Endogenous Modulation of Extracellular Matrix Collagen during Scar Formation after Myocardial Infarction
Abstract
:1. Introduction
2. Results
2.1. Resident Fibroblasts Are the Main Source of Collagen after Myocardial Infarction
2.2. Immune Cells Influence Collagen Subtype Expression and Biomechanics after MI
2.3. Differential Role of Immune Cells in Proliferation/Apoptosis of Myofibroblasts
2.4. Differential Role of Immune Cells in the Biomechanical Properties of Myofibroblasts by Inducing Differential Extracellular Matrix Proteins and Collagen Subtype Synthesis
2.5. Signaling Pathways Involved in Collagen Expression
3. Discussion
4. Material and Methods
4.1. Animal Model of Myocardial Infarction (MI) Induction
4.1.1. Echocardiography
4.1.2. Bone Marrow Reconstruction
4.1.3. Histology and Immunohistochemistry
4.1.4. Myofibroblast Isolation and Differentiation
4.1.5. mRNA Isolation and RT-PCR
4.1.6. Isolation of Fibroblast Precursors from Blood and Myofibroblast Differentiation
4.2. In Vitro Evaluation of the Influence of Monocytes/Neutrophils on the Apoptotic/Proliferation Process of Mouse Cardiac Fibroblasts Subjected to Hypoxic Conditions
4.2.1. Atomic Force Microscopy (AFM) Topography and Biomechanics Assay
4.2.2. Reverse Incubation of Myofibroblasts
4.2.3. Protein–Protein Interaction Analysis
4.2.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rusu, M.; Hilse, K.; Schuh, A.; Martin, L.; Slabu, I.; Stoppe, C.; Liehn, E.A. Biomechanical assessment of remote and postinfarc-tion scar remodeling following myocardial infarction. Sci. Rep. 2019, 9, 16744. [Google Scholar] [PubMed] [Green Version]
- Martinez-Garcia, G.; Rodriguez-Ramos, M.; Santos-Medina, M.; Carrero-Vazquez, A.M.; Chipi-Rodriguez, Y. New model pre-dicts in-hospital complications in myocardial infarction. Discoveries 2022, 10, e142. [Google Scholar] [CrossRef] [PubMed]
- Dobaczewski, M.; Gonzalez-Quesada, C.; Frangogiannis, N.G. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol. 2010, 48, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Liehn, E.A.; Postea, O.; Curaj, A.; Marx, N. Repair after myocardial infarction, between fantasy and reality: The role of chemo-kines. J. Am. Coll. Cardiol. 2011, 58, 2357–2362. [Google Scholar] [PubMed] [Green Version]
- Ma, Y.; Brás, L.E.D.C.; Toba, H.; Iyer, R.P.; Hall, M.E.; Winniford, M.D.; Lange, R.A.; Tyagi, S.C.; Lindsey, M.L. Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflug. Arch. Eur. J. Physiol. 2014, 466, 1113–1127. [Google Scholar] [CrossRef] [Green Version]
- Curaj, A.; Schumacher, D.; Rusu, M.; Staudt, M.; Li, X.; Simsekyilmaz, S.; Jankowski, V.; Jankowski, J.; Dumitraşcu, A.R.; Hausenloy, D.J.; et al. Neutrophils Modulate Fibroblast Function and Promote Healing and Scar Formation after Murine Myocardial Infarction. Int. J. Mol. Sci. 2020, 21, 3685. [Google Scholar] [CrossRef]
- Cleutjens, J.P.; Verluyten, M.J.; Smiths, J.F.; Daemen, M.J. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 1995, 147, 325–338. [Google Scholar]
