Therapeutic Modulation of the Host Defense by Hemoadsorption with CytoSorb®—Basics, Indications and Perspectives—A Scoping Review
Abstract
:1. Introduction to Hemoadsorption
2. Methods
- -
- Infection/Host response
- -
- Regulation and dysregulation of the immune system
- -
- Cytokines and cytokine storm
- -
- Corona-Virus induced Disease 2019 (COVID-19)
- -
- Hemoadsorption with CytoSorb®—basic principles and function
- -
- Hemoadsorption—Indications
- ○
- Systemic Inflammatory Response Syndrome (SIRS), sepsis and septic shock
- ○
- Trauma-induced inflammation (trauma, rhabdomyolysis)
- ○
- Liver failure, hyperbilirubinemia
- ○
- Acute respiratory distress syndrome (ARDS)
- ○
- Extracorporeal membrane oxygenation (ECMO)
- ○
- COVID-19-associated ARDS (CARDS)
- ○
- SIRS, perioperative use, cardiac surgery
- ○
- Intoxications
- ○
- Side effects
- ○
- Dosage of antibiotics
3. Infection Response and Immune System Regulation
3.1. Cytokines and the Cytokine Storm
3.2. Immunosuppression
4. Hemoadsorption with CytoSorb®
4.1. Basics
4.2. Indications
4.2.1. SIRS, Sepsis and Septic Shock
4.2.2. Trauma Induced Inflammation, Injury Associated Immunosuppression and Rhabdomyolysis
4.2.3. Liver Failure and Hyperbilirubinemia
4.2.4. Acute Respiratory Distress Syndrome (ARDS) and Extracorporeal Membrane Oxygenation (ECMO)
4.2.5. COVID-19-Associated ARDS (CARDS)
4.2.6. Post-Pump Syndrome and Perioperative Use in Cardiac Surgery
4.2.7. Intoxications
Drug Group | Active Pharmaceutical Substances | References | |
---|---|---|---|
positive effect likely | Antiarrhythmics | Amitriptyline | [145] |
Flecainide | [146] | ||
Digoxin | [141] | ||
Digitoxin | [147] | ||
Antidepressant | Amitryptilin | [145,148] | |
Anticonvulsants | Carbamazepine | [141] | |
Valproic Acid | |||
Phenytoin | |||
Beta Blocker | Bisoprolol | [148] | |
Calciumchannel blockers | Amlodipine | [148] | |
Verapamil | [149] | ||
Hypnotics and sedatives | Phenobarbital | [141] | |
Psychotropic drugs | Quetiapine | [143] | |
Venlafaxine | [150] | ||
3,4-Methylenedioxy-methamphetamine (MDMA, “Ecstasy”) | [151] | ||
Toxins | Aflatoxine | [32,152] | |
Toxic Shock Syndrome toxin-1 (TSST-1) | [32] | ||
Viper Snake Venom | [153] | ||
positive or negative effect likely (according to the indication) | Anticoagulants | Dabigatran | [154] |
Edoxaban | [155] | ||
Rivaroxaban | [59,156] | ||
Ticagrelor | [59,139,144,156] | ||
Contrast agents | Iodixanol Iohexol | [157,158] | |
Immunosuppressives | Tacrolimus Cyclosporine | [141] | |
negative effect likely | Antibiotics | Amikacin, Vancomycin, Tobramycin, Gentamicin, Ciprofloxacin, Meropenem, Piperacillin, Flucloxacillin, Imipenem, Teicoplanin, Linezolid | [61,63,141,159,160] |
Antimycotics | Fluconazole, Voriconazole | [63] |
4.3. Side Effects
4.4. Dosage of Antibiotics
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABP | Amount of blood purified [L/kg] |
ACLF | Acute-on-chronic liver failure |
ALF | Acute liver failure |
ARF | Acute renal failure |
APC | Antigen presenting cell |
ARDS | Acute respiratory distress syndrome |
COVID-19 | Corona-Virus induced Disease 2019 |
CRS | Cytokine release syndrome |
DAMPs | damage-associated molecular patterns |
HMGB1 | high mobility group box-1 protein |
IAI | Injury Associated Immunosuppression |
MCP-1 | Monocyte chemoattractant protein-1 |
MDSC | myeloid-derived suppressor cells |
NLRP3 | Nod-like receptor protein: pyrin domain containing 3 |
IL | interleukin |
RRT | renal replacement therapy |
PAMPs | pathogen-associated molecular patterns |
PRR’s | Pattern recognition receptors |
SAI | Sepsis Associated immunosuppression |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Corona-Virus 2 |
SIRS | Systemic Inflammatory Response Syndrome |
sIL-1RII | Soluble IL-1 receptor type 2 |
sTNFRp55 | Solube TNF receptor p55 |
TSST-1 | Toxic Shock syndrome Toxin-1 |
References
- Luhr, R.; Cao, Y.; Söderquist, B.; Cajander, S. Trends in sepsis mortality over time in randomised sepsis trials: A systematic literature review and meta-analysis of mortality in the control arm, 2002–2016. Crit. Care 2019, 23, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torio, C.M.; Andrews, R.M. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011: Statistical Brief #160. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2013. [Google Scholar]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Global burden of sepsis: A systematic review. Crit. Care 2015, 19, P21. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, C.; Thomas-Rueddel, D.O.; Hartmann, M.; Hartog, C.S.; Welte, T.; Heublein, S.; Dennler, U.; Reinhart, K. Hospital Incidence and Mortality Rates of Sepsis. Dtsch. Arztebl. Int. 2016, 113, 159–166. [Google Scholar] [CrossRef] [Green Version]
- SepNet Critical Care Trials Group. Incidence of severe sepsis and septic shock in German intensive care units: The prospective, multicentre INSEP study. Intensive Care Med. 2016, 42, 1980–1989. [Google Scholar] [CrossRef]
- Henzler, D.; Scheffler, M.; Westheider, A.; Köhler, T. Microcirculation measurements: Barriers for use in clinical routine. Clin. Hemorheol. Microcirc. 2017, 67, 505–509. [Google Scholar] [CrossRef]
- Rieckmann, J.C.; Geiger, R.; Hornburg, D.; Wolf, T.; Kveler, K.; Jarrossay, D.; Sallusto, F.; Shen-Orr, S.S.; Lanzavecchia, A.; Mann, M.; et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol. 2017, 18, 583–593. [Google Scholar] [CrossRef]
