Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation
Abstract
:1. Introduction
2. Metabolic Stress
3. Cell Death
4. Complement Activation
5. Danger Signals during Ischemia
6. RNA Manipulation during IRI
7. Organ Recovery and Processing
8. Cellular Regulation of Danger Signals
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
IRI | ischemia reperfusion injury |
ROS | reactive oxygen species |
HIF-1a | hypoxia inducible factor 1 alpha |
DISC | death-induced signaling complex |
MAC | membrane attack complex |
DAMP | danger associated molecular patterns |
ECM | extracellular matrix |
TLR | toll-like receptor |
PAF | platelet-activating factor |
ICAM-1 | intracellular adhesion molecule 1 |
PDGF | platelet-derived growth factor |
eNOS | endothelial nitric oxide synthase |
pCRP | pentameric C-reactive protein |
MHC | major histocompatibility complex |
MDSC | myeloid derived suppressor cells |
rIPC | remote ischemic preconditioning |
ATG | anti-thymoglobulin |
MSC | mesenchymal stem cells |
miRNA | microRNA |
MAPC | multipotent adult progenitor cells |
References
- Global Observatory on Donation and Transplantation. 2019. Available online: http://www.transplant-observatory.org (accessed on 24 March 2020).
- Rajab, T.K.; Singh, S.K. Donation After Cardiac Death Heart Transplantation in America Is Clinically Necessary and Ethically Justified. Circ. Hear. Fail. 2018, 11, e004884. [Google Scholar] [CrossRef]
- Yarlagadda, S.G.; Coca, S.G.; Formica, J.R.N.; Poggio, E.D.; Parikh, C.R. Association between delayed graft function and allograft and patient survival: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2008, 24, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, S.; Roebuck, A.; Khoo, E.; Wigmore, S.J.; Harrison, E.M. A meta-analysis and meta-regression of outcomes including biliary complications in donation after cardiac death liver transplantation. Transpl. Int. 2014, 27, 1159–1174. [Google Scholar] [CrossRef]
- Perico, N.; Cattaneo, D.; Sayegh, M.H.; Remuzzi, G. Delayed graft function in kidney transplantation. Lancet 2004, 364, 1814–1827. [Google Scholar] [CrossRef]
- Yücel, A.; Aydogan, M.S.; Ucar, M.; Sarıcı, K.B.; Karaaslan, M. Effects of Apocynin on Liver Ischemia-Reperfusion Injury in Rats. Transplant. Proc. 2019, 51, 1180–1183. [Google Scholar] [CrossRef]
- Jaeschke, H.; Woolbright, B.L. Current strategies to minimize hepatic ischemia–reperfusion injury by targeting reactive oxygen species. Transplant. Rev. 2012, 26, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.; Smith, A.C.; et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 2016, 167, 457–470.e13. [Google Scholar] [CrossRef] [Green Version]
- Casciato, P.; Ambrosi, N.; Caro, F.; Vazquez, M.; Müllen, E.; Gadano, A.; De Santibañes, E.; De Santibañes, M.; Zandomeni, M.; Chahdi, M.; et al. α-lipoic acid reduces postreperfusion syndrome in human liver transplantation—A pilot study. Transpl. Int. 2018, 31, 1357–1368. [Google Scholar] [CrossRef] [Green Version]
- Semenza, G.L. Surviving ischemia: Adaptive responses mediated by hypoxia-inducible factor 1. J. Clin. Investig. 2000, 106, 809–812. [Google Scholar] [CrossRef]
- Lee, P.J.; Jiang, B.-H.; Chin, B.Y.; Iyer, N.V.; Alam, J.; Semenza, G.L.; Choi, A.M.K. Hypoxia-inducible Factor-1 Mediates Transcriptional Activation of the Heme Oxygenase-1 Gene in Response to Hypoxia. J. Biol. Chem. 1997, 272, 5375–5381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linkermann, A.; Skouta, R.; Himmerkus, N.; Mulay, S.R.; Dewitz, C.; De Zen, F.; Prokai, A.; Zuchtriegel, G.; Krombach, F.; Welz, P.-S.; et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. USA 2014, 111, 16836–16841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, T.; Dewitz, C.; Schmitz, J.; Schröder, A.S.; Bräsen, J.H.; Stockwell, B.R.; Murphy, J.M.; Kunzendorf, U.; Krautwald, S. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell. Mol. Life Sci. 2017, 74, 3631–3645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Feng, D.; Wang, Z.; Zhao, Y.; Sun, R.; Tian, D.; Liu, D.; Zhang, F.; Ning, S.; Yao, J.; et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019, 26, 2284–2299. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Wang, S.; Diao, H.; Guan, Q.; Zhong, R.; Jevnikar, A.M. Increasing Resistance of Tubular Epithelial Cells to Apoptosis by shRNA Therapy Ameliorates Renal Ischemia-Reperfusion Injury. Arab. Archaeol. Epigr. 2006, 6, 2256–2267. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.; Sun, H.; Feng, B.; Chen, G.; Vladau, C.; Li, M.; Chen, D.; Suzuki, M.; Min, L.; et al. Prevention of renal ischemic injury by silencing the expression of renal caspase 3 and caspase 8. Transplantation 2006, 82, 1728–1732. [Google Scholar] [CrossRef]
- Nydam, T.L.; Plenter, R.; Jain, S.; Lucia, S.; Jani, A. Caspase Inhibition During Cold Storage Improves Graft Function and Histology in a Murine Kidney Transplant Model. Transplantation 2018, 102, 1487–1495. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, T.; Zhao, Z.; Jia, Y.; Li, L.; Zhang, Y.; Song, M.; Rong, R.; Xu, M.; Nicholson, M.L.; et al. Serum-stabilized Naked Caspase-3 siRNA Protects Autotransplant Kidneys in a Porcine Model. Mol. Ther. 2014, 22, 1817–1828. [Google Scholar] [CrossRef] [Green Version]
- Molitoris, B.A.; Dagher, P.C.; Sandoval, R.M.; Campos, S.B.; Ashush, H.; Fridman, E.; Brafman, A.; Faerman, A.; Atkinson, S.J.; Thompson, J.D.; et al. siRNA Targeted to p53 Attenuates Ischemic and Cisplatin-Induced Acute Kidney Injury. J. Am. Soc. Nephrol. 2009, 20, 1754–1764. [Google Scholar] [CrossRef] [Green Version]
- Imamura, R.; Isaka, Y.; Sandoval, R.M.; Ori, A.; Adamsky, S.; Feinstein, E.; Molitoris, B.A.; Takahara, S. Intravital Two-Photon Microscopy Assessment of Renal Protection Efficacy of siRNA for p53 in Experimental Rat Kidney Transplantation Models. Cell Transplant. 2010, 19, 1659–1670. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, A.J.; Bruni, A.; Pepper, A.R.; Gala-Lopez, B.; Abualhassan, N.S. Islet cell transplantation for the treatment of type 1 diabetes: Recent advances and future challenges. Diabetes Metab. Syndr. Obesity Targets Ther. 2014, 7, 211–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Feng, B.; Chen, G.; Zhang, X.; Li, M.; Sun, H.; Liu, W.; Vladau, C.; Liu, R.; Jevnikar, A.M.; et al. Preventing Renal Ischemia–Reperfusion Injury Using Small Interfering RNA by Targeting Complement 3 Gene. Arab. Archaeol. Epigr. 2006, 6, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Kaabak, M.M.; Babenko, N.; Shapiro, R.; Zokoyev, A.; Dymova, O.; Kim, E. A prospective randomized, controlled trial of eculizumab to prevent ischemia-reperfusion injury in pediatric kidney transplantation. Pediatr. Transplant. 2018, 22, e13129. [Google Scholar] [CrossRef] [PubMed]
- Schröppel, B.; Akalin, E.; Baweja, M.; Bloom, R.D.; Florman, S.; Goldstein, M.; Haydel, B.; Hricik, D.E.; Kulkarni, S.; Levine, M.; et al. Peritransplant eculizumab does not prevent delayed graft function in deceased donor kidney transplant recipients: Results of two randomized controlled pilot trials. Am. J. Transplant. 2019, 20, 564–572. [Google Scholar] [CrossRef]
- Farrar, C.A.; Zhou, W.; Lin, T.; Sacks, S.H. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. 2006, 20, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Pratt, J.R.; Basheer, S.A.; Sacks, S.H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 2002, 8, 582–587. [Google Scholar] [CrossRef]
- Sacks, S.; Zhou, W. The role of complement in the early immune response to transplantation. Nat. Rev. Immunol. 2012, 12, 431–442. [Google Scholar] [CrossRef]