- Adair-Kirk, T.L.; Senior, R.M. Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell Biol. 2008, 40, 1101–1110. [Google Scholar] [CrossRef] [Green Version]
- Corbett, S.A.; Schwarzbauer, J.E. Fibronectin–Fibrin Cross-Linking: A Regulator of Cell Behavior. Trends Cardiovasc. Med. 1998, 8, 357–362. [Google Scholar] [CrossRef]
- Senior, R.M.; Griffin, G.L.; Mecham, R.P. Chemotactic activity of elastin-derived peptides. J. Clin. Investig. 1980, 66, 859–862. [Google Scholar] [CrossRef]
- Fomovsky, G.M.; Holmes, J.W. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol. Circ. Physiol. 2010, 298, H221–H228. [Google Scholar] [CrossRef] [PubMed]
- Fomovsky, G.M.; Rouillard, A.D.; Holmes, J.W. Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J. Mol. Cell. Cardiol. 2012, 52, 1083–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, D.F.; Lu, Y.; Starborg, T.; Kadler, K.E. Collagen Fibril Assembly and Function. Curr. Top. Dev. Biol. 2018, 130, 107–142. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.W.; Borg, T.K.; Covell, J.W. Structure and Mechanics of Healing Myocardial Infarcts. Annu. Rev. Biomed. Eng. 2005, 7, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Mackie, E.J.; Scott-Burden, T.; Hahn, A.W.; Kern, F.; Bernhardt, J.; Regenass, S.; Weller, A.; Bühler, F.R. Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin II. Am. J. Pathol. 1992, 141, 377–388. [Google Scholar] [PubMed]
- Schellings, M.W.M.; Vanhoutte, D.; Swinnen, M.; Cleutjens, J.P.; Debets, J.; Van Leeuwen, R.E.W.; D’Hooge, J.; Van de Werf, F.; Carmeliet, P.; Pinto, Y.M.; et al. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J. Exp. Med. 2008, 206, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, M.; Nakamura, K.; Kii, I.; Kashima, T.; Amizuka, N.; Li, M.; Saito, M.; Fukuda, K.; Nishiyama, T.; Kitajima, S.; et al. Periostin is essential for cardiac healing after acute myocardial infarction. J. Cell Biol. 2008, 180, i7. [Google Scholar] [CrossRef]
- Trueblood, N.A.; Xie, Z.; Communal, C.; Sam, F.; Ngoy, S.; Liaw, L.; Jenkins, A.W.; Wang, J.; Sawyer, D.B.; Bing, O.H.L.; et al. Exaggerated Left Ventricular Dilation and Reduced Collagen Deposition after Myocardial Infarction in Mice Lacking Osteopontin. Circ. Res. 2001, 88, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuh, A.; Butzbach, B.; Curaj, A.; Simsekyilmaz, S.; Bucur, O.; Kanzler, I.; Denecke, B.; Konschalla, S.; Kroh, A.; Sönmez, T.T.; et al. Novel insights into the mechanism of cell-based therapy after chronic myocardial infarction. Discoveries 2014, 2, e9. [Google Scholar] [CrossRef]
- Schuh, A.; Konschalla, S.; Kroh, A.; Schober, A.; Marx, N.; Sonmez, T.; Zenke, M.; Sasse, A.; Liehn, E. Effect of SDF-1 α on Endogenous Mobilized and Transplanted Stem Cells in Regeneration after Myocardial Infarction. Curr. Pharm. Des. 2014, 20, 1964–1970. [Google Scholar] [CrossRef]