- Morrell, E.D.; Kellum, J.A.; Pastor-Soler, N.M.; Hallows, K.R. Septic acute kidney injury: Molecular mechanisms and the importance of stratification and targeting therapy. Crit. Care 2014, 18, 501. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Honore, P.M.; Hoste, E.; Molnár, Z.; Jacobs, R.; Joannes-Boyau, O.; Malbrain, M.L.N.G.; Forni, L.G. Cytokine removal in human septic shock: Where are we and where are we going? Ann. Intensive Care 2019, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Krenn, C.G.; Steltzer, H. Hemoadsorption for blood purification-incomparability of clinically available procedures. Med. Klin. Intensivmed. Notf. 2021, 116, 449–453. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, C.E.; Khameneh, H.J.; Brough, D.; Mortellaro, A. Novel perspectives on non-canonical inflammasome activation. Immunotargets Ther. 2015, 4, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Pfortmueller, C.A.; Meisel, C.; Fux, M.; Schefold, J.C. Assessment of immune organ dysfunction in critical illness: Utility of innate immune response markers. Intensive Care Med. Exp. 2017, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Han, Z.; Oppenheim, J.J. Alarmins and immunity. Immunol. Rev. 2017, 280, 41–56. [Google Scholar] [CrossRef]
- Kumar, V. Inflammasomes: Pandora’s box for sepsis. J. Inflamm. Res. 2018, 11, 477–502. [Google Scholar] [CrossRef] [Green Version]
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012, 76, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Bonavia, A.; Miller, L.; Kellum, J.A.; Singbartl, K. Hemoadsorption corrects hyperresistinemia and restores anti-bacterial neutrophil function. Intensive Care Med. Exp. 2017, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Supady, A.; Bode, C.; Duerschmied, D. Cytokine Storm. N. Engl. J. Med. 2021, 384, e59. [Google Scholar] [CrossRef]
- Weaver, L.K.; Behrens, E.M. Weathering the storm: Improving therapeutic interventions for cytokine storm syndromes by targeting disease pathogenesis. Curr. Treat. Opt. Rheumatol. 2017, 3, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Bonavia, A.; Groff, A.; Karamchandani, K.; Singbartl, K. Clinical Utility of Extracorporeal Cytokine Hemoadsorption Therapy: A Literature Review. Blood Purif. 2018, 46, 337–349. [Google Scholar] [CrossRef]
- Tothova, Z.; Berliner, N. Hemophagocytic Syndrome and Critical Illness: New Insights into Diagnosis and Management. J. Intensive Care Med. 2015, 30, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Singbartl, K.; Miller, L.; Ruiz-Velasco, V.; Kellum, J.A. Reversal of Acute Kidney Injury-Induced Neutrophil Dysfunction: A Critical Role for Resistin. Crit. Care Med. 2016, 44, e492–e501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugan, R.; Wen, X.; Shah, N.; Lee, M.; Kong, L.; Pike, F.; Keener, C.; Unruh, M.; Finkel, K.; Vijayan, A.; et al. Plasma inflammatory and apoptosis markers are associated with dialysis dependence and death among critically ill patients receiving renal replacement therapy. Nephrol. Dial. Transpl. 2014, 29, 1854–1864. [Google Scholar] [CrossRef]
- Quinto, B.M.; Iizuka, I.J.; Monte, J.C.; Santos, B.F.; Pereira, V.; Durão, M.S.; Dalboni, M.A.; Cendoroglo, M.; Santos, O.F.; Batista, M.C. TNF-α depuration is a predictor of mortality in critically ill patients under continuous veno-venous hemodiafiltration treatment. Cytokine 2015, 71, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Frencken, J.F.; van Vught, L.A.; Peelen, L.M.; Ong, D.S.Y.; Klein Klouwenberg, P.M.C.; Horn, J.; Bonten, M.J.M.; van der Poll, T.; Cremer, O.L.; Consortium, M. An Unbalanced Inflammatory Cytokine Response Is Not Associated With Mortality Following Sepsis: A Prospective Cohort Study. Crit. Care Med. 2017, 45, e493–e499. [Google Scholar] [CrossRef]
- Chaudhry, H.; Zhou, J.; Zhong, Y.; Ali, M.M.; McGuire, F.; Nagarkatti, P.S.; Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In Vivo 2013, 27, 669–684. [Google Scholar]
- Malard, B.; Lambert, C.; Kellum, J.A. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intensive Care Med. Exp. 2018, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, K.; Weaver, C. Janeway Immunologie, 9th ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Gruda, M.C.; Ruggeberg, K.G.; O’Sullivan, P.; Guliashvili, T.; Scheirer, A.R.; Golobish, T.D.; Capponi, V.J.; Chan, P.P. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads. PLoS ONE 2018, 13, e0191676. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration, U.K. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Napp, L.C.; Bauersachs, J. Extracorporeal Hemoadsorption: An Option for COVID-19-Associated Cytokine Storm Syndrome. Shock 2020, 54, 700–701. [Google Scholar] [CrossRef]
- Yang, W.; Cao, Q.; Qin, L.; Wang, X.; Cheng, Z.; Pan, A.; Dai, J.; Sun, Q.; Zhao, F.; Qu, J.; et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J. Infect. 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Chen, L.Y.C.; Hoiland, R.L.; Stukas, S.; Wellington, C.L.; Sekhon, M.S. Assessing the importance of interleukin-6 in COVID-19. Lancet Respir. Med. 2021, 9, e13. [Google Scholar] [CrossRef]
- Houschyar, K.S.; Pyles, M.N.; Rein, S.; Nietzschmann, I.; Duscher, D.; Maan, Z.N.; Weissenberg, K.; Philipps, H.M.; Strauss, C.; Reichelt, B.; et al. Continuous hemoadsorption with a cytokine adsorber during sepsis—A review of the literature. Int. J. Artif. Organs 2017, 40, 205–211. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; Berry, L.R.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Group, R.C. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D.; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011, 306, 2594–2605. [Google Scholar] [CrossRef]
- Venet, F.; Lukaszewicz, A.C.; Payen, D.; Hotchkiss, R.; Monneret, G. Monitoring the immune response in sepsis: A rational approach to administration of immunoadjuvant therapies. Curr. Opin. Immunol. 2013, 25, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Pfortmueller, C.A.; Meisel, C.; Schefold, J.C. Interpreting Immune Mediator Dysbalance in Sepsis. Crit. Care Med. 2017, 45, e1094–e1095. [Google Scholar] [CrossRef]
- Uhel, F.; Azzaoui, I.; Grégoire, M.; Pangault, C.; Dulong, J.; Tadié, J.M.; Gacouin, A.; Camus, C.; Cynober, L.; Fest, T.; et al. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis. Am. J. Respir. Crit. Care Med. 2017, 196, 315–327. [Google Scholar] [CrossRef]