- Atkinson, C.; Floerchinger, B.; Qiao, F.; Casey, S.; Williamson, T.; Moseley, E.; Stoica, S.; Goddard, M.; Ge, X.; Tullius, S.G.; et al. Donor Brain Death Exacerbates Complement-Dependent Ischemia/Reperfusion Injury in Transplanted Hearts. Circulation 2013, 127, 1290–1299. [Google Scholar] [CrossRef] [Green Version]
- Kassimatis, T.; Qasem, A.; Douiri, A.; Ryan, E.G.; Rebollo-Mesa, I.; Nichols, L.L.; Greenlaw, R.; Olsburgh, J.; Smith, R.A.; Sacks, S.H.; et al. A double-blind randomised controlled investigation into the efficacy of Mirococept (APT070) for preventing ischaemia reperfusion injury in the kidney allograft (EMPIRIKAL): Study protocol for a randomised controlled trial. Trials 2017, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jordan, S.C.; Choi, J.; Aubert, O.; Haas, M.; Loupy, A.; Huang, E.; Peng, A.; Kim, I.; Louie, S.; Ammerman, N.; et al. A phase I/II, double-blind, placebo-controlled study assessing safety and efficacy of C1 esterase inhibitor for prevention of delayed graft function in deceased donor kidney transplant recipients. Am. J. Transplant. 2018, 18, 2955–2964. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.; Vo, A.; Choi, J.; Ammerman, N.; Lim, K.; Sethi, S.; Kim, I.; Kumar, S.; Najjar, R.; Peng, A.; et al. Three-Year Outcomes of a Randomized, Double-Blind, Placebo-Controlled Study Assessing Safety and Efficacy of C1 Esterase Inhibitor for Prevention of Delayed Graft Function in Deceased Donor Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2019, 15, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, G.; Wyburn, K.R.; Yin, J.; Bertolino, P.; Eris, J.M.; Alexander, S.I.; Sharland, A.F.; Chadban, S.J. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Investig. 2007, 117, 2847–2859. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Lim, S.W.; Li, C.; Kim, J.S.; Sun, B.K.; Ahn, K.O.; Han, S.W.; Kim, J.; Yang, C.W. Ischemia-Reperfusion Injury Activates Innate Immunity in Rat Kidneys. Transplantation 2005, 79, 1370–1377. [Google Scholar] [CrossRef]
- Shigeoka, A.A.; Holscher, T.D.; King, A.J.; Hall, F.W.; Kiosses, W.B.; Tobias, P.S.; Mackman, N.; McKay, D.B. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J. Immunol. 2007, 178, 6252–6258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, H.; Tomita, N.; Kaneda, Y.; Koike, H.; Ogihara, T.; Katsuoka, Y.; Morishita, R. Transfection of NFκB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Ther. 2003, 10, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, N.C.; Stansfield, W.E.; Willis, M.S.; Tang, R.-H.; Selzman, C.H. IKKβ inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. Am. J. Physiol. Circ. Physiol. 2007, 293, H2248–H2253. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Fan, L.; Hu, B.; Yang, J.; Li, X.; Chen, X.; Cao, C. Small interfering RNA targeting IKKβ prevents renal ischemia-reperfusion injury in rats. Am. J. Physiol. Physiol. 2011, 300, F857–F863. [Google Scholar] [CrossRef]
- Liu, X.-J.; Tan, Y.; Geng, Y.-Q.; Wang, Z.; Ye, J.-H.; Yin, X.-Y.; Fu, B. Proximal Tubule Toll-Like Receptor 4 Expression Linked to Inflammation and Apoptosis following Hypoxia/Reoxygenation Injury. Am. J. Nephrol. 2014, 39, 337–347. [Google Scholar] [CrossRef]
- Krüger, B.; Krick, S.; Dhillon, N.; Lerner, S.M.; Ames, S.; Bromberg, J.S.; Lin, M.; Walsh, L.; Vella, J.; Fischereder, M.; et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci. USA 2009, 106, 3390–3395. [Google Scholar] [CrossRef] [Green Version]
- Mulder, W.J.M.; Ochando, J.; Joosten, L.A.B.; Fayad, Z.A.; Netea, M.G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov. 2019, 18, 553–566. [Google Scholar] [CrossRef]