- Schuh, A.; Kroh, A.; Konschalla, S.; Liehn, E.A.; Sobota, R.M.; Biessen, E.A.; Bot, I.; Sönmez, T.T.; Schober, A.; Marx, N.; et al. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model. J. Cell. Mol. Med. 2012, 16, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Skobel, E.; Schuh, A.; Schwarz, R.A.; Liehn, E.A.; Franke, A.; Breuer, S.; Günther, K.; Reffelmann, T.; Hanrath, P.; Weber, C. Transplantation of fetal cardiomyocytes into in-farcted rat hearts results in long-term functional improvement. Tissue Eng. 2004, 10, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Merx, M.W.; Zernecke, A.; Liehn, E.A.; Schuh, A.; Skobel, E.; Butzbach, B.; Hanrath, P.; Weber, C. Transplantation of human umbilical vein en-dothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Res. Cardiol. 2005, 100, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.; Liehn, E.A.; Sasse, A.; Hristov, M.; Sobota, R.; Kelm, M.; Merx, M.W.; Weber, C. Transplantation of endothelial progenitor cells im-proves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res. Cardiol. 2008, 103, 69–77. [Google Scholar] [CrossRef]
- Liehn, E.A.; Merx, M.W.; Postea, O.; Becher, S.; Djalali-Talab, Y.; Shagdarsuren, E.; Kelm, M.; Zernecke, A.; Weber, C. Ccr1 deficiency reduces inflamma-tory remodelling and preserves left ventricular function after myocardial infarction. J. Cell Mol. Med. 2008, 12, 496–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liehn, E.A.; Tuchscheerer, N.; Kanzler, I.; Drechsler, M.; Fraemohs, L.; Schuh, A.; Koenen, R.R.; Zander, S.; Soehnlein, O.; Hristov, M.; et al. Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J. Am. Coll Cardiol. 2011, 58, 2415–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuh, A.; Liehn, E.A.; Sasse, A.; Schneider, R.; Neuss, S.; Weber, C.; Kelm, M.; Merx, M.W. Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Res. Cardiol. 2009, 104, 403–411. [Google Scholar] [CrossRef]
- Frangogiannis, N.G.; Dewald, O.; Xia, Y.; Ren, G.; Haudek, S.; Leucker, T.; Kraemer, D.; Taffet, G.; Rollins, B.J.; Entman, M.L. Critical role of monocyte chemoattractant pro-tein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 2007, 115, 584–592. [Google Scholar] [CrossRef]
- Dewald, O.; Zymek, P.; Winkelmann, K.; Koerting, A.; Ren, G.; Abou-Khamis, T.; Michael, L.H.; Rollins, B.J.; Entman, M.L.; Frangogiannis, N.G. CCL2/Monocyte Chemoattractant Pro-tein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 2005, 96, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Bielajew, B.J.; Hu, J.C.; Athanasiou, K.A. Collagen: Quantification, biomechanics and role of minor subtypes in cartilage. Nat. Rev. Mater. 2020, 5, 730–747. [Google Scholar] [CrossRef]
- Dobaczewski, M.; Xia, Y.; Bujak, M.; Gonzalez-Quesada, C.; Frangogiannis, N.G. CCR5 Signaling Suppresses Inflammation and Reduces Adverse Remodeling of the Infarcted Heart, Mediating Recruitment of Regulatory T Cells. Am. J. Pathol. 2010, 176, 2177–2187. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J.L.; Libby, P.; Weissleder, R.; Pittet, M.J. The healing myocardium se-quentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007, 204, 3037–3047. [Google Scholar]
