W. Safety and efficacy of anaplastic lymphoma kinase tyrosine kinase inhibitors in non-small cell lung cancer (Review). Oncol. Rep. 2021, 45, 13–28. [Google Scholar] [CrossRef]
- Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soria, J.C.; Tan, D.S.W.; Chiari, R.; Wu, Y.L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.J.; et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet 2017, 389, 917–929. [Google Scholar] [CrossRef]
- Novello, S.; Mazieres, J.; Oh, I.J.; de Castro, J.; Migliorino, M.R.; Helland, Å.; Dziadziuszko, R.; Griesinger, F.; Kotb, A.; Zeaiter, A.; et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: Results from the phase III ALUR study. Ann. Oncol. 2018, 29, 1409–1416. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.; Han, J.Y.; Lee, J.S.; Hochmair, M.J.; Li, J.Y.; Chang, G.C.; Lee, K.H.; et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Offin, M.; Harnicar, S.; Li, B.T.; Drilon, A. Entrectinib: An orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther. Clin. Risk Manag. 2018, 14, 1247–1252. [Google Scholar] [CrossRef] [Green Version]
- Akamine, T.; Toyokawa, G.; Tagawa, T.; Seto, T. Spotlight on lorlatinib and its potential in the treatment of NSCLC: The evidence to date. Onco Targets Ther. 2018, 11, 5093–5101. [Google Scholar] [CrossRef] [Green Version]
- Yan, N.; Guo, S.; Zhang, H.; Zhang, Z.; Shen, S.; Li, X. BRAF-Mutated Non-Small Cell Lung Cancer: Current Treatment Status and Future Perspective. Front. Oncol. 2022, 12, 863043. [Google Scholar] [CrossRef]
- Mazieres, J.; Cropet, C.; Montané, L.; Barlesi, F.; Souquet, P.J.; Quantin, X.; Dubos-Arvis, C.; Otto, J.; Favier, L.; Avrillon, V.; et al. Vemurafenib in non-small-cell lung cancer patients with BRAFV600 and BRAFnonV600 mutations. Ann. Oncol. 2020, 31, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Hashemi, S.M.S.; Mazieres, J.; Kim, T.M.; Quoix, E.; Souquet, P.J.; Barlesi, F.; Baik, C.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients With BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, Y.; Wei, J.; Chen, Z.; Yu, J. VEGFR-TKIs combined with chemotherapy for advanced non-small cell lung cancer: A systematic review. J. Cancer 2019, 10, 799–809. [Google Scholar] [CrossRef] [PubMed]
- de Boer, R.H.; Arrieta, Ó.; Yang, C.H.; Gottfried, M.; Chan, V.; Raats, J.; de Marinis, F.; Abratt, R.P.; Wolf, J.; Blackhall, F.H.; et al. Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: A randomized, double-blind phase III trial. J. Clin. Oncol. 2011, 29, 1067–1074. [Google Scholar] [CrossRef]
- Scagliotti, G.; Novello, S.; von Pawel, J.; Reck, M.; Pereira, J.R.; Thomas, M.; Abrão Miziara, J.E.; Balint, B.; De Marinis, F.; Keller, A.; et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 1835–1842. [Google Scholar] [CrossRef]
- Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Neal, J.W.; Wakelee, H.A. Aflibercept in lung cancer. Expert Opin. Biol. Ther. 2013, 13, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Li, Y.; Ye, F.; Li, Q.; Zhang, G.; Li, J.; Li, X. Anti-EGFR monoclonal antibody plus chemotherapy for treating advanced non-small cell lung cancer: A meta-analysis. Medicine 2021, 100, e27954. [Google Scholar] [CrossRef]
- Lauro, S.; Onesti, C.E.; Righini, R.; Marchetti, P. The use of bevacizumab in non-small cell lung cancer: An update. Anticancer Res. 2014, 34, 1537–1545, Erratum in Anticancer Res. 2014, 34, 3232. [Google Scholar]
- Maione, P.; Sgambato, A.; Casaluce, F.; Sacco, P.C.; Santabarbara, G.; Rossi, A.; Gridelli, C. The Role of the Antiangiogenetic Ramucirumab in the Treatment of Advanced Non-Small Cell Lung Cancer. Curr. Med. Chem. 2017, 24, 3–13. [Google Scholar] [CrossRef]
- Shields, M.D.; Marin-Acevedo, J.A.; Pellini, B. Immunotherapy for Advanced Non-Small Cell Lung Cancer: A Decade of Progress. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 105–127. [Google Scholar] [CrossRef]