- Darcy, C.J.; Minigo, G.; Piera, K.A.; Davis, J.S.; McNeil, Y.R.; Chen, Y.; Volkheimer, A.D.; Weinberg, J.B.; Anstey, N.M.; Woodberry, T. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Crit. Care 2014, 18, R163. [Google Scholar] [CrossRef] [Green Version]
- Janols, H.; Bergenfelz, C.; Allaoui, R.; Larsson, A.M.; Rydén, L.; Björnsson, S.; Janciauskiene, S.; Wullt, M.; Bredberg, A.; Leandersson, K. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J. Leukoc. Biol. 2014, 96, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Mathias, B.; Delmas, A.L.; Ozrazgat-Baslanti, T.; Vanzant, E.L.; Szpila, B.E.; Mohr, A.M.; Moore, F.A.; Brakenridge, S.C.; Brumback, B.A.; Moldawer, L.L.; et al. Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock. Ann. Surg. 2017, 265, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [Green Version]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Ronco, C.; Tetta, C.; Mariano, F.; Wratten, M.L.; Bonello, M.; Bordoni, V.; Cardona, X.; Inguaggiato, P.; Pilotto, L.; d’Intini, V.; et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: The peak concentration hypothesis. Artif. Organs 2003, 27, 792–801. [Google Scholar] [CrossRef]
- Girardot, T.; Schneider, A.; Rimmelé, T. Blood Purification Techniques for Sepsis and Septic AKI. Semin. Nephrol. 2019, 39, 505–514. [Google Scholar] [CrossRef]
- Calabrò, M.G.; Febres, D.; Recca, G.; Lembo, R.; Fominskiy, E.; Scandroglio, A.M.; Zangrillo, A.; Pappalardo, F. Blood Purification with CytoSorb in Critically Ill Patients: Single-Center Preliminary Experience. Artif. Organs 2019, 43, 189–194. [Google Scholar] [CrossRef]
- Gemelli, C.; Cuoghi, A.; Magnani, S.; Atti, M.; Ricci, D.; Siniscalchi, A.; Mancini, E.; Faenza, S. Removal of Bilirubin with a New Adsorbent System: In Vitro Kinetics. Blood Purif. 2019, 47, 10–15. [Google Scholar] [CrossRef]
- Gleason, T.G.; Argenziano, M.; Bavaria, J.E.; Kane, L.C.; Coselli, J.S.; Engelman, R.M.; Tanaka, K.A.; Awad, A.; Sekela, M.E.; Zwischenberger, J.B. Hemoadsorption to Reduce Plasma Free Hemoglobin during Cardiac Surgery: Results of REFRESH I Pilot Study. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 783–793. [Google Scholar] [CrossRef]
- Hassan, K.; Kannmacher, J.; Wohlmuth, P.; Budde, U.; Schmoeckel, M.; Geidel, S. Cytosorb Adsorption During Emergency Cardiac Operations in Patients at High Risk of Bleeding. Ann. Thorac. Surg. 2019, 108, 45–51. [Google Scholar] [CrossRef]
- Dilken, O.; Ince, C.; van der Hoven, B.; Thijsse, S.; Ormskerk, P.; de Geus, H.R.H. Successful Reduction of Creatine Kinase and Myoglobin Levels in Severe Rhabdomyolysis Using Extracorporeal Blood Purification (CytoSorb®). Blood Purif. 2020, 49, 1–5. [Google Scholar] [CrossRef]
- Dimski, T.; Brandenburger, T.; MacKenzie, C.; Kindgen-Milles, D. Elimination of glycopeptide antibiotics by cytokine hemoadsorption in patients with septic shock: A study of three cases. Int. J. Artif. Organs 2020, 43, 753–757. [Google Scholar] [CrossRef]
- Köhler, T.; Pletz, M.W.; Altmann, S.; Kirchner, C.; Schwier, E.; Henzler, D.; Winde, G.; Eickmeyer, C. Pericarditis Caused by Enterococcus faecium with acute liver failure treated by a multifaceted approach including antimicrobials and hemoadsorption. Case Rep. Crit. Care 2021, 2021, 8824050. [Google Scholar] [CrossRef]
- König, C.; Röhr, A.C.; Frey, O.R.; Brinkmann, A.; Roberts, J.A.; Wichmann, D.; Braune, S.; Kluge, S.; Nierhaus, A. In vitro removal of anti-infective agents by a novel cytokine adsorbent system. Int. J. Artif. Organs 2019, 42, 57–64. [Google Scholar] [CrossRef]
- Datzmann, T.; Träger, K. Extracorporeal membrane oxygenation and cytokine adsorption. J. Thorac. Dis. 2018, 10, S653–S660. [Google Scholar] [CrossRef]
- Brouwer, W.P.; Duran, S.; Kuijper, M.; Ince, C. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: A propensity-score-weighted retrospective study. Crit. Care 2019, 23, 317. [Google Scholar] [CrossRef] [Green Version]
- Napp, L.C.; Ziegeler, S.; Kindgen-Milles, D. Rationale of Hemoadsorption during Extracorporeal Membrane Oxygenation Support. Blood Purif. 2019, 48, 203–214. [Google Scholar] [CrossRef]
- Maynar, J.; Martínez-Sagasti, F.; Herrera-Gutiérrez, M.; Martí, F.; Candel, F.J.; Belda, J.; Castaño, S.; Sanchez-Izquierdo, J. Direct hemoperfusion with polymyxin B-immobilized cartridge in severe sepsis due to intestinal perforation: Hemodynamic findings and clinical considerations in anticoagulation therapy. Rev. Esp. Quim. 2013, 26, 151–158. [Google Scholar]
- Dimski, T.; Brandenburger, T.; Slowinski, T.; Kindgen-Milles, D. Feasibility and safety of combined cytokine adsorption and continuous veno-venous hemodialysis with regional citrate anticoagulation in patients with septic shock. Int. J. Artif. Organs 2020, 43, 10–16. [Google Scholar] [CrossRef]
- Scharf, C.; Liebchen, U.; Paal, M.; Becker-Pennrich, A.; Irlbeck, M.; Zoller, M.; Schroeder, I. Successful elimination of bilirubin in critically ill patients with acute liver dysfunction using a cytokine adsorber and albumin dialysis: A pilot study. Sci. Rep. 2021, 11, 10190. [Google Scholar] [CrossRef]
- Kogelmann, K.; Jarczak, D.; Scheller, M.; Drüner, M. Hemoadsorption by CytoSorb in septic patients: A case series. Crit. Care 2017, 21, 74. [Google Scholar] [CrossRef] [Green Version]
- Friesecke, S.; Stecher, S.S.; Gross, S.; Felix, S.B.; Nierhaus, A. Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: A prospective single-center study. J. Artif. Organs 2017, 20, 252–259. [Google Scholar] [CrossRef]
- Schultz, P.; Schwier, E.; Eickmeyer, C.; Henzler, D.; Köhler, T. High-dose CytoSorb hemoadsorption is associated with improved survival in patients with septic shock: A retrospective cohort study. J. Crit. Care 2021, 64, 184–192. [Google Scholar] [CrossRef]