- Braza, M.S.; Van Leent, M.M.; Lameijer, M.; Sanchez-Gaytan, B.L.; Arts, R.J.; Pérez-Medina, C.; Conde, P.; Garcia, M.R.; Gonzalez-Perez, M.; Brahmachary, M.; et al. Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity 2018, 49, 819–828.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochando, J.; Fayad, Z.A.; Madsen, J.C.; Netea, M.G.; Mulder, W.J.M. Trained immunity in organ transplantation. Arab. Archaeol. Epigr. 2019, 20, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Y.; Petrowsky, H.; Hong, J.C.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Ischaemia–reperfusion injury in liver transplantation—from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Liver Ischemia and Reperfusion Injury: New Insights into Mechanisms of Innate-Adaptive Immune-Mediated Tissue Inflammation. Arab. Archaeol. Epigr. 2011, 11, 1563–1569. [Google Scholar] [CrossRef]
- Dragun, D.; Tullius, S.G.; Park, J.K.; Maasch, C.; Lukitsch, I.; Lippoldt, A.; Groß, V.; Luft, F.C.; Haller, H. ICAM-1 antisense oligodesoxynucleotides prevent reperfusion injury and enhance immediate graft function in renal transplantation. Kidney Int. 1998, 54, 590–602. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Fresneda, I.; Torras, J.; Lloberas, N.; Riera, M.; Cruzado, J.M.; Condom, E.; Merlos, M.; Alsina, J.; Grinyó, J.M. Cold ischemia in the absence of alloreactivity induces chronic transplant nephropathy through a process mediated by the platelet-activating factor1. Transplantation 2000, 70, 1624–1631. [Google Scholar] [CrossRef]
- Thiele, J.R.; Zeller, J.; Kiefer, J.; Braig, D.; Kreuzaler, S.; Lenz, Y.; Potempa, L.A.; Grahammer, F.; Huber, T.B.; Huber-Lang, M.; et al. A Conformational Change in C-Reactive Protein Enhances Leukocyte Recruitment and Reactive Oxygen Species Generation in Ischemia/Reperfusion Injury. Front. Immunol. 2018, 9, 675. [Google Scholar] [CrossRef]
- Yang, J.; Riella, L.; Boenisch, O.; Popoola, J.; Robles, S.; Watanabe, T.; Vanguri, V.; Yuan, X.; Guleria, I.; Turka, L.A.; et al. Paradoxical functions of B7: CD28 costimulation in a MHC class II-mismatched cardiac transplant model. Arab. Archaeol. Epigr. 2009, 9, 2837–2844. [Google Scholar] [CrossRef]
- Takada, M.; Chandraker, A.; Nadeau, K.C.; Sayegh, M.H.; Tilney, N.L. The role of the B7 costimulatory pathway in experimental cold ischemia/reperfusion injury. J. Clin. Investig. 1997, 100, 1199–1203. [Google Scholar] [CrossRef]
- Haanstra, K.G.; Ringers, J.; Sick, E.A.; Ramdien-Murli, S.; Kuhn, E.-M.; Boon, L.; Jonker, M. Prevention of kidney allograft rejection using anti-CD40 and anti-CD86 in primates. Transplantation 2003, 75, 637–643. [Google Scholar] [CrossRef]
- Larsen, C.P.; Pearson, T.C.; Adams, A.B.; Tso, P.; Shirasugi, N.; StrobertM, E.; Anderson, D.; Cowan, S.; Price, K.; Naemura, J.; et al. Rational Development of LEA29Y (belatacept), a High-Affinity Variant of CTLA4-Ig with Potent Immunosuppressive Properties. Arab. Archaeol. Epigr. 2005, 5, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Larsen, C.P.; Durrbach, A.; Wekerle, T.; Nashan, B.; Blancho, G.; Lang, P.; Grinyo, J.; Halloran, P.F.; Solez, K.; et al. Costimulation Blockade with Belatacept in Renal Transplantation. N. Engl. J. Med. 2005, 353, 770–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincenti, F.; Charpentier, B.; Vanrenterghem, Y.; Rostaing, L.; Bresnahan, B.; Darji, P.; Massari, P.; Mondragon-Ramirez, G.A.; Agarwal, M.; Di Russo, G.; et al. A Phase III Study of Belatacept-based Immunosuppression Regimens versus Cyclosporine in Renal Transplant Recipients (BENEFIT Study). Arab. Archaeol. Epigr. 2010, 10, 535–546. [Google Scholar] [CrossRef]