- Dokukin, M.E.; Sokolov, I. Quantitative Mapping of the Elastic Modulus of Soft Materials with HarmoniX and PeakForce QNM AFM Modes. Langmuir 2012, 28, 16060–16071. [Google Scholar] [CrossRef]
- Li, W.; Chi, N.; Rathnayake, R.A.C.; Wang, R. Distinctive roles of fibrillar collagen I and collagen III in mediating fibro-blast-matrix interaction: A nanoscopic study. Biochem. Biophys. Res. Commun. 2021, 560, 66–71. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar]
- Liu, M.; de Juan Abad, B.L.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev. 2021, 173, 504–519. [Google Scholar] [CrossRef]
- Weiskirchen, R.; Weiskirchen, S.; Tacke, F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol. Asp. Med. 2018, 65, 2–15. [Google Scholar] [CrossRef]
- Han, M.; Zhou, B. Role of Cardiac Fibroblasts in Cardiac Injury and Repair. Curr. Cardiol. Rep. 2022, 24, 295–304. [Google Scholar] [CrossRef]
- Burke, R.M.; Villar, K.N.B.; Small, E.M. Fibroblast contributions to ischemic cardiac remodeling. Cell. Signal. 2020, 77, 109824. [Google Scholar] [CrossRef]
- Gonzalez, A.; Lopez, B.; Ravassa, S.; San Jose, G.; Diez, J. The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 1421–1432. [Google Scholar]
- Schuster, R.; Rockel, J.S.; Kapoor, M.; Hinz, B. The inflammatory speech of fibroblasts. Immunol. Rev. 2021, 302, 126–146. [Google Scholar] [CrossRef]
- Ren, G.; Michael, L.H.; Entman, M.L.; Frangogiannis, N.G. Morphological characteristics of the microvasculature in healing myocardial infarcts. J. Histochem. Cytochem. 2002, 50, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, R.O.; Abual’Anaz, B.; Rattan, S.G.; Filomeno, K.L.; Dixon, I.M.C. Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis. Wound Repair Regen. 2021. [Google Scholar] [CrossRef]
- Lajiness, J.D.; Conway, S.J. Origin, development, and differentiation of cardiac fibroblasts. J. Mol. Cell. Cardiol. 2013, 70, 2–8. [Google Scholar] [CrossRef]
- Venugopal, H.; Hanna, A.; Humeres, C.; Frangogiannis, N.G. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022, 11, 1386. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Q.; Li, C.; Li, Y.; Wang, L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef]
- Kuppe, C.; Flores, R.O.R.; Li, Z.; Hayat, S.; Levinson, R.T.; Liao, X.; Hannani, M.T.; Tanevski, J.; Wünnemann, F.; Nagai, J.S.; et al. Spatial multi-omic map of human myocardial infarction. Nature 2022, 608, 766–777. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Nielsen, S.H.; Nielsen, S.H.; Leeming, D.J.; Nielsen, M.J.; Manon-Jensen, T.; Siebuhr, A.; Gudmann, N.S.; Rønnow, S.; Sand, J.M.; et al. The good and the bad collagens of fibrosis—Their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017, 121, 43–56. [Google Scholar]
- Van Der Rest, M.; Dublet, B.; Champliaud, M.F. Fibril-associated collagens. Biomaterials 1990, 11, 28–31. [Google Scholar]
- Knupp, C.; Squire, J.M. Molecular Packing in Network-Forming Collagens. Adv. Protein Chem. 2005, 70, 375–403. [Google Scholar] [CrossRef]