- Koehler, T.; Schwier, E.; Henzler, D.; Eickmeyer, C. Does adjunctive hemoadsorption with CytoSorb affect survival of COVID-19 patients on ECMO? A critical statement. J. Crit. Care 2021, 66, 187–188. [Google Scholar] [CrossRef]
- Scharf, C.; Schroeder, I.; Paal, M.; Winkels, M.; Irlbeck, M.; Zoller, M.; Liebchen, U. Can the cytokine adsorber CytoSorb® help to mitigate cytokine storm and reduce mortality in critically ill patients? A propensity score matching analysis. Ann. Intensive Care 2021, 11, 115. [Google Scholar] [CrossRef]
- Singh, Y.P.; Chhabra, S.C.; Lashkari, K.; Taneja, A.; Garg, A.; Chandra, A.; Chhabra, M.; Singh, G.P.; Jain, S. Hemoadsorption by extracorporeal cytokine adsorption therapy (CytoSorb®) in the management of septic shock: A retrospective observational study. Int. J. Artif. Organs 2020, 43, 372–378. [Google Scholar] [CrossRef]
- Paul, R.; Sathe, P.; Kumar, S.; Prasad, S.; Aleem, M.; Sakhalvalkar, P. Multicentered prospective investigator initiated study to evaluate the clinical outcomes with extracorporeal cytokine adsorption device CytoSorb. World J. Crit. Care Med. 2021, 10, 22–34. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Carter, M.J.; Kellum, J.A. Effects of hemoadsorption on cytokine removal and short-term survival in septic rats. Crit. Care Med. 2008, 36, 1573–1577. [Google Scholar] [CrossRef]
- Schädler, D.; Pausch, C.; Heise, D.; Meier-Hellmann, A.; Brederlau, J.; Weiler, N.; Marx, G.; Putensen, C.; Spies, C.; Jörres, A.; et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS ONE 2017, 12, e0187015. [Google Scholar] [CrossRef] [Green Version]
- Brunkhorst, F.; Schein, M.; Braune, A.; Schumacher, U. 9th International Congress “Sepsis and Multiorgan Dysfunction”—International Registry on the use of the CytoSorb-adsorber in ICU Patients (NCT02312024)—Results from the 8th interim analysis. Infection 2019, 45, S1–S67. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, R.; Obaida, Z.A.; Kamat, S. Hemoadsorption of cytokines by CytoSorb filter: A simulation study without human factor-pilot is the difference. Crit. Care 2020, 24, 13. [Google Scholar] [CrossRef] [Green Version]
- Rugg, C.; Klose, R.; Hornung, R.; Innerhofer, N.; Bachler, M.; Schmid, S.; Fries, D.; Ströhle, M. Hemoadsorption with CytoSorb in Septic Shock Reduces Catecholamine Requirements and In-Hospital Mortality: A Single-Center Retrospective ‘Genetic’ Matched Analysis. Biomedicines 2020, 8, 539. [Google Scholar] [CrossRef]
- Kogelmann, K.; Hübner, T.; Schwameis, F.; Drüner, M.; Scheller, M.; Jarczak, D. First Evaluation of a New Dynamic Scoring System Intended to Support Prescription of Adjuvant CytoSorb Hemoadsorption Therapy in Patients with Septic Shock. J. Clin. Med. 2021, 10, 2939. [Google Scholar] [CrossRef]
- Schittek, G.A.; Zoidl, P.; Eichinger, M.; Orlob, S.; Simonis, H.; Rief, M.; Metnitz, P.; Fellinger, T.; Soukup, J. Adsorption therapy in critically ill with septic shock and acute kidney injury: A retrospective and prospective cohort study. Ann. Intensive Care 2020, 10, 154. [Google Scholar] [CrossRef]
- Finnerty, C.C.; Jeschke, M.G.; Herndon, D.N.; Gamelli, R.; Gibran, N.; Klein, M.; Silver, G.; Arnoldo, B.; Remick, D.; Tompkins, R.G.; et al. Temporal cytokine profiles in severely burned patients: A comparison of adults and children. Mol. Med. 2008, 14, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Neher, M.D.; Weckbach, S.; Flierl, M.A.; Huber-Lang, M.S.; Stahel, P.F. Molecular mechanisms of inflammation and tissue injury after major trauma—Is complement the “bad guy“? J. Biomed. Sci. 2011, 18, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, B.; Lackner, I.; Baur, M.; Fois, G.; Gebhard, F.; Marzi, I.; Schrezenmeier, H.; Relja, B.; Kalbitz, M. Effects of Circulating HMGB-1 and Histones on Cardiomyocytes-Hemadsorption of These DAMPs as Therapeutic Strategy after Multiple Trauma. J. Clin. Med. 2020, 9, 1421. [Google Scholar] [CrossRef]
- Scharf, C.; Liebchen, U.; Paal, M.; Irlbeck, M.; Zoller, M.; Schroeder, I. Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis. Crit. Care 2021, 25, 41. [Google Scholar] [CrossRef]
- Linden, K.; Scaravilli, V.; Kreyer, S.F.; Belenkiy, S.M.; Stewart, I.J.; Chung, K.K.; Cancio, L.C.; Batchinsky, A.I. Evaluation of the Cytosorb™ Hemoadsorptive Column in a Pig Model of Severe Smoke and Burn Injury. Shock 2015, 44, 487–495. [Google Scholar] [CrossRef]
- Coban, Y.K. Rhabdomyolysis, compartment syndrome and thermal injury. World J. Crit. Care Med. 2014, 3, 1–7. [Google Scholar] [CrossRef]
- Michelsen, J.; Cordtz, J.; Liboriussen, L.; Behzadi, M.T.; Ibsen, M.; Damholt, M.B.; Møller, M.H.; Wiis, J. Prevention of rhabdomyolysis-induced acute kidney injury—A DASAIM/DSIT clinical practice guideline. Acta Anaesthesiol. Scand. 2019, 63, 576–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagley, W.H.; Yang, H.; Shah, K.H. Rhabdomyolysis. Intern. Emerg. Med. 2007, 2, 210–218. [Google Scholar] [CrossRef]
- Daum, H.C.; Schmidt, B.M.W.; Napp, L.C. Effects of Hemoadsorption with CytoSorb during Severe Rhabdomyolysis. Blood Purif. 2020, 50, 273–274. [Google Scholar] [CrossRef]
- Piwowarczyk, P.; Kutnik, P.; Potręć-Studzińska, B.; Sysiak-Sławecka, J.; Rypulak, E.; Borys, M.; Czczuwar, M. Hemoadsorption in isolated conjugated hyperbilirubinemia after extracorporeal membrane oxygenation support. Cholestasis of sepsis: A case report and review of the literature on differential causes of jaundice in ICU patient. Int. J. Artif. Organs 2019, 42, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, E.; Woollard, K.J.; McPhail, M.J.W.; Antoniades, C.G.; Possamai, L.A. The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure. Front. Immunol. 2018, 9, 2948. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Kamath, P.S.; Reddy, K.R. The Evolving Challenge of Infections in Cirrhosis. N. Engl. J. Med. 2021, 384, 2317–2330. [Google Scholar] [CrossRef]