- Ready, N.E.; Ott, P.A.; Hellmann, M.D.; Zugazagoitia, J.; Hann, C.L.; de Braud, F.; Antonia, S.J.; Ascierto, P.A.; Moreno, V.; Atmaca, A.; et al. Nivolumab Monotherapy and Nivolumab Plus Ipilimumab in Recurrent Small Cell Lung Cancer: Results From the CheckMate 032 Randomized Cohort. J. Thorac. Oncol. 2020, 15, 426–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Cho, B.C.; Luft, A.; Alatorre-Alexander, J.; Geater, S.L.; Laktionov, K.; Kim, S.W.; Ursol, G.; Hussein, M.; Lim, F.L.; et al. Durvalumab With or Without Tremelimumab in Combination With Chemotherapy as First-Line Therapy for Metastatic Non-Small-Cell Lung Cancer: The Phase III POSEIDON Study. J. Clin. Oncol. 2023, 41, 1213–1227. [Google Scholar] [CrossRef]
- Park, K.; Özgüroğlu, M.; Vansteenkiste, J.; Spigel, D.; Yang, J.C.H.; Ishii, H.; Garassino, M.; de Marinis, F.; Szczesna, A.; Polychronis, A.; et al. Avelumab Versus Docetaxel in Patients With Platinum-Treated Advanced NSCLC: 2-Year Follow-Up From the JAVELIN Lung 200 Phase 3 Trial. J. Thorac. Oncol. 2021, 16, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010, 303, 1070–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezjak, A.; Paulus, R.; Gaspar, L.E.; Timmerman, R.D.; Straube, W.L.; Ryan, W.F.; Garces, Y.I.; Pu, A.T.; Singh, A.K.; Videtic, G.M.; et al. Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Centrally Located Non-Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial. J. Clin. Oncol. 2019, 37, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Elhawwa, B.A.; Telfah, A.M. Comparison of 8Gy Single Fraction Radiotherapy Versus 20Gy in Five Fractions or 30Gy in 10 Fractions for the Treatment of Metastatic Bone Pain. Ann. Oncol. 2012, 23 (Suppl. S9), ix462–ix468. [Google Scholar]
- Sahgal, A.; Myrehaug, S.D.; Siva, S.; Masucci, G.L.; Maralani, P.J.; Brundage, M.; Butler, J.; Chow, E.; Fehlings, M.G.; Foote, M.; et al. Stereotactic body radiotherapy versus conventional external beam radiotherapy in patients with painful spinal metastases: An open-label, multicentre, randomised, controlled, phase 2/3 trial. Lancet Oncol. 2021, 22, 1023–1033. [Google Scholar] [CrossRef]
- Jumeau, R.; Vilotte, F.; Durham, A.D.; Ozsahin, E.M. Current landscape of palliative radiotherapy for non-small-cell lung cancer. Transl. Lung Cancer Res. 2019, 8 (Suppl. S2), S192–S201. [Google Scholar] [CrossRef]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R., Jr.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non-Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, P.G.B.; Yaremko, B.P.; et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): A randomised, phase 2, open-label trial. Lancet 2019, 393, 2051–2058. [Google Scholar] [CrossRef]
- Yu, J.B.; Schulder, M.; Knisely, J. Radiosurgical dose selection for brain metastasis. Prog. Neurol. Surg. 2012, 25, 139–147. [Google Scholar] [PubMed]
- Ng, T.L.; Camidge, D.R. Intracranial efficacy of crizotinib versus chemotherapy in PROFILE 1014: Shining a light on central nervous system endpoints in clinical trials. Transl. Cancer Res. 2016, 5 (Suppl. S3), S520–S525. [Google Scholar] [CrossRef]
- Joiner, M.C.; van der Kogel, A.J. (Eds.) Basic Clinical Radiobiology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Maciejewski, B.; Suwiński, R.; Blamek, S. Radiobiologia Kliniczna w Radioonkologii; Medycyna Praktyczna: Kraków, Poland, 2019. [Google Scholar]
- Garcia-Barros, M.; Paris, F.; Cordon-Cardo, C.; Lyden, D.; Rafii, S.; Haimovitz-Friedman, A.; Fuks, Z.; Kolesnick, R. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003, 300, 1155–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, E.B.; Chhabra, A.; Chachoua, A.; Adams, S.; Donach, M.; Fenton-Kerimian, M.; Friedman, K.; Ponzo, F.; Babb, J.S.; Goldberg, J.; et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: A proof-of-principle trial. Lancet Oncol. 2015, 16, 795–803. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef]
- Brody, J.D.; Ai, W.Z.; Czerwinski, D.K.; Torchia, J.A.; Levy, M.; Advani, R.H.; Kim, Y.H.; Hoppe, R.T.; Knox, S.J.; Shin, L.K.; et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: A phase I/II study. J. Clin. Oncol. 2010, 28, 4324–4332. [Google Scholar] [CrossRef]