- Franzke, C.-W.; Tasanen, K.; Schumann, H.; Bruckner-Tuderman, L. Collagenous transmembrane proteins: Collagen XVII as a prototype. Matrix Biol. 2003, 22, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, U.; Bonz, A.; Frantz, S.; Hu, K.; Waller, C.; Roemer, K.; Wolf, J.; Gattenlöhner, S.; Bauersachs, J.; Ertl, G. A collagen α2(I) mutation impairs healing after experimental myocardial infarction. Am. J. Pathol. 2012, 180, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Luther, D.J.; Thodeti, C.K.; Shamhart, P.E.; Adapala, R.K.; Hodnichak, C.; Weihrauch, D.; Bonaldo, P.; Chilian, W.M.; Meszaros, J.G. Absence of type VI collagen par-adoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ. Res. 2012, 110, 851–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamhart, P.E.; Meszaros, J.G. Non-fibrillar collagens: Key mediators of post-infarction cardiac remodeling? J. Mol. Cell Cardiol. 2010, 48, 530–537. [Google Scholar] [CrossRef]
- Lincoln, J.; Florer, J.B.; Deutsch, G.H.; Wenstrup, R.J.; Yutzey, K.E. ColVa1 and ColXIa1 are required for myocardial morphogen-esis and heart valve development. Dev. Dyn. 2006, 235, 3295–3305. [Google Scholar] [CrossRef]
- Hägg, P.; Väisänen, T.; Tuomisto, A.; Rehn, M.; Tu, H.; Huhtala, P.; Eskelinen, S.; Pihlajaniemi, T. Type XIII collagen: A novel cell adhesion component present in a range of cell–matrix adhesions and in the intercalated discs between cardiac muscle cells. Matrix Biol. 2001, 19, 727–742. [Google Scholar] [CrossRef]
- Sund, M.; Ylönen, R.; Tuomisto, A.; Sormunen, R.; Tahkola, J.; Kvist, A.-P.; Kontusaari, S.; Autio-Harmainen, H.; Pihlajaniemi, T. Abnormal adherence junctions in the heart and reduced angiogenesis in transgenic mice overexpressing mutant type XIII collagen. EMBO J. 2001, 20, 5153–5164. [Google Scholar] [CrossRef] [Green Version]
- Tao, G.; Levay, A.K.; Peacock, J.D.; Huk, D.J.; Both, S.N.; Purcell, N.H.; Pinto, J.R.; Galantowicz, M.L.; Koch, M.; Lucchesi, P.A.; et al. Collagen XIV is important for growth and structural integrity of the myocardium. J. Mol. Cell. Cardiol. 2012, 53, 626–638. [Google Scholar] [CrossRef] [Green Version]
- Rasi, K.; Piuhola, J.; Czabanka, M.; Sormunen, R.; Ilves, M.; Leskinen, H.; Rysä, J.; Kerkelä, R.; Janmey, P.; Heljasvaara, R.; et al. Collagen XV Is Necessary for Modeling of the Extracellular Matrix and Its Deficiency Predisposes to Cardiomyopathy. Circ. Res. 2010, 107, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Isobe, K.; Kuba, K.; Maejima, Y.; Suzuki, J.-I.; Kubota, S.; Isobe, M. Inhibition of Endostatin/Collagen XVIII Deteriorates Left Ventricular Remodeling and Heart Failure in Rat Myocardial Infarction Model. Circ. J. 2010, 74, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-H.; Chu, M.