- Jalan, R. Acute liver failure: Current management and future prospects. J. Hepatol. 2005, 42 (Suppl. S1), S115–S123. [Google Scholar] [CrossRef]
- Clària, J.; Stauber, R.E.; Coenraad, M.J.; Moreau, R.; Jalan, R.; Pavesi, M.; Amorós, À.; Titos, E.; Alcaraz-Quiles, J.; Oettl, K.; et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure. Hepatology 2016, 64, 1249–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, I.; Broletti, V.; Soffia, S.; Napolitano, G.; Freddi, C.; Amboni, P.; Marchesi, G.; Fabretti, F. Comparative Efficacy Between Two In Vivo Techniques for Bilirubin and Bile Acids Removal. Blood Purif. 2019, 47, 3–37. [Google Scholar] [CrossRef]
- Acar, U.; Gökkaya, Z.; Akbulut, A.; Ferah, O.; Yenidünya, Ö.; Açık, M.E.; Tokat, Y.; Yentür, E. Impact of Cytokine Adsorption Treatment in Liver Failure. Transpl. Proc. 2019, 51, 2420–2424. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, M.; Calandra, L.; Di Bella, R.; Riccobene, R.; Vccaro, F.; Mulè, G.; Vicari, E.; Vella, D.; Montalbano, K.; Tranchida, V.; et al. Successful Treatment of Bilirubin Nephropathy by CytoSorb Hemodialysis. Blood Purif. 2019, 47, P28. [Google Scholar] [CrossRef]
- Dhokia, V.D.; Madhavan, D.; Austin, A.; Morris, C.G. Novel use of Cytosorb™ haemadsorption to provide biochemical control in liver impairment. J. Intensive Care Soc. 2019, 20, 174–181. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S.; Force, A.D.T. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Kogelmann, K.; Scheller, M.; Drüner, M.; Jarczak, D. Use of hemoadsorption in sepsis-associated ECMO-dependent severe ARDS: A case series. J. Intensive Care Soc. 2020, 21, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A.; Network, A.R.D.S. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briel, M.; Meade, M.; Mercat, A.; Brower, R.G.; Talmor, D.; Walter, S.D.; Slutsky, A.S.; Pullenayegum, E.; Zhou, Q.; Cook, D.; et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-analysis. JAMA 2010, 303, 865–873. [Google Scholar] [CrossRef]
- Sud, S.; Friedrich, J.O.; Taccone, P.; Polli, F.; Adhikari, N.K.; Latini, R.; Pesenti, A.; Guérin, C.; Mancebo, J.; Curley, M.A.; et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: Systematic review and meta-analysis. Intensive Care Med. 2010, 36, 585–599. [Google Scholar] [CrossRef]
- Guérin, C. Prone positioning acute respiratory distress syndrome patients. Ann. Transl. Med. 2017, 5, 289. [Google Scholar] [CrossRef] [Green Version]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
- Combes, A.; Schmidt, M.; Hodgson, C.L.; Fan, E.; Ferguson, N.D.; Fraser, J.F.; Jaber, S.; Pesenti, A.; Ranieri, M.; Rowan, K.; et al. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med. 2020, 46, 2464–2476. [Google Scholar] [CrossRef] [PubMed]
- McILwain, R.B.; Timpa, J.G.; Kurundkar, A.R.; Holt, D.W.; Kelly, D.R.; Hartman, Y.E.; Neel, M.L.; Karnatak, R.K.; Schelonka, R.L.; Anantharamaiah, G.M.; et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab. Investig. 2010, 90, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [Green Version]
- Bruenger, F.; Kizner, L.; Weile, J.; Morshuis, M.; Gummert, J.F. First successful combination of ECMO with cytokine removal therapy in cardiogenic septic shock: A case report. Int. J. Artif. Organs 2015, 38, 113–116. [Google Scholar] [CrossRef]
- Träger, K.; Schütz, C.; Fischer, G.; Schröder, J.; Skrabal, C.; Liebold, A.; Reinelt, H. Cytokine Reduction in the Setting of an ARDS-Associated Inflammatory Response with Multiple Organ Failure. Case Rep. Crit. Care 2016, 2016, 9852073. [Google Scholar] [CrossRef] [Green Version]
- Kommoss, F.K.F.; Schwab, C.; Tavernar, L.; Schreck, J.; Wagner, W.L.; Merle, U.; Jonigk, D.; Schirmacher, P.; Longerich, T. The Pathology of Severe COVID-19-Related Lung Damage. Dtsch. Arztebl. Int. 2020, 117, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Coppola, S.; Cressoni, M.; Busana, M.; Rossi, S.; Chiumello, D. COVID-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020, 201, 1299–1300. [Google Scholar] [CrossRef] [Green Version]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Berhés, M.; Fábián, Á.; László, I.; Végh, T.; Molnár, C.; Fülesdi, B.; Koszta, G. Organ replacement therapy and life-supporting treatment modalities in critically ill COVID-19 patients. Orv. Hetil. 2020, 161, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Ronco, C.; Bagshaw, S.M.; Bellomo, R.; Clark, W.R.; Husain-Syed, F.; Kellum, J.A.; Ricci, Z.; Rimmelé, T.; Reis, T.; Ostermann, M. Extracorporeal Blood Purification and Organ Support in the Critically Ill Patient during COVID-19 Pandemic: Expert Review and Recommendation. Blood Purif. 2020, 50, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Badulak, J.; Antonini, M.V.; Stead, C.M.; Shekerdemian, L.; Raman, L.; Paden, M.L.; Agerstrand, C.; Bartlett, R.H.; Barrett, N.; Combes, A.; et al. Extracorporeal Membrane Oxygenation for COVID-19: Updated 2021 Guidelines from the Extracorporeal Life Support Organization. ASAIO J. 2021, 67, 485–495. [Google Scholar] [CrossRef]
- Iannaccone, G.; Scacciavillani, R.; Del Buono, M.G.; Camilli, M.; Ronco, C.; Lavie, C.J.; Abbate, A.; Crea, F.; Massetti, M.; Aspromonte, N. Weathering the Cytokine Storm in COVID-19: Therapeutic Implications. Cardiorenal. Med. 2020, 10, 277–287. [Google Scholar] [CrossRef]
- Rampino, T.; Gregorini, M.; Perotti, L.; Ferrari, F.; Pattonieri, E.F.; Grignano, M.A.; Valente, M.; Garrone, A.; Islam, T.; Libetta, C.; et al. Hemoperfusion with CytoSorb as Adjuvant Therapy in Critically Ill Patients with SARS-CoV2 Pneumonia. Blood Purif. 2020, 50, 566–571. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Emergency Use Authorizations for Medical Devices. Available online: https://www.fda.gov/medical-devices/emergency-situations-medical-devices/emergency-use-authorizations-medical-devices (accessed on 17 June 2020).