- Grinyó, J.M.; Rial, M.D.C.; Alberu, J.; Steinberg, S.M.; Manfro, R.C.; Nainan, G.; Vincenti, F.; Jones-Burton, C.; Kamar, N. Safety and Efficacy Outcomes 3 Years After Switching to Belatacept From a Calcineurin Inhibitor in Kidney Transplant Recipients: Results From a Phase 2 Randomized Trial. Am. J. Kidney Dis. 2017, 69, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojciechowski, D.; Chandran, S.; Vincenti, F. Early post-transplant conversion from tacrolimus to belatacept for prolonged delayed graft function improves renal function in kidney transplant recipients. Clin. Transplant. 2017, 31, e12930. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, D.; Chandran, S.; Yang, J.S.; Sarwal, M.M.; Vincenti, F. Retrospective Evaluation of the Efficacy and Safety of Belatacept with Thymoglobulin Induction and Maintenance Everolimus: A Single Center Clinical Experience. Clin. Transplant. 2017, 31, e13042. [Google Scholar] [CrossRef]
- Masson, P.; Henderson, L.; Chapman, J.R.; Craig, J.C.; Webster, A.C. Belatacept for kidney transplant recipients. Cochrane Database Syst. Rev. 2014, 2014, 010699. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Q.; Wen, J.; Chen, T.; He, L.; Wang, Y.; Yin, J.; Wu, R.; Xue, R.; Li, S.; et al. Ischemic Duration and Frequency Determines AKI-to-CKD Progression Monitored by Dynamic Changes of Tubular Biomarkers in IRI Mice. Front. Physiol. 2019, 10, 153. [Google Scholar] [CrossRef]
- Arakawa, Y.; Ushijima, K.; Tsuchiya, H.; Morishige, J.-I.; Mii, A.; Ando, H.; Tsuruoka, S.-I.; Fujimura, A. Influence of renal ischaemia-reperfusion injury on renal neutrophil gelatinase-associated lipocalin receptor (24p3R) in rats. Clin. Exp. Pharmacol. Physiol. 2019, 46, 1166–1173. [Google Scholar] [CrossRef]
- Li, H.; Feng, D.; Cai, Y.; Liu, Y.; Xu, M.; Xiang, X.; Zhou, Z.; Xia, Q.; Kaplan, M.J.; Kong, X.-N.; et al. Hepatocytes and neutrophils cooperatively suppress bacterial infection by differentially regulating lipocalin-2 and neutrophil extracellular traps. Hepatology 2018, 68, 1604–1620. [Google Scholar] [CrossRef] [Green Version]
- Borkham-Kamphorst, E.; Van De Leur, E.; Zimmermann, H.W.; Karlmark, K.R.; Tihaa, L.; Haas, U.; Tacke, F.; Berger, T.; Mak, T.W.; Weiskirchen, R. Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2013, 1832, 660–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, P.S.; Yano, J.; Yano, E.; Carroll, C.; Jayaraman, K.; Ts’O, P.O.P. Nonionic nucleic acid analogs. Synthesis and characterization of dideoxyribonucleoside methylphosphonates. Biochemistry 1979, 18, 5134–5143. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.; Egholm, M.; Berg, R.; Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991, 254, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Altmann, K.-H.; Fabbro, D.; Dean, N.M.; Geiger, T.; Monia, B.P.; Müllert, M.; Nicklin, P. Second-generation antisense oligonucleotides: Structure—Activity relationships and the design of improved signal-transduction inhibitors. Biochem. Soc. Trans. 1996, 24, 630–637. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Hamdorf, M.; Kawakita, S.; Everly, M. The Potential of MicroRNAs as Novel Biomarkers for Transplant Rejection. J. Immunol. Res. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Anglicheau, D.; Muthukumar, T.; Suthanthiran, M. MicroRNAs: Small RNAs with Big Effects. Transplantation 2010, 90, 105–112. [Google Scholar] [CrossRef]
- Amrouche, L.; Desbuissons, G.; Rabant, M.; Sauvaget, V.; Nguyen, C.; Benon, A.; Barre, P.; Rabaté, C.; Lebreton, X.; Gallazzini, M.; et al. MicroRNA-146a in Human and Experimental Ischemic AKI: CXCL8-Dependent Mechanism of Action. J. Am. Soc. Nephrol. 2016, 28, 479–493. [Google Scholar] [CrossRef]
- Khalid, U.; Newbury, L.J.; Simpson, K.; Jenkins, R.H.; Bowen, T.; Bates, L.; Sheerin, N.S.; Chavez, R.; Fraser, D. A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation. Sci. Rep. 2019, 9, 3584. [Google Scholar] [CrossRef]
- Godwin, J.G.; Ge, X.; Stephan, K.; Jurisch, A.; Tullius, S.G.; Iacomini, J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl. Acad. Sci. USA 2010, 107, 14339–14344. [Google Scholar] [CrossRef] [Green Version]