- Wild, A.T.; Herman, J.M.; Dholakia, A.S.; Moningi, S.; Lu, Y.; Rosati, L.M.; Hacker-Prietz, A.; Assadi, R.K.; Saeed, A.M.; Pawlik, T.M.; et al. Lymphocyte-sparing effect of stereotactic body radiation therapy in patients with unresectable pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Joseph, N.; McWilliam, A.; Kennedy, J.; Haslett, K.; Mahil, J.; Gavarraju, A.; Mistry, H.; Van Herk, M.; Faivre-Finn, C.; Choudhury, A. Post-treatment lymphocytopaenia, integral body dose and overall survival in lung cancer patients treated with radical radiotherapy. Radiother. Oncol. 2019, 135, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Pike, L.R.G.; Bang, A.; Mahal, B.A.; Taylor, A.; Krishnan, M.; Spektor, A.; Cagney, D.N.; Aizer, A.A.; Alexander, B.M.; Rahma, O.; et al. The Impact of Radiation Therapy on Lymphocyte Count and Survival in Metastatic Cancer Patients Receiving PD-1 Immune Checkpoint Inhibitors. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Rucińska, M. Combined radiotherapy and chemotherapy. Nowotw. J. Oncol. 2022, 72, 319–325. [Google Scholar] [CrossRef]
- Remon, J.; Soria, J.-C.; Peters, S. Early and locally advanced non-small-cell lung cancer: An update of the ESMO Clinical Practice Guidelines focusing on diagnosis, staging, systemic and local therapy. Ann. Oncol. 2021, 32, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Nestle, U.; De Ruysscher, D.; Ricardi, U.; Geets, X.; Belderbos, J.; Pöttgen, C.; Dziadiuszko, R.; Peeters, S.; Lievens, Y.; Hurkmans, C.; et al. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer. Radiother. Oncol. 2018, 127, 1–5. [Google Scholar] [CrossRef]
- Ma, L.; Men, Y.; Feng, L.; Kang, J.; Sun, X.; Yuan, M.; Jiang, W.; Hui, Z. A current review of dose-escalated radiotherapy in locally advanced non-small cell lung cancer. Radiol. Oncol. 2019, 53, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Curran, W.J., Jr.; Paulus, R.; Langer, C.J.; Komaki, R.; Lee, J.S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S.A.; Gore, E.; et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: Randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 2011, 5, 1452–1460. [Google Scholar] [CrossRef] [Green Version]
- Shea, M.; Costa, D.B.; Rangachari, D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: Latest evidence and treatment approaches. Ther. Adv. Respir. Dis. 2016, 10, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Gazdar, A.F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: Role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009, 28 (Suppl. S1), S24–S31. [Google Scholar] [CrossRef] [Green Version]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Pan, S.L.; Wang, J.C.; Kuo, S.H.; Cheng, J.C.; Teng, C.M. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer. Strahlenther. Onkol. 2014, 190, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.G.; Heijn, M.; di Tomaso, E.; Griffon-Etienne, G.; Ancukiewicz, M.; Koike, C.; Park, K.R.; Ferrara, N.; Jain, R.K.; Suit, H.D.; et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 2000, 60, 5565–5570. [Google Scholar] [PubMed]
- Geng, L.; Donnelly, E.; McMahon, G.; Lin, P.C.; Sierra-Rivera, E.; Oshinka, H.; Hallahan, D.E. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res. 2001, 15, 2413–2419. [Google Scholar]
- Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; DeVore, R.F., 3rd; Gaudreault, J.; Damico, L.A.; et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 2004, 1, 2184–2191. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.K.; Postow, M.A.; Salama, J.K. Irradiation and immunotherapy: From concept to the clinic. Cancer 2016, 122, 1659–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef] [Green Version]
- Dagoglu, N.; Karaman, S.; Caglar, H.B.; Oral, E.N. Abscopal Effect of Radiotherapy in the Immunotherapy Era: Systematic Review of Reported Cases. Cureus 2019, 11, e4103. [Google Scholar] [CrossRef] [Green Version]
- Craig, D.J.; Nanavaty, N.S.; Devanaboyina, M.; Stanbery, L.; Hamouda, D.; Edelman, G.; Dworkin, L.; Nemunaitis, J.J. The abscopal effect of radiation therapy. Future Oncol. 2021, 17, 1683–1694. [Google Scholar] [CrossRef]
- Geering, B.; Fussenegger, M. Synthetic immunology: Modulating the human immune system. Trends Biotechnol. 2015, 33, 65–79. [Google Scholar] [CrossRef]
- Wilczyński, J.R.; Nowak, M.; Wilczyński, M. Terapia celowana przeciwciałami monoklonalnymi—Czy obserwujemy postęp w leczeniu nowotworów żeńskich narządów płciowych? Postep. Hig. Med. Dosw. 2018, 72, 192–204. [Google Scholar] [CrossRef]