-L. Tissue distribution and developmental expression of type XVI collagen in the mouse. Tissue Cell 1996, 28, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Kondo, J.; Kusachi, S.; Ninomiya, Y.; Yoshioka, H.; Oohashi, T.; Doi, M.; Murakami, T.; Moritani, H.; Kumashiro, H.; Tsuji, T. Expression of Type XVII Collagen α1 Chain mRNA in the Mouse Heart. Jpn. Hear. J. 1998, 39, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, J.; Bateman, J.F. A new FACIT of the collagen family: COL21A1. FEBS Lett. 2001, 505, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plumb, D.A.; Dhir, V.; Mironov, A.; Ferrara, L.; Poulsom, R.; Kadler, K.E.; Thornton, D.J.; Briggs, M.D.; Boot-Handford, R.P. Collagen XXVII Is Developmentally Regulated and Forms Thin Fibrillar Structures Distinct from Those of Classical Vertebrate Fibrillar Collagens. J. Biol. Chem. 2007, 282, 12791–12795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, G.H.; Niu, X.L.; Gao, D.F.; Wei, J.; Wang, N.P. Agonists at PPAR-gamma suppress angiotensin II-induced production of plasminogen activator inhibitor-1 and extracellular matrix in rat cardiac fibroblasts. Br. J. Pharmacol. 2008, 153, 1409–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teunissen, B.E.; Smeets, P.J.H.; Willemsen, P.H.M.; De Windt, L.J.; Van Der Vosse, G.J.; Van Bilsen, M. Activation of PPARδ inhibits cardiac fibroblast proliferation and the transdifferentiation into myofibroblasts. Cardiovasc. Res. 2007, 75, 519–529. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Interleukin-1 in cardiac injury, repair, and remodeling: Pathophysiologic and translational concepts. Discoveries 2015, 3, e41. [Google Scholar] [CrossRef] [Green Version]
- Cowling, R.T.; Gurantz, D.; Peng, J.; Dillmann, W.H.; Greenberg, B.H. Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-α or in-terleukin-1β. J. Biol. Chem. 2002, 277, 5719–5724. [Google Scholar] [CrossRef] [Green Version]
- Crabos, M.; Roth, M.; Hahn, A.W.; Erne, P. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J. Clin. Investig. 1994, 93, 2372–2378. [Google Scholar] [CrossRef] [Green Version]
- Curaj, A.; Simsekyilmaz, S.; Staudt, M.; Liehn, E. Minimal Invasive Surgical Procedure of Inducing Myocardial Infarction in Mice. J. Vis. Exp. 2015, e52197. [Google Scholar] [CrossRef] [Green Version]
- Liehn, E.A.; Lupan, A.-M.; Diaconu, R.; Ioana, M.; Streata, I.; Manole, C.; Burlacu, A. Heart function assessment during aging in apolipoprotein E knock-out mice. Discoveries 2021, 9, e136. [Google Scholar] [CrossRef] [PubMed]
- McCurley, A.T.; Callard, G.V. Characterization of housekeeping genes in zebrafish: Male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol. Biol. 2008, 9, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Wu, X.; Liu, J.; Song, L.; Song, Q.; Wang, L.; Yuan, D.; Wu, Z. β-Actin: Not a Suitable Internal Control of Hepatic Fibrosis Caused by Schistosoma japonicum. Front. Microbiol. 2019, 10, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veres-Szekely, A.; Pap, D.; Sziksz, E.; Jávorszky, E.; Rokonay, R.; Lippai, R.; Tory, K.; Fekete, A.; Tulassay, T.; Szabó, A.J.; et al. Selective measurement of α smooth mus-cle actin: Why β-actin can not be used as a housekeeping gene when tissue fibrosis occurs. BMC Mol. Biol. 2017, 18, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Fan, W.; Zhu, L.; Zhao, T.; Ma, L.; Wu, Y.; Ge, R.; Fan, M. Effects of hypoxia on mRNA expression of housekeeping genes in rat brain tissue and primary cultured neural cells. Front. Med. China 2008, 2, 239–243. [Google Scholar] [CrossRef]