- Farid, W.R.R.; Pan, Q.; Van Der Meer, A.J.P.; De Ruiter, P.E.; Ramakrishnaiah, V.; De Jonge, J.; Kwekkeboom, J.; Janssen, H.L.A.; Metselaar, H.J.; Tilanus, H.W.; et al. Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation. Liver Transplant. 2012, 18, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Lankisch, T.O.; Voigtländer, T.; Manns, M.P.; Holzmann, A.; Dangwal, S.; Thum, T. MicroRNAs in the bile of patients with biliary strictures after liver transplantation. Liver Transplant. 2014, 20, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, Z.; Tan, C.-J.; Liao, B.-Y.; Zhang, X.; Xu, M.; Dai, Z.; Qiu, S.-J.; Huang, X.; Sun, J.; et al. Plasma MicroRNA, a Potential Biomarker for Acute Rejection After Liver Transplantation. Transplantation 2013, 95, 991–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noll, F.; Behnke, J.; Leiting, S.; Troidl, K.; Alves, G.T.; Müller-Redetzky, H.; Preissner, K.T.; Fischer, S. Self-extracellular RNA acts in synergy with exogenous danger signals to promote inflammation. PLoS ONE 2017, 12, e0190002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.M.; Carter, J.T.; Alfrey, E.J.; Ascher, N.L.; Roberts, J.P.; Freise, C.E. Prolonged cold ischemia time obviates the benefits of 0 HLA mismatches in renal transplantation. Arch. Surg. 2000, 135, 1016–1019. [Google Scholar] [CrossRef] [Green Version]
- Bruinsma, B.G.; Berendsen, T.A.; Izamis, M.-L.; Yeh, H.; Yarmush, M.L.; Uygun, K. Supercooling preservation and transplantation of the rat liver. Nat. Protoc. 2015, 10, 484–494. [Google Scholar] [CrossRef]
- De Vries, R.J.; Tessier, S.N.; Banik, P.D.; Nagpal, S.; Cronin, S.E.J.; Ozer, S.; Hafiz, E.O.A.; Van Gulik, T.M.; Yarmush, M.L.; Markmann, J.F.; et al. Supercooling extends preservation time of human livers. Nat. Biotechnol. 2019, 37, 1131–1136. [Google Scholar] [CrossRef]
- De Vries, R.J.; Tessier, S.N.; Banik, P.D.; Nagpal, S.; Cronin, S.E.J.; Ozer, S.; Hafiz, E.O.A.; Van Gulik, T.M.; Yarmush, M.L.; Markmann, J.F.; et al. Subzero non-frozen preservation of human livers in the supercooled state. Nat. Protoc. 2020, 15, 2024–2040. [Google Scholar] [CrossRef]
- Czigany, Z.; Schöning, W.; Ulmer, T.F.; Bednarsch, J.; Amygdalos, I.; Cramer, T.; Rogiers, X.; Popescu, I.; Botea, F.; Froněk, J.; et al. Hypothermic oxygenated machine perfusion (HOPE) for orthotopic liver transplantation of human liver allografts from extended criteria donors (ECD) in donation after brain death (DBD): A prospective multicentre randomised controlled trial (HOPE ECD-DBD). BMJ Open 2017, 7, e017558. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Becker, D.; Borrego, L.B.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef]
- Dos Santos, V.G.; Ramos-Muñoz, E.; García-Bermejo, M.L.; Ruiz-Hernández, M.; Rodríguez-Serrano, E.M.; Saiz-González, A.; Martínez-Perez, A.; Burgos-Revilla, F.J. MicroRNAs in Kidney Machine Perfusion Fluid as Novel Biomarkers for Graft Function. Normalization Methods for miRNAs Profile Analysis. Transplant. Proc. 2018, 51, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Meng, Q.; Zhuang, R.; Yuan, D.; Liu, J.; Lin, F.; Fan, H.; Zhou, X. Circular RNA expression alterations in extracellular vesicles isolated from murine heart post ischemia/reperfusion injury. Int. J. Cardiol. 2019, 296, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kumar, S.; Dolzhenko, E.; Alvarado, G.F.; Guo, J.; Lu, C.; Chen, Y.; Li, M.; Dessing, M.C.; Parvez, R.K.; et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2017, 2, 94716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliakbarian, M.; Nikeghbalian, S.; Ghaffaripour, S.; Bahreini, A.; Shafiee, M.; Rashidi, M.; Rajabnejad, Y. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant. Exp. Clin. Transplant. 