- Shuptrine, C.W.; Surana, R.; Weiner, L.M. Monoclonal antibodies for the treatment of cancer. Semin. Cancer Biol. 2012, 22, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Sohn, J.H.; Lee, C.G.; Shim, H.S.; Lee, I.J.; Yang, W.I.; Kwon, J.E.; Kim, S.K.; Park, M.S.; Lee, J.H.; et al. A phase I study of nimotuzumab in combination with radiotherapy in stages IIB-IV non-small cell lung cancer unsuitable for radical therapy: Korean results. Lung Cancer 2011, 71, 55–59. [Google Scholar] [CrossRef]
- Bebb, G.; Smith, C.; Rorke, S.; Boland, W.; Nicacio, L.; Sukhoo, R.; Brade, A. Phase I clinical trial of the anti-EGFR monoclonal antibody nimotuzumab with concurrent external thoracic radiotherapy in Canadian patients diagnosed with stage IIb, III or IV non-small cell lung cancer unsuitable for radical therapy. Cancer Chemother. Pharmacol. 2011, 67, 837–845. [Google Scholar] [CrossRef]
- Chang, C.C.; Chi, K.H.; Kao, S.J.; Hsu, P.S.; Tsang, Y.W.; Chang, H.J.; Yeh, Y.W.; Hsieh, Y.S.; Jiang, J.S. Upfront gefitinib/erlotinib treatment followed by concomitant radiotherapy for advanced lung cancer: A mono-institutional experience. Lung Cancer 2011, 73, 189–194. [Google Scholar] [CrossRef]
- Swaminath, A.; Wright, J.R.; Tsakiridis, T.K.; Ung, Y.C.; Pond, G.R.; Sur, R.; Corbett, T.B.; Okawara, G.; Levine, M.N. A Phase II Trial of Erlotinib and Concurrent Palliative Thoracic Radiation for Patients With Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2016, 17, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Yuan, Z.; Chang, J.Y.; Wang, J.; Pang, Q.; Zhao, L.; Wang, P. Radiation pneumonitis in patients with non-small-cell lung cancer treated with erlotinib concurrent with thoracic radiotherapy. J. Thorac. Oncol. 2014, 9, 882–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atmaca, A.; Al-Batran, S.E.; Allgäuer, M.; Jäger, E. Afatinib with concurrent radiotherapy in a patient with metastatic non-small cell lung cancer. Oncol. Res. Treat. 2014, 37, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.C.; Misso, G.; Pastina, P.; Costantini, S.; Vanni, F.; Gandolfo, C.; Botta, C.; Capone, F.; Lombardi, A.; Pirtoli, L.; et al. Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov. 2016, 2, 16025. [Google Scholar] [CrossRef] [Green Version]
- Pastina, P.; Nardone, V.; Botta, C.; Croci, S.; Tini, P.; Battaglia, G.; Ricci, V.; Cusi, M.G.; Gandolfo, C.; Misso, G.; et al. Radiotherapy prolongs the survival of advanced non-small-cell lung cancer patients undergone to an immune-modulating treatment with dose-fractioned cisplatin and metronomic etoposide and bevacizumab (mPEBev). Oncotarget 2017, 8, 75904–75913. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.; Liong, J.; Miah, A.; Ahmad, S.; Leslie, M.; Harper, P.; Prendiville, J.; Shamash, J.; Subramaniam, R.; Gaya, A.; et al. A Brief Report on the Safety Study of ZD6474Induction Chemotherapy Followed by Synchronous Radiotherapy and Cetuximab in Stage III Non-small Cell Lung Cancer (NSCLC): SCRATCH Study. Thorac. Oncol. 2008, 3, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Jatoi, A.; Schild, S.E.; Foster, N.; Henning, G.T.; Dornfeld, K.J.; Flynn, P.J.; Fitch, T.R.; Dakhil, S.R.; Rowland, K.M.; Stella, P.J.; et al. A phase II study of cetuximab and radiation in elderly and/or poor performance status patients with locally advanced non-small-cell lung cancer (N0422). Ann. Oncol. 2010, 21, 2040–2044. [Google Scholar] [CrossRef]
- Jensen, A.D.; Münter, M.W.; Bischoff, H.G.; Haselmann, R.; Haberkorn, U.; Huber, P.E.; Thomas, M.; Debus, J.; Herfarth, K.K. Combined treatment of nonsmall cell lung cancer NSCLC stage III with intensity-modulated RT radiotherapy and cetuximab: The NEAR trial. Cancer 2011, 117, 2986–2994. [Google Scholar] [CrossRef]
- Chen, Y.; Moon, J.; Pandya, K.J.; Lau, D.H.M.; Kelly, K.; Hirsch, F.R.; Gaspar, L.E.; Redman, M.; Gandara, D.R. A Pilot Study (SWOG S0429) of Weekly Cetuximab and Chest Radiotherapy for Poor-Risk Stage III Non-Small Cell Lung Cancer. Front. Oncol 2013, 3, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallqvist, A.; Wagenius, G.; Rylander, H.; Brodin, O.; Holmberg, E.; Loden, B. Concurrent cetuximab and radiotherapy after docetaxel-cisplatin induction chemotherapy in stage III NSCLC: Satellite-a phase II study from the Swedish Lung Cancer Study Group. Lung Cancer 2011, 71, 166–172. [Google Scholar] [CrossRef]