- Supady, A.; Weber, E.; Rieder, M.; Lother, A.; Niklaus, T.; Zahn, T.; Frech, F.; Müller, S.; Kuhl, M.; Benk, C.; et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): A single centre, open-label, randomised, controlled trial. Lancet Respir. Med. 2021, 9, 755–762. [Google Scholar] [CrossRef]
- Putzu, A.; Schorer, R. Hemoadsorption in critically ill patients with or without COVID-19: A word of caution. J. Crit. Care 2021. [Google Scholar] [CrossRef]
- Träger, K.; Fritzler, D.; Fischer, G.; Schröder, J.; Skrabal, C.; Liebold, A.; Reinelt, H. Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: A case series. Int. J. Artif. Organs 2016, 39, 141–146. [Google Scholar] [CrossRef]
- Poli, E.C.; Rimmelé, T.; Schneider, A.G. Hemoadsorption with CytoSorb. Intensive Care Med. 2019, 45, 236–239. [Google Scholar] [CrossRef]
- Harig, F.; Feyrer, R.; Mahmoud, F.O.; Blum, U.; von der Emde, J. Reducing the post-pump syndrome by using heparin-coated circuits, steroids, or aprotinin. Thorac. Cardiovasc. Surg. 1999, 47, 111–118. [Google Scholar] [CrossRef]
- Halter, J.; Steinberg, J.; Fink, G.; Lutz, C.; Picone, A.; Maybury, R.; Fedors, N.; DiRocco, J.; Lee, H.M.; Nieman, G. Evidence of systemic cytokine release in patients undergoing cardiopulmonary bypass. J. Extra Corpor. Technol. 2005, 37, 272–277. [Google Scholar]
- Bernardi, M.H.; Rinoesl, H.; Dragosits, K.; Ristl, R.; Hoffelner, F.; Opfermann, P.; Lamm, C.; Preißing, F.; Wiedemann, D.; Hiesmayr, M.J.; et al. Effect of hemoadsorption during cardiopulmonary bypass surgery—A blinded, randomized, controlled pilot study using a novel adsorbent. Crit. Care 2016, 20, 96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.R.; Garg, A.X.; Coca, S.G.; Devereaux, P.J.; Eikelboom, J.; Kavsak, P.; McArthur, E.; Thiessen-Philbrook, H.; Shortt, C.; Shlipak, M.; et al. Plasma IL-6 and IL-10 Concentrations Predict AKI and Long-Term Mortality in Adults after Cardiac Surgery. J. Am. Soc. Nephrol. 2015, 26, 3123–3132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Born, F.; Pichlmaier, M.; Peterß, S.; Khaladj, N.; Hagl, C. Systemic Inflammatory Response Syndrome in Heart Surgery: New possibilities for treatment through the use of a cytokine adsorber during ECC? Kardiotechnik 2014, 2, 1–10. [Google Scholar]
- Träger, K.; Skrabal, C.; Fischer, G.; Datzmann, T.; Schroeder, J.; Fritzler, D.; Hartmann, J.; Liebold, A.; Reinelt, H. Hemoadsorption treatment of patients with acute infective endocarditis during surgery with cardiopulmonary bypass—A case series. Int. J. Artif. Organs 2017, 40, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Träger, K.; Skrabal, C.; Fischer, G.; Schroeder, J.; Marenski, L.; Liebold, A.; Reinelt, H.; Datzmann, T. Hemoadsorption treatment with CytoSorb in patients with extracorporeal life support therapy: A case series. Int. J. Artif. Organs 2019, 43, 422–429. [Google Scholar] [CrossRef]
- Nemeth, E.; Szigeti, S.; Varga, T.; Daroczi, L.; Barati, Z.; Merkely, B.; Gal, J. Continuous cytokine haemoadsorption incorporated into a venoarterial ECMO circuit for the management of postcardiotomy cardiogenic and septic shock—A case report. Perfusion 2018, 33, 593–596. [Google Scholar] [CrossRef]
- Nemeth, E.; Kovacs, E.; Racz, K.; Soltesz, A.; Szigeti, S.; Kiss, N.; Csikos, G.; Koritsanszky, K.B.; Berzsenyi, V.; Trembickij, G.; et al. Impact of intraoperative cytokine adsorption on outcome of patients undergoing orthotopic heart transplantation-an observational study. Clin. Transpl. 2018, 32, e13211. [Google Scholar] [CrossRef] [Green Version]
- Omar, H.R.; Mirsaeidi, M.; Socias, S.; Sprenker, C.; Caldeira, C.; Camporesi, E.M.; Mangar, D. Plasma Free Hemoglobin Is an Independent Predictor of Mortality among Patients on Extracorporeal Membrane Oxygenation Support. PLoS ONE 2015, 10, e0124034. [Google Scholar] [CrossRef] [Green Version]
- Wisgrill, L.; Lamm, C.; Hell, L.; Thaler, J.; Berger, A.; Weiss, R.; Weber, V.; Rinoesl, H.; Hiesmayr, M.J.; Spittler, A.; et al. Influence of hemoadsorption during cardiopulmonary bypass on blood vesicle count and function. J. Transl. Med. 2020, 18, 202. [Google Scholar] [CrossRef]
- Angheloiu, G.O.; Gugiu, G.B.; Ruse, C.; Pandey, R.; Dasari, R.R.; Whatling, C. Ticagrelor Removal from Human Blood. JACC Basic Transl. Sci. 2017, 2, 135–145. [Google Scholar] [CrossRef]
- Javanbakht, M.; Trevor, M.; Rezaei Hemami, M.; Rahimi, K.; Branagan-Harris, M.; Degener, F.; Adam, D.; Preissing, F.; Scheier, J.; Cook, S.F.; et al. Ticagrelor Removal by CytoSorb. Pharm. Open 2020, 4, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Reiter, K.; Bordoni, V.; Dall’Olio, G.; Ricatti, M.G.; Soli, M.; Ruperti, S.; Soffiati, G.; Galloni, E.; D’Intini, V.; Bellomo, R.; et al. In vitro removal of therapeutic drugs with a novel adsorbent system. Blood Purif. 2002, 20, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Koertge, A.; Wasserkort, R.; Wild, T.; Mitzner, S. Extracorporeal Hemoperfusion as a Potential Therapeutic Option for Critical Accumulation of Rivaroxaban. Blood Purif. 2018, 45, 126–128. [Google Scholar] [CrossRef] [Green Version]
- Giuntoli, L.; Dalmastri, V.; Cilloni, N.; Orsi, C.; Stalteri, L.; Demelas, V.; Giuliani, G.; Gordini, G.; De Ponti, F.; La Manna, G. Severe quetiapine voluntary overdose successfully treated with a new hemoperfusion sorbent. Int. J. Artif. Organs 2019, 42, 516–520. [Google Scholar] [CrossRef]
- Sibilio, S.; Moneta, A.; Di Mauro, A.; Marotta, A.; Malara, G.; Barberini, L.; Fattuoni, C.; Cirri, S.; Montisci, A.; Donatelli, F. Use of Cytosorb during Cardiopulmonary Bypass in a Patient Underwent Emergent CABG after a Loading Dose of Ticagrelor. Blood Purif. 2019, 47, 3–37. [Google Scholar]
- Paland, M. Use of CytoSorb in cases of acute amitriptyline intoxication. J. Clin. Pharm. Ther. 2021, 46, 1476–1479. [Google Scholar] [CrossRef] [PubMed]
- De Schryver, N.; Hantson, P.; Haufroid, V.; Dechamps, M. Cardiogenic Shock in a Hemodialyzed Patient on Flecainide: Treatment with Intravenous Fat Emulsion, Extracorporeal Cardiac Life Support, and CytoSorb(R) Hemoadsorption. Case Rep. Cardiol. 2019, 2019, 1905871. [Google Scholar] [CrossRef] [PubMed]