2017, 15, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.N.; Berendsen, T.A.; Yeh, H.; Bruinsma, B.G.; Izamis, M.-L.; Dries, S.O.D.; Gillooly, A.R.; Porte, R.; Yarmush, M.L.; Uygun, K.; et al. Oxygenated UW Solution Decreases ATP Decay and Improves Survival After Transplantation of DCD Liver Grafts. Transplantation 2019, 103, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, H.; Miyagi-Shiohira, C.; Nakashima, Y.; Ebi, N.; Hamada, E.; Tamaki, Y.; Kuwae, K.; Kitamura, S.; Kobayashi, N.; Saitoh, I.; et al. A Novel Preservation Solution Containing a JNK Inhibitory Peptide Efficiently Improves Islet Yield for Porcine Islet Isolation. Transplantation 2019, 103, 344–352. [Google Scholar] [CrossRef]
- Diuwe, P.; Domagala, P.; Durlik, M.; Trzebicki, J.; Chmura, A.; Kwiatkowski, A. The effect of the use of a TNF-alpha inhibitor in hypothermic machine perfusion on kidney function after transplantation. Contemp. Clin. Trials 2017, 59, 44–50. [Google Scholar] [CrossRef]
- Ritschl, P.V.; Günther, J.; Hofhansel, L.; Kühl, A.A.; Sattler, A.; Ernst, S.; Friedersdorff, F.; Ebner, S.; Weiss, S.; Bösmüller, C.; et al. Graft Pre-conditioning by Peri-Operative Perfusion of Kidney Allografts With Rabbit Anti-human T-lymphocyte Globulin Results in Improved Kidney Graft Function in the Early Post-transplantation Period—a Prospective, Randomized Placebo-Controlled Trial. Front. Immunol. 2018, 9, 9. [Google Scholar] [CrossRef]
- Cabrera-Fuentes, H.A.; Niemann, B.; Grieshaber, P.; Wollbrueck, M.; Gehron, J.; Preissner, K.T.; Boening, A. RNase1 as a potential mediator of remote ischaemic preconditioning for cardioprotection. Eur. J. Cardio Thorac. Surg. 2015, 48, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Soendergaard, P.; Krogstrup, N.; Nicoline, V.; Secher, N.; Ravlo, K.; Keller, A.K.; Toennesen, E.; Bibby, B.M.; Moldrup, U.; Ostraat, E.O.; et al. Improved GFR and renal plasma perfusion following remote ischaemic conditioning in a porcine kidney transplantation model. Transpl. Int. 2012, 25, 1002–1012. [Google Scholar] [CrossRef]
- Krogstrup, N.; Nicoline, V.; Oltean, M.; Nieuwenhuijs-Moeke, G.J.; Dor, F.J.M.F.; Møldrup, U.; Krag, S.P.; Bibby, B.M.; Birn, H.; Jespersen, B. Remote Ischemic Conditioning on Recipients of Deceased Renal Transplants Does Not Improve Early Graft Function: A Multicenter Randomized, Controlled Clinical Trial. Arab. Archaeol. Epigr. 2016, 17, 1042–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veighey, K.V.; Nicholas, J.M.; Clayton, T.; Knight, R.; Robertson, S.; Dalton, N.; Harber, M.; Watson, C.J.; De Fijter, J.W.; Loukogeorgakis, S.; et al. Early remote ischaemic preconditioning leads to sustained improvement in allograft function after live donor kidney transplantation: Long-term outcomes in the REnal Protection against Ischaemia–Reperfusion in transplantation (REPAIR) randomised trial. Br. J. Anaesth. 2019, 123, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, Y.; Gao, F.; Ren, F.; Busuttil, R.W.; Kupiec-Weglinski, J.W.; Zhai, Y. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology 2009, 50, 1537–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, T.M.; Shirah, W.B.; Khimenko, P.L.; Paisley, P.; Lausch, R.N.; Taylor, A.E. Involvement of CD40-CD40L signaling in postischemic lung injury. Am. J. Physiol. Cell. Mol. Physiol. 2002, 283, L1255–L1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmann, K.; Hughes, C.C.; Schechner, J.; Fanslow, W.C.; Pober, J.S. CD40 on human endothelial cells: Inducibility by cytokines and functional regulation of adhesion molecule expression. Proc. Natl. Acad. Sci. USA 1995, 92, 4342–4346. [Google Scholar] [CrossRef] [Green Version]