- Martínez, E.; Martínez, M.; Rico, M.; Hernández, B.; Casas, F.; Viñolas, N.; Pérez-Casas, A.; Dómine, M.; Mínguez, J. Feasibility, tolerability, and efficacy of the concurrent addition of erlotinib to thoracic radiotherapy in locally advanced unresectable non-small-cell lung cancer: A Phase II trial. Onco Targets Ther. 2016, 1, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Lilenbaum, R.; Samuels, M.; Wang, X.; Kong, F.M.; Jänne, P.A.; Masters, G.; Katragadda, S.; Hodgson, L.; Bogart, J.; Bradley, J.; et al. A phase II study of induction chemotherapy followed by thoracic radiotherapy and erlotinib in poor-risk stage III non-small-cell lung cancer: Results of CALGB 30605 (Alliance)/RTOG 0972 (NRG). J. Thorac. Oncol. 2015, 10, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xia, T.Y.; Wang, Y.J.; Li, H.Q.; Li, P.; Wang, J.D.; Chang, D.S.; Liu, L.Y.; Di, Y.P.; Wang, X.; et al. Prospective study of epidermal growth factor receptor tyrosine kinase inhibitors concurrent with individualized radiotherapy for patients with locally advanced or metastatic non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e59–e65. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Xia, L.; Niu, K.; Chen, X.; Lu, D.; Kong, R.; Chen, Z.; Sun, J. Continued EGFR-TKI with concurrent radiotherapy to improve time to progression (TTP) in patients with locally progressive non-small cell lung cancer (NSCLC) after front-line EGFR-TKI treatment. Clin. Transl. Oncol. 2018, 20, 366–373. [Google Scholar] [CrossRef]
- Lind, J.S.; Senan, S.; Smit, E.F. Pulmonary toxicity after bevacizumab and concurrent thoracic radiotherapy observed in a phase I study for inoperable stage III non-small-cell lung cancer. J. Clin. Oncol. 2012, 10, e104–e108. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.; Le Péchoux, C.; Faivre, L.; Rivera, S.; Tao, Y.; Pignon, J.P.; Angokai, M.; Bahleda, R.; Deandreis, D.; Angevin, E.; et al. Phase I trial of everolimus in combination with thoracic radiotherapy in non-small-cell lung cancer. Ann. Oncol. 2015, 26, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Niho, S.; Ohe, Y.; Ishikura, S.; Atagi, S.; Yokoyama, A.; Ichinose, Y.; Okamoto, H.; Takeda, K.; Shibata, T.; Tamura, T.; et al. Induction chemotherapy followed by gefitinib and concurrent thoracic radiotherapy for unresectable locally advanced adenocarcinoma of the lung: A multicenter feasibility study (JCOG 0402). Ann. Oncol. 2012, 23, 2253–2258. [Google Scholar] [CrossRef]
- Rothschild, S.; Bucher, S.E.; Bernier, J.; Aebersold, D.M.; Zouhair, A.; Ries, G.; Lombrieser, N.; Lippuner, T.; Lütolf, U.M.; Glanzmann, C.; et al. Gefitinib in combination with irradiation with or without cisplatin in patients with inoperable stage III non-small cell lung cancer: A phase I trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 126–132. [Google Scholar] [CrossRef]
- Blumenschein, G.R., Jr.; Paulus, R.; Curran, W.J.; Robert, F.; Fossella, F.; Werner-Wasik, M.; Herbst, R.S.; Doescher, P.O.; Choy, H.; Komaki, R. Phase II study of cetuximab in combination with chemoradiation in patients with stage IIIA/B non-small-cell lung cancer: RTOG 0324. J. Clin. Oncol. 2011, 29, 2312–2318. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015, 16, 187–199. [Google Scholar]
- Edelman, M.J.; Hu, C.; Le, Q.T.; Donington, J.S.; D’Souza, W.D.; Dicker, A.P.; Loo, N.W.; Gore, E.M.; Videtic, G.M.M.; Evans, N.R.; et al. Randomized Phase II Study of Preoperative Chemoradiotherapy +/− Panitumumab Followed by Consolidation Chemotherapy in Potentially Operable Locally Advanced (Stage IIIa, N2+) Nonsmall Cell Lung Cancer: NRG Oncology RTOG 0839. J. Thorac. Oncol. 2017, 12, 1413–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaorsky, N.G.; Sun, Y.; Wang, Z.; Palmer, J.; Fortina, P.M.; Solomides, C.; Werner-Wasik, M.; Dicker, A.P.; Axelrod, R.; Campling, B.; et al. Identification of a KRAS mutation in a patient with non-small cell lung cancer treated with chemoradiotherapy and panitumumab. Cancer Biol. Ther. 2013, 1, 883–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Center, B.; Petty, W.J.; Ayala, D.; Hinson, W.H.; Lovato, J.; Capellari, J.; Oaks, T.; Miller, A.A.; Blackstock, A.W. A phase I study of gefitinib with concurrent dose-escalated weekly docetaxel and conformal three-dimensional thoracic radiation followed by consolidative docetaxel and maintenance gefitinib for patients with stage III non-small cell lung cancer. J. Thorac. Oncol. 