- Zhong, H.; Simons, J.W. Direct comparison of GAPDH, β-actin, cyclophilin, and 28S rRNA as internal standards for quanti-fying RNA levels under hypoxia. Biochem. Biophys. Res. Commun. 1999, 259, 523–526. [Google Scholar]
- Huth, A.; Vennemann, B.; Fracasso, T.; Lutz-Bonengel, S.; Vennemann, M. Apparent versus true gene expression changes of three hypoxia-related genes in autopsy derived tissue and the importance of normalisation. Int. J. Leg. Med. 2012, 127, 335–344. [Google Scholar] [CrossRef]
- Li, Y.; Lang, P.; Linke, W.A. Titin stiffness modifies the force-generating region of muscle sarcomeres. Sci. Rep. 2016, 6, 24492. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.; et al. STRING v10: Protein-protein inter-action networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar]
Signaling Pathway | Hypoxia | Hypoxia + Neutrophils | Hypoxia + Mononuclear Cells |
---|---|---|---|
Collagen | ↓ 1,3,5,16,23 | ↑ 1,3,23 ↓ 5,16 | |
Remodeling | ↑ TGFß1, IL1α ↑ AngII ↑ MMP1 ↓ MMP3, MMP9 | ↑ TGFß1 ↑ IL1, IL1ß | ↑ AngII, NFkB |
Migration | ↑ IL1α | ↑ IL1a, IL1ß | - |
Proliferation | ↑ PPARγ, PPARδ ↑ AT1R, AngII | ↑ PPARγ | ↑ PPARδ |
Apoptosis | |||
Differentiation | ↑ TGFß1 | ↑ TGFß1 | - |
Inflammation | ↑ IL1α ↑ Syndecan4 | ↑ IL1, IL1ß ↑ Syndecan4 | ↓ Cadherin 11 |
Angiogenesis | ↑ VEGFR1 ↑ CXCL12 ↓ Endothelin1 | ↑ VEGFR1 | - |
Collagen Type | Forward Primer | Reverse Primer |
---|---|---|
Collagen I | ACTACTGGAGAAGTTGGCAAGC | GTACCACGTTCTCCTCTTGGAC |
Collagen II | GGGCAGACTGCAAAATAAAATC | GCGTCTGACTCACACCAGATAG |
Collagen III | TCTGAGCTGCTTCTTCCTCTCT | GAAGAAACCAGGTTCCACTTTG |
Collagen IV | CCTTCCTGCAGTCTTCCTAAAA | CAGTGAGCTCAGCTATCATTGG |
Collagen V | CACTTACATCTGCCAGAACTCG | CTGGTTGAAGGACAACTCTTCC |
Collagen VI | AGTGGCTAGTCCTTCCACTCTG | TGGATTGATTCTGACAGGACAC |
Collagen VII | ACCTTGGGACCTGAGTCTAACA | AGGACAGTCAGCCATACTTGGT |
Collagen VIII | ATGGATAGATGCCTGGAGTGAT | ATCTCCACAGATGACTGCTTCA |
Collagen IX | CTTGTCCATGGAAGGAAGGTAG | TCAAACTCCTGGGAAGAGGATA |
Collagen X | GGTTCATGGGATGTTTTATGCT | GGCGTATGGGATGAAGTATTGT |
Collagen XI | CTGGTTTACCTGGTCTCAAAGG | GGAGGACCAATCAATCCAATTA |
Collagen XII | TTCACAGTGGAGGATTTTGATG | TGCCAACTCTTGCTCAATTCTA |
Collagen XIII | CTGCAGAAGAGAGAAGGGAAAG | ATCGGAGTACGCCAAAGTAAGA |
Collagen XIV | AATTTGGTGGCTACAAACTGCT | CTTTTGTTGCAGTGTTCTGGAG |
Collagen XV | GCTTTTTAACAATTGGGACTCG | ACCGTCAAAGGAGTAGATTGGA |
Collagen XVI | TGGGAGACATGGTGAATTATGA | AGCCATCCTCTCATCAAACAGT |
Collagen XVII | GACACCACACTAGACCCAGACA | CTTCCTCAGCATCAGGAGTTCT |
Collagen XVIII | AAACTACTGGGGCTACAGGTCA | ACAGGACGATGTAGCTGTTGTG |
Collagen XIX | CAAGGGAGAAATTGGTGAAAAG | TCAAACCATCTTGTCCATTGAG |
Collagen XX | ACCGTCAGAGTCACCTGTTTTT | GCTAGGAGCTTTCTGTGTGGTT |
Collagen XXII | CTCTATGAACAAGCTGGTGCTG | ATTGAAACCAGCATGAGGAACT |
Collagen XXIII | GACGGCATTCCTGGACTAAAG | TGTCACCTTGTTCTCCCTTGAG |
Collagen XXIV | GGACCTTAATCAGCCACAGTTC | AAGAGGATTCTTGATGCTGCTC |