- Breuer, T.G.K.; Quast, D.R.; Wiciok, S.; Labedi, A.; Ellrichmann, G. Successful Treatment of Severe Digitoxin Intoxication with CytoSorb® Hemoadsorption. Blood Purif. 2021, 50, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Zickler, D.; Nee, J.; Arnold, T.; Schröder, T.; Slowinski, T.; Eckardt, K.U.; Körner, R.; Kruse, J.M. Use of Hemoadsorption in Patients with Severe Intoxication Requiring Extracorporeal Cardiopulmonary Support-A Case Series. ASAIO J. 2021, 67, e186–e190. [Google Scholar] [CrossRef]
- Capponi, V.J.; Young, W.T.; Chan, P.P.; Lavonas, E.J. A novel adsorbent system rapidly clears Verapamil from human blood. In Proceedings of the 2nd Annual International Conference on advances in Critical Care Nephrology AKI & CRRT Meeting, San Diego, CA, USA, 7–10 March 2017. [Google Scholar]
- Schroeder, I.; Zoller, M.; Angstwurm, M.; Kur, F.; Frey, L. Venlafaxine intoxication with development of takotsubo cardiomyopathy: Successful use of extracorporeal life support, intravenous lipid emulsion and CytoSorb®. Int. J. Artif. Organs 2017, 40, 358–360. [Google Scholar] [CrossRef]
- Lang, C.N.; Sommer, M.J.; Neukamm, M.A.; Staudacher, D.L.; Supady, A.; Bode, C.; Duerschmied, D.; Lother, A. Use of the CytoSorb adsorption device in MDMA intoxication: A first-in-man application and in vitro study. Intensive Care Med. Exp. 2020, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Ruggeberg, K.G.; O’Sullivan, P.; Kovacs, T.J.; Dawson, K.; Capponi, V.J.; Chan, P.P.; Golobish, T.D.; Gruda, M.C. Hemoadsorption Improves Survival of Rats Exposed to an Acutely Lethal Dose of Aflatoxin B. Sci. Rep. 2020, 10, 799. [Google Scholar] [CrossRef]
- Paul, R.; Jha, B.; Shetty, V. A case of Viper Snake Bite Presenting with Gangrene and Sepsis associated Multiorgan Failure, Successfully treated with CytoSorb® as an adjunct therapy—A clinical experience. J. Evid. Based Med. Healthc. 2018, 5, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Angheloiu, A.A.; Angheloiu, G.O. Removal of dabigatran using sorbent hemadsorption. Int. J. Cardiol. 2019, 293, 73–75. [Google Scholar] [CrossRef]
- Angheloiu, A.A.; Tan, Y.; Ruse, C.; Shaffer, S.A.; Angheloiu, G.O. In-Vitro Sorbent-Mediated Removal of Edoxaban from Human Plasma and Albumin Solution. Drugs R D 2020, 20, 217–223. [Google Scholar] [CrossRef]
- Mair, H.; Jilek, C.; Haas, B.; Lamm, P. Ticagrelor and Rivaroxaban Elimination with CytoSorb Adsorber Before Urgent Off-Pump Coronary Bypass. Ann. Thorac. Surg. 2020, 110, e369–e370. [Google Scholar] [CrossRef]
- Angheloiu, G.O.; Hanscheid, H.; Wen, X.; Capponi, V.; Anderson, W.D.; Kellum, J.A. Experimental first-pass method for testing and comparing sorbent polymers used in the clearance of iodine contrast materials. Blood Purif. 2012, 34, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Angheloiu, G.O.; Hänscheid, H.; Reiners, C.; Anderson, W.D.; Kellum, J.A. In vitro catheter and sorbent-based method for clearance of radiocontrast material during cerebral interventions. Cardiovasc. Revasc. Med. 2013, 14, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Köhler, T.; Schwier, E.; Kirchner, C.; Winde, G.; Henzler, D.; Eickmeyer, C. Hemoadsorption with CytoSorb and the early course of linezolid plasma concentration during septic shock. J. Artif. Organs 2021, 1–5. [Google Scholar] [CrossRef]
- Schneider, A.G.; André, P.; Scheier, J.; Schmidt, M.; Ziervogel, H.; Buclin, T.; Kindgen-Milles, D. Pharmacokinetics of anti-infective agents during CytoSorb hemoadsorption. Sci. Rep. 2021, 11, 10493. [Google Scholar] [CrossRef]
- Datzmann, T.; Träger, K.; Reinelt, H.; von Freyberg, P. Elimination Rates of Electrolytes, Vitamins, and Trace Elements during Continuous Renal Replacement Therapy with Citrate Continuous Veno-Venous Hemodialysis: Influence of Filter Lifetime. Blood Purif. 2017, 44, 210–216. [Google Scholar] [CrossRef]
- Kellum, J.A.; Venkataraman, R.; Powner, D.; Elder, M.; Hergenroeder, G.; Carter, M. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit. Care Med. 2008, 36, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Yu, Z.; Li, Y. Thyroid hormone disorders and sepsis. Biomed. Mater. Eng. 2017, 28, S237–S241. [Google Scholar] [CrossRef]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018, 44, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Roberts, D.M. Antibiotic dosing in critically ill patients with septic shock and on continuous renal replacement therapy: Can we resolve this problem with pharmacokinetic studies and dosing guidelines? Crit. Care 2014, 18, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luyt, C.E.; Bréchot, N.; Trouillet, J.L.; Chastre, J. Antibiotic stewardship in the intensive care unit. Crit. Care 2014, 18, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, D.M.; Liu, X.; Roberts, J.A.; Nair, P.; Cole, L.; Roberts, M.S.; Lipman, J.; Bellomo, R.; RENAL Replacement Therapy Study Investigators. A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit. Care 2015, 19, 84. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, C.; Sibai, J.; Schwier, E.; Henzler, D.; Eickmeyer, C.; Winde, G.; Köhler, T. Dosing of Antimycotic Treatment in Sepsis-Induced Liver Dysfunction by Functional Liver Testing with LiMAx®. Case Rep. Crit. Care 2019, 2019, 5362514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.M.; Gomersall, C.D.; Choi, G.; Tian, Q.; Joynt, G.M.; Lipman, J. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: Do current studies supply sufficient data? J. Antimicrob. Chemother. 2009, 64, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Ankawi, G.; Xie, Y.; Yang, B.; Xie, P.; Ronco, C. What Have We Learned about the Use of Cytosorb Adsorption Columns? Blood Purif. 2019, 48, 196–202. [Google Scholar] [CrossRef]
External Injuries | Disease |
---|---|
Polytrauma | Pancreatitis |
Craniocerebral trauma | Liver insufficiency |
Organ transplantation | Renal insufficiency |
Burn | Stroke |
Extensive surgery | Myocardial infarction |
Cardio-pulmonary resuscitation | Heart failure |