2010, 5, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinchcombe, T.E.; Morris, D.E.; Lee, C.B.; Moore, D.T.; Hayes, D.N.; Halle, J.S.; Rivera, M.P.; Rosenman, J.G.; Socinski, M.A. Induction chemotherapy with carboplatin, irinotecan, and paclitaxel followed by high dose three-dimension conformal thoracic radiotherapy (74 Gy) with concurrent carboplatin, paclitaxel, and gefitinib in unresectable stage IIIA and stage IIIB non-small cell lung cancer. J. Thorac. Oncol. 2008, 3, 250–257. [Google Scholar] [PubMed] [Green Version]
- Ready, N.; Jänne, P.A.; Bogart, J.; DiPetrillo, T.; Garst, J.; Graziano, S.; Gu, L.; Wang, X.; Green, M.R.; Vokes, E.E. Chemoradiotherapy and gefitinib in stage III non-small cell lung cancer with epidermal growth factor receptor and KRAS mutation analysis: Cancer and leukemia group B (CALEB) 30106, a CALGB-stratified phase II trial. J. Thorac. Oncol. 2010, 5, 1382–1390. [Google Scholar] [CrossRef] [Green Version]
- Choong, N.W.; Mauer, A.M.; Haraf, D.J.; Lester, E.; Hoffman, P.C.; Kozloff, M.; Lin, S.; Dandey, J.E.; Szeto, L.; GrushKo, T.; et al. Phase I trial of erlotinib-based multimodalit therapy for inoperable stage III non-small cell lung cancer. J. Thorac. Oncol. 2008, 3, 1003–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komaki, R.; Allen, P.K.; Wei, X.; Blumenschein, G.R.; Tang, X.; Lee, J.J.; Welsh, J.W.; Wistuba, I.I.; Liu, D.D.; Hong, W.K. Adding Erlotinib to Chemoradiation Improves Overall Survival but Not Progression-Free Survival in Stage III Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 1, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Ramella, S.; Alberti, A.M.; Cammilluzzi, E.; Fiore, M.; Ippolito, E.; Greco, C.; De Quarto, A.L.; Ramponi, S.; Apolone, G.; Trodella, L.; et al. Erlotinib and concurrent chemoradiation in pretreated NSCLC patients: Radiobiological basis and clinical results. Biomed. Res. Int. 2013, 2013, 403869. [Google Scholar] [CrossRef]
- Spigel, D.R.; Hainsworth, J.D.; Yardley, D.A.; Raefsky, E.; Patton, J.; Peacock, N.; Farley, C.; Burris, H.A., 3rd; Greco, F.A. Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. Clin. Oncol. 2010, 1, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, A.J.; Moon, J.; Thomas, C.R., Jr.; Kelly, K.; Mack, P.C.; Gaspar, L.E.; Raben, D.; Fitzgerald, T.J.; Pandya, K.J.; Gandara, D.R. A Pilot Trial of Cisplatin/Etoposide/Radiotherapy Followed by Consolidation Docetaxel and the Combination of Bevacizumab (NSC-704865) in Patients With Inoperable Locally Advanced Stage III Non-Small-Cell Lun Cancer: SWOG S0533. Clin. Lung Cancer 2015, 16, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. PACIFIC Investigators. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Sierko, E. Radiotherapy and immunotherapy. Nowotw. J. Oncol. 2023, 73, 22–31. [Google Scholar]
- Theelen, W.S.M.E.; Peulen, H.M.U.; Lalezari, F.; van der Noort, V.; de Vries, J.F.; Aerts, J.G.J.V.; Dumoulin, D.W.; Bahce, I.; Niemeijer, A.N.; de Langen, A.J.; et al. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 1, 1276–1282. [Google Scholar] [CrossRef]
- Welsh, J.; Menon, H.; Chen, D.; Verma, V.; Tang, C.; Altan, M.; Hess, K.; de Groot, P.; Nguyen, Q.N.; Varghese, R.; et al. Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: A randomized phase I/II trial. J. Immunother. Cancer 2020, 8, e001001. [Google Scholar] [CrossRef]
- Maity, A.; Mick, R.; Huang, A.C.; George, S.M.; Farwell, M.D.; Lukens, J.N.; Berman, A.T.; Mitchell, T.C.; Bauml, J.; Schuchter, L.M.; et al. A Phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. Br. J. Cancer 2018, 119, 1200–1207. [Google Scholar] [CrossRef] [Green Version]
Group of Drugs | Target | Specific Indications/Predictive Factors | Drugs Examples |
---|---|---|---|