Collagen XXV | TATCAGAGCTCAGGTTGCTGAA | GACGACCTTTGGTAAAGTCTGC |
Collagen XXVI | TGGCTGGTGCTTGGTCTC | CGAGGGTGGTGTTTTCTGTTC |
Collagen XXVII | GTTGGAAATCCTAGAACGATGC | TCTGTCTGGTTTTCTTGGAGGT |
Collagen XXVIII | GAAGACTCCAGGAAAGCAGTGT | AGAAGACAGAAGGCAACGTCTC |
Biglycan | TGATTGAGAATGGGAGCCTGAG | CCTTGGTGATGTTGTTGGAGTG |
Elastin | TCTTGCTGATCCTCTTGCTCA | GGATAATAGACTCCACCGGGAA |
Fibronectin | GTGACACCCACCAGCTTTAC | ATCACCGATGAGCTGTCTGG |
TGF-ß1 | AGTGTGGAGCAACATGTGAAC | TTCAGCCACTGCCGTACAAC |
Ang2 | CGCTAACCAACCAAAGGCAC | TTACTGCTGAACTCCCACGG |
AT1R | GGCAAGCAGAATAGGTGGGT | GCCACACCACTTCCTAACCA |
PPARδ | GGGGGTCAGTCATGGAACAG | GTGTGTTCTGGTCCCCCATT |
PPARγ | GACCGAGTGTGACGACAAGATT | AGCTGATTCCGAAGTTGGTGG |
Syndecan4 | CACCGAGGGTTAAGCTGGTT | ACCAGATGACAGGAGTCCCT |
Cadherin11 | GCCGACTTGTGAATGGGACT | GTAATTTCTGGGGCCGTTGC |
IL-1α | TGCAAGCTATGGCTCACTTCA | CTTCCCGTTGCTTGACGTTG |
IL-1ß | CAACCAACAAGTGATATTCTCCA | GATCCACACTCTCCAGCTGCA |
Endothelin-1 | CAGAAGTTGACGCACAACCG | TTGCTAAGATCCCAGCCAGC |
VEGFR-1 | TTCACCATCCCAAGGCAGTC | TGAGTCCTAGCTGGAGAGGG |
NFkB | CCCTTATCGACCACCCCAAT | TGCTCCTGAGCATTGACTTCT |
MMP1 | GGAGGGGATACCCACTTTGA | ATGGCGGAGGGATCGTTAG |
MMP3 | GTTGGGCTTAAGAAGGTGGAC | GGACCGGAAGACCCTTCATT |
MMP9 | CAGACGTGGGTCGATTCCAA | TCATCGATCATGTCTCGCGG |
p53 | CTCCTTGGCTGTAGGTAGCG | TCCGACTGTGACTCCTCCAT |
Bax | TGCAGAGGATGATTGCTGAC | GATCAGCTCGGGCACTTTAG |
Bcl2 | AGGAGCAGGTGCCTACAAGA | GCATTTTCCCACCACTGTCT |
α-actin | GCATCCACGAAACCACCTA | CACGAGTAACAAATCAAAGC |
β-actin | AGCCATGTACGTAGCCATCC | CTCTCAGCTGTGGTGGTGAA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumacher, D.; Curaj, A.; Staudt, M.; Simsekyilmaz, S.; Kanzler, I.; Boor, P.; Klinkhammer, B.M.; Li, X.; Bucur, O.; Kaabi, A.; et al. Endogenous Modulation of Extracellular Matrix Collagen during Scar Formation after Myocardial Infarction. Int. J. Mol. Sci. 2022, 23, 14571. https://doi.org/10.3390/ijms232314571
Schumacher D, Curaj A, Staudt M, Simsekyilmaz S, Kanzler I, Boor P, Klinkhammer BM, Li X, Bucur O, Kaabi A, et al. Endogenous Modulation of Extracellular Matrix Collagen during Scar Formation after Myocardial Infarction. International Journal of Molecular Sciences. 2022; 23(23):14571. https://doi.org/10.3390/ijms232314571
Chicago/Turabian StyleSchumacher, David, Adelina Curaj, Mareike Staudt, Sakine Simsekyilmaz, Isabella Kanzler, Peter Boor, Barbara Mara Klinkhammer, Xiaofeng Li, Octavian Bucur, Adnan Kaabi, and et al. 2022. "Endogenous Modulation of Extracellular Matrix Collagen during Scar Formation after Myocardial Infarction" International Journal of Molecular Sciences 23, no. 23: 14571. https://doi.org/10.3390/ijms232314571
APA StyleSchumacher, D., Curaj, A., Staudt, M., Simsekyilmaz, S., Kanzler, I., Boor, P., Klinkhammer, B. M., Li, X., Bucur, O., Kaabi, A., Xu, Y., Zheng, H., Nilcham, P., Schuh, A., Rusu, M., & Liehn, E. A. (2022). Endogenous Modulation of Extracellular Matrix Collagen during Scar Formation after Myocardial Infarction. International Journal of Molecular Sciences, 23(23), 14571. https://doi.org/10.3390/ijms232314571