Cardiosurgical intervention | Sepsis and Septic Shock |
Family | Functions | Cytokine | Impact on Inflammation | Removal Rate on CytoSorb® (% at 120 min) [30]/[32] |
---|---|---|---|---|
Interferone (IFN) | Regulation of innate immunity; activation of antiviral effects; antiproliferative effects; pyrogenic effect. | IFNγ | Pro | 95.7/61 |
Interleukine (IL) | Growth and differentiation of leukocytes. Proinflammatory effects: induction of cyclooxygenase II; expression of various adhesion molecules; NO synthase ↑; pyrogenic effect. | IL1β IL2 IL6 IL7 | Pro Pro/Anti Pro Pro | 97.2/n.d. 99.3/n.d. 99.6/78 n.d./n.d. |
Antiinflammatory effects: inhibition of proinflammatory cytokine (e.g., IL1α, IL1β, TNF) and monocyte/macrophage, Promotion of Th2-lymphocytes | IL1RA IL4 IL10 IL11 IL13 | Anti Anti Anti Anti Anti | 92.1/n.d. 99.9/n.d. 99.8/n.d. n.d./n.d. 94.2/n.d. | |
Chemokine | Control of chemotaxis; recruitment of leukocytes; predominantly proinflammatory activity. | IL8 MCP1 MIP-1α | Pro Pro Pro | 100/n.d. 100/n.d. 97.3/97.4 |
Colony-stimulating factors (CSF) | Stimulation of hematopoietic progenitor cell proliferation and -differentiation. | G-CSF | Pro | 99.4/n.d. |
Transforming growth factors | Regulation of proliferation, differentiation, adhesion of cells. | TGFβ | Anti | n.d./n.d. |
Tumor necrosis factor (TNF) | Proinflammatory; activates cytotoxic T-lymphocytes. | TNFα (Cachectin) | Pro | 98.4/21.7 |
Peptide hormone | Early-phase cytokine; uremic toxin; release from myeloid cells; neutrophil migration ↓; phagocytosis performance ↓. | Resistin | Pro | n.d./n.d. |
Soluble Cytokine Receptors with Anti-inflammatory Activities | Inhibition of the natural ligands and thus suppression of the typical effect. | sIL-1RII sTNFRp55 | Anti | n.d./n.d. |
Indications | Clinical Criteria | Paraclinical Criteria |
---|---|---|
Rhabdomyolysis
| Independent of renal function | Myoglobin > 1000 U/L (observe trend) |
Inflammation (SIRS) triggered by:
|
|
|
Liver failure/Hyperbilirubinemia bridging to transplant or to recovery | Icterus |
|
Life-threatening bleeding under Direct Oral Anticoagulants (DOAC) | Medical history (dose, last intake, extent of planned operation) Type of bleeding (major or minor bleeding) Availability of specific antidotes (andexanet alfa) |
Author | Indication | Study Design | Number of Patients | APACHE II | SOFA (pre) | Procedure | Blood Flow (mL/min) | Adsorber Useful Life (h) | No of Adsorber/Patient | Change Interval (h) | Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
Scharf et al. Ann. Intensive Care. 2021 [74] | Septic shock (“cytokine storm”) | Propensity score matching analysis; retrospective | 38 with CS. 105 without CS. | n.d. | n.d. | ECMO, RRT, Hemo-perfusion | n.d. | 7–12 (Median 9) | 1 | n.d. | No difference between groups |
Schultz et al. Journal of Critical Care. 2021 [72] | Septic shock | Retrospective cohort study | 70 with CS. | 30.2 | 13.8 | CVVHD | 100–200 | 26.75 | 3.2 | 24 | With high dose 28-d mortality ↓ |
Supady et al. Lancet Respir. Med. 2021 [124] | Severe COVID 19-pneumonia with ECMO | Single centre, open-label RCT | 17 with CS. 17 without CS. | n.d. | 9.0 9.0 | ECMO | 100–700 | 24 | 3 | 24 | 28 d mortality ↑ |
Rugg et al. Biomedicines. 2020 [124] | Septic shock | Retrospective study; “genetic” matched analysis | 42 with CS. 42 without CS. | n.d. | 13.0 12.0 | CRRT | n.d. | 24 (38 Patients had only 1 CS) | 1 | 24 | 28 d and in hospital Mortality ↓ |
Kogelmann et al. Journal of the Intensive Care Society. 2020 [104] | septic shock (Pneumonia + ARDS + ECMO) | case series | 7 | 28–56 | 11–16 | CVVHD | 100–150 | (12)/24 | 4.14 | (12)/24 | Observed mortality ↓ vs. predicted mortality |
Schitteck et al. Ann. Intensive Care. 2020 [83] | septic shock | Retrospective and prospective cohort study | 43 with CS. 33 without CS. | 39 35 | n.d. | CVVHDF | n.d. | n.d. | n.d. | changed with the CRRT | No difference between groups in mortality LOS ICU ↓ |
Brouwer et al. Crit. Care. 2019 [65] | septic shock | propensity score weighted retrospective | 67 with CS. 49 without CS. | n.d. | 13.8 12.8 | CRRT | 250–400 | 24 | n.d. | 24 | 28 d mortality ↓ |
Schädler et al. PlosOne. 2017 [78] | severe sepsis, septic shock + ALI | multicenter RCT | 47 with CS. 50 without CS. | 24.6 23.8 | n.d. | Hemo-perfusion | 200–250 | 6 (for 7 d) | 7 | 24 | no effect |
Kogelmann et al. Crit. Care. 2017 [70] | septic shock | case series | 26 | 27–48 | 8–20 | CVVHD | 100–150 | (12)/24 | 2.61 | (12)/24 | Observed mortality ↓ vs. predicted mortality |
Friesecke et al. J. Artif. Organs. 2017 [71] | septic shock | Prospective interventional study | 20 | n.d. | 14.3 | CVVH/CVVHD | 189 142 | ~24 | n.d. | 24 | Lactat ↓, Vasopressor ↓ Interleukin 6 ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhler, T.; Schwier, E.; Praxenthaler, J.; Kirchner, C.; Henzler, D.; Eickmeyer, C. Therapeutic Modulation of the Host Defense by Hemoadsorption with CytoSorb®—Basics, Indications and Perspectives—A Scoping Review. Int. J. Mol. Sci. 2021, 22, 12786. https://doi.org/10.3390/ijms222312786
Köhler T, Schwier E, Praxenthaler J, Kirchner C, Henzler D, Eickmeyer C. Therapeutic Modulation of the Host Defense by Hemoadsorption with CytoSorb®—Basics, Indications and Perspectives—A Scoping Review. International Journal of Molecular Sciences. 2021; 22(23):12786. https://doi.org/10.3390/ijms222312786
Chicago/Turabian StyleKöhler, Thomas, Elke Schwier, Janina Praxenthaler, Carmen Kirchner, Dietrich Henzler, and Claas Eickmeyer. 2021. "Therapeutic Modulation of the Host Defense by Hemoadsorption with CytoSorb®—Basics, Indications and Perspectives—A Scoping Review" International Journal of Molecular Sciences 22, no. 23: 12786. https://doi.org/10.3390/ijms222312786
APA StyleKöhler, T., Schwier, E., Praxenthaler, J., Kirchner, C., Henzler, D., & Eickmeyer, C. (2021). Therapeutic Modulation of the Host Defense by Hemoadsorption with CytoSorb®—Basics, Indications and Perspectives—A Scoping Review. International Journal of Molecular Sciences, 22(23), 12786. https://doi.org/10.3390/ijms222312786