small-molecule tyrosine kinase inhibitors | EGFR (human epithelial growth factor receptor) kinases [6] | patients with activating mutations in the EGFR gene | 1st generation: erlotinib, gefitinib, 2nd generation: afatinib [7], dacomitinib [8], 3rd generation: osimertinib [9], rociletinib [10], lazertinib [11] |
ALK (anaplastic lymphoma kinase) [12] | patients with the ALK or ROS 1 gene rearrangement | 1st generation: crizotinib [13], 2nd generation: ceritinib [14], alectinib [15], brigatinib [16], entrectinib [17], 3rd generation: lorlatinib [18] | |
BRAF kinases (V-raf murine sarcoma viral oncogene homolog B1) [19] | in patients with the V600E mutation | vemurafenib [20], dabrafenib + trametinib [21] | |
VEGFR kinases (vascular endothelial growth factor receptor kinases) [22] | vandetanib [23], sunitinib [24], sorafenib | ||
multiple kinases (mainly VEGFR) | nintedanib [25] | ||
VEGF-Trap | VEGF-A and PlGF (placental growth factor) | aflibercept [26] | |
monoclonal antibodies | EGFR | patients with overexpression of the epidermal growth factor receptor on cancer cells | chimeric antibodies: cetuximab, humanized antibodies: nimotuzumab, matuzumab, human antibodies: panitumumab, necitumumab, zalutumumab [27] |
VEGF-A | bevacizumab [28] | ||
VEGFR | ramucirumab [29] | ||
immunotherapy [30] | PD-1 (type 1 programmed death receptor) | nivolumab [31] and pembrolizumab [32] | |
PD-L1 (PD-1 ligand) | atezolizumab [33], durvalumab [34,35], avelumab [36] | ||
CTLA-4 (cytotoxic T lymphocyte antigen 4) | tremelimumab [36], ipilimumab [31] |
Trial ID, Ref. | Recruitment Criteria, Number of Patients Included in the Study; | Treatment’s Scheme | Resul | Conclusion |
---|---|---|---|---|
Hughes et al., SCRATCH, 2008 [82] | NSCLC at III stage, not amenable to resection, 12 pts | Induction ChTh → cetuximab + RTh (64 Gy) | grade 3–5 acute reactions in 2 out of 12 pts (grade 5 pneumonitis, grade 3 asthenia); grade 3 late reactions in 1 out of 12 pts (RILI) | scheme’s acceptable toxicity (according to the study’s authors) |
Jatoi et al., N0422, 2010 [83] | locally advanced NSCLC, patients > 65 years old, ECOG ≥ 2, 57 pts | cetuximab + RTh (60 Gy) | MS = 15.1 mth; PFS = 7.2 mth; 31/57 patients grade 3 reactions | rate of patients alive for more than 11 months higher than expected (70% vs. predicted 50%)—promising scheme in a group of patients with contraindications to ChRTh |
Jensen et al., NEAR, 2011 [84] | NSCLC at III stage, patients with significant comorbidities, 30 patients | cetuximab + RT (66 Gy) → cetuximab over 13 weeks | RR (PR) = 63%; 1y OS = 66.7%; 2y OS = 34.9%; MS = 19.5 mth; PFS = 8.5 mth; LPFS = 20.5 mth; 36.7% patients have reactions of ≥ 3rd grade | high RR and long MS and low toxicity– promising results in a group of patients with contraindications to ChRTh |
Chen et al., SWOG S0429, 2013 [85] | locally advanced NSCLC, ECOG ≥ 2 respiratory failure or other significant comorbidities, 24 pts | cetuximab + RTh (64,8 Gy) → cetuximab over 2 years or until progression | RR = 47%; MS = 14 mth; PFS = 8 mth; 22.7% patients have non-hematological adverse events of grade ≥ 3 | scheme tolerance quite good; 11 patients has been tested for level of expression of EGFR, there has been no correlation between level of EGFR expression and results of the treatment (!) |
Hallqvist et al., SLCSG, 2011 [86] | NSCLC at III stage, 75 patients | Induction ChTh→ cetuximab + RTh (68 Gy) | MS = 17 mth; 1yOS = 66%; 2yOS = 37%; 3yOS = 29%; grade 3 esophagitis 1.3%; grade 3–5 pneumonitis 5.6% | low toxicity comparing to concurrent ChTh—promising results |
Martinez et al., 2016 [87] | locally advanced, not amenable to resection NSCLC; contraindications to ChTh; not tested molecularly for activating mutation in the EGFR gene, 30 pts + 60 pts | erlotinib + RTh (60 patients) vs. Rth alone (30 patients) | No difference in OS, PFS, ORR; CR increase (21.4% vs. 41.5%); CSS increase, but non statistically significant (17.7 mth–RTh vs. 21.4 mth–RTh+ erlotinib); adverse events rate increase (mainly skin toxicity) | noticeably higher toxicity, without treatment results improvement; call for the EGFR mutation identification in order to denote those patients, for whom TKIs combined with Rth treatment could be beneficial; |
Lilenbaum et al., CALGB 30605 (Alliance)/RTOG0972 (NRG), 2015 [88] | NSCLC at III stage, ECOG ≥ 2 or substantial loss of weight, 75 patients | Induction ChTh→ erlotinib + RTh | RR = 67% PFS = 11 mth MS = 17 mth 1yOS = 57% treatment well tolerated; | rate of patients alive for more than 12 months has been quite satisfactory, but predicted level of 65% has not been achieved, so there is no evidence for beneficial role of erlotinib concurrent with Rth provided; |
Wang et al., 2011 [89] | NSCLC at III-IV stage, 26 pts | gefitinib/erlotinib + chest Rth (median dose 70 Gy, dose range 42–82 Gy) | LC = 96% PFS = 10.2 mth MS = 21.8 mth 1yOS = 57% 2yOS = 45% 3yOS = 30% grade 3 adverse events—20% (hematological, esophagitis, pneumonitis) | promising scheme because of acceptable toxicity profile |
Wang et al., 2018 [90] | Locally advanced NSCLC with confirmed activating mutation in EGFR, locally progressing during EGFR—TKIs therapy, 44 pts | EGFR-TKIs continuation+ RTh (chest) | TTP = 21.7 mth vs. 16 mth PFS = 21.3 mth vs. 16 mth RR = 54% LCR = 84% MS = 26.6 mth no significant adverse events; | improvement of both TTP and PFS based on measurable lesions; probably RTh used concurrently with TKIs may prevent TKIs resistance |
Lind et al., 2012 [91] | inoperable NSCLC at III stage, 6 pts (early recruitment closure because of safety regards) | Induction ChTh→ bevacizumab + RTh (66 Gy) | ILD (RILI, lung fibrosis) four consequently recruited patients—67% ! two of six patient-grade 3 pneumonitis, two of six patient-grade 3 pneumonitis, | very little study, remarkably high prevalence of pulmonary adverse events (67%) in cases of Rth without concurrent ChTh, comparing e.g., pneumonitis rate after concurrent chemoradiotherapy (16–25%) is a premise to avoidance of bevacizumab concurrent with chest Rth due to unacceptable toxicity |
Deutsch E. et al., 2015 [92] | NSCLC at III stage, 56% adenocarcinoma histopathology, 26 pts | RTh + everolimus (week before RTh, during RTh and 3.5 weeks after RTh) →ChTh | PR = 41%; SD = 32%; 2y-OS = 31%; 2y-PFS = 12%; 5/26—ILD (1 fatal); escalation of a dose possible in spite of some complications—without relationship between adverse effects and dose prescribed: ILD, esophagitis; | everolimus dosage for further studies established at 50 mg once a week.; remarkable pulmonary toxicity |
Niho et al., JCOG 0402, 2012 [93] | locally advanced, not amenable to resection NSCLC, 38 pts | Induction ChTh → gefitinib + RTh (60 Gy) → gefitinib maintenance; | RR = 73%; MS = 28.5 mth; 2yOS = 65.4%; 60.5% compliance to the trial scheme, without grade ≥2 ILD; | rate of patients treated accordingly to the planned scheme of the study has been lower than expected |
Rothschild et al., 2011 [94] | NSCLC at III stage, not amenable to surgery, 5 pts | gefitinib + RTh (63 Gy) | grade 1–2 adverse events (skin, subcutaneous tissue) no pulmonary reactions; | well tolerated treatment |
Zhuang et al., 2014 [78] | NSCLC at III-IV stage, 24 pts | erlotinib + chest RTh(45–66 Gy) | grade ≥ 2 ILD—37.5%; grade 5–12.5% | concurrent treatment with erlotinib and chest RTh may be associated with higher rate of ILD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król, K.; Mazur, A.; Stachyra-Strawa, P.; Grzybowska-Szatkowska, L. Non-Small Cell Lung Cancer Treatment with Molecularly Targeted Therapy and Concurrent Radiotherapy—A Review. Int. J. Mol. Sci. 2023, 24, 5858. https://doi.org/10.3390/ijms24065858
Król K, Mazur A, Stachyra-Strawa P, Grzybowska-Szatkowska L. Non-Small Cell Lung Cancer Treatment with Molecularly Targeted Therapy and Concurrent Radiotherapy—A Review. International Journal of Molecular Sciences. 2023; 24(6):5858. https://doi.org/10.3390/ijms24065858
Chicago/Turabian StyleKról, Katarzyna, Anna Mazur, Paulina Stachyra-Strawa, and Ludmiła Grzybowska-Szatkowska. 2023. "Non-Small Cell Lung Cancer Treatment with Molecularly Targeted Therapy and Concurrent Radiotherapy—A Review" International Journal of Molecular Sciences 24, no. 6: 5858. https://doi.org/10.3390/ijms24065858
APA StyleKról, K., Mazur, A., Stachyra-Strawa, P., & Grzybowska-Szatkowska, L. (2023). Non-Small Cell Lung Cancer Treatment with Molecularly Targeted Therapy and Concurrent Radiotherapy—A Review. International Journal of Molecular Sciences, 24(6), 5858. https://doi.org/10.3390/ijms24065858