- Van Kooten, C.; Gerritsma, J.S.; Paape, M.E.; Van Es, L.A.; Banchereau, J.; Daha, M.R. Possible role for CD40-CD40L in the regulation of interstitial infiltration in the kidney. Kidney Int. 1997, 51, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Gaweco, A.S.; Mitchell, B.L.; Lucas, B.A.; McClatchey, K.D.; Van Thiel, D.H. CD40 expression on graft infiltrates and parenchymal CD154 (CD40L) induction in human chronic renal allograft rejection. Kidney Int. 1999, 55, 1543–1552. [Google Scholar] [CrossRef] [Green Version]
- Hollenbaugh, D.; Mischel-Petty, N.; Edwards, C.P.; Simon, J.C.; Denfeld, R.W.; A Kiener, P.; Aruffo, A. Expression of functional CD40 by vascular endothelial cells. J. Exp. Med. 1995, 182, 33–40. [Google Scholar] [CrossRef]
- Kirk, A.D.; Burkly, L.C.; Batty, D.S.; Baumgartner, R.E.; Berning, J.D.; Buchanan, K.; Fechner, J.H.; Germond, R.L.; Kampen, R.L.; Patterson, N.B.; et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat. Med. 1999, 5, 686–693. [Google Scholar] [CrossRef]
- De Ramon, L.; Ripoll, È.; Merino, A.; Lucia, M.; Aran, J.M.; Pérez-Rentero, S.; Lloberas, N.; Cruzado, J.M.; Grinyó, J.M.; Torras, J. CD154-CD40 T-cell co-stimulation pathway is a key mechanism in kidney ischemia-reperfusion injury. Kidney Int. 2015, 88, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Rekers, N.V.; Bajema, I.M.; Mallat, M.J.; Petersen, B.; Anholts, J.D.; Swings, G.M.; Van Miert, P.P.; Kerkhoff, C.; Roth, J.; Popp, D.; et al. Beneficial Immune Effects of Myeloid-Related Proteins in Kidney Transplant Rejection. Arab. Archaeol. Epigr. 2016, 16, 1441–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochando, J.; Conde, P.; Alberto, U.-R.; Paz-Artal, E. Tolerogenic Role of Myeloid Suppressor Cells in Organ Transplantation. Front. Immunol. 2019, 10, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veglia, F.; Perego, M.; Gabrilovich, D.I. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 2018, 19, 108–119. [Google Scholar] [CrossRef]
- Lee, Y.S.; Zhang, T.; Saxena, V.; Li, L.; Piao, W.; Bromberg, J.S.; Scalea, J. Myeloid-derived suppressor cells expand after transplantation and their augmentation increases graft survival. Arab. Archaeol. Epigr. 2020, 20, 2343–2355. [Google Scholar] [CrossRef]
- Shimizu, K.; Libby, P.; Rocha, V.Z.; Folco, E.J.; Shubiki, R.; Grabie, N.; Jang, S.; Lichtman, A.H.; Shimizu, A.; Hogg, N.; et al. Loss of Myeloid Related Protein-8/14 Exacerbates Cardiac Allograft Rejection. Circulation 2011, 124, 2920–2932. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.-J.; Ryu, J.-H.; Piao, H.; Hwang, J.H.; Han, D.; Lee, S.-K.; Jang, J.Y.; Lee, J.; Koo, T.Y.; Yang, J. Granulocyte Colony-Stimulating Factor Attenuates Renal Ischemia-Reperfusion Injury by Inducing Myeloid-Derived Suppressor Cells. J. Am. Soc. Nephrol. 2020, 31, 731–746. [Google Scholar] [CrossRef]
- Pegues, M.A.; McWilliams, I.L.; Szalai, A.J. C-reactive protein exacerbates renal ischemia-reperfusion injury: Are myeloid-derived suppressor cells to blame? Am. J. Physiol. Physiol. 2016, 311, F176–F181. [Google Scholar] [CrossRef] [Green Version]
- Upadhaya, S.; Sawai, C.M.; Papalexi, E.; Rashidfarrokhi, A.; Jang, G.; Chattopadhyay, P.; Satija, R.; Reizis, B. Kinetics of adult hematopoietic stem cell differentiation in vivo. J. Exp. Med. 2018, 215, 2815–2832. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.L.; Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 2001, 98, 14541–14546. [Google Scholar] [CrossRef] [Green Version]
- Meucci, O.; Fatatis, A.; Simen, A.A.; Bushell, T.J.; Gray, P.W.; Miller, R.J. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl. Acad. Sci. USA 1998, 95, 14500–14505. [Google Scholar] [CrossRef] [Green Version]
- Kayali, A.G.; Van Gunst, K.; Campbell, I.L.; Stotland, A.; Kritzik, M.; Liu, G.; Flodström-Tullberg, M.; Zhang, Y.-Q.; Sarvetnick, N. The stromal cell–derived factor-1α/CXCR4 ligand–receptor axis is critical for progenitor survival and migration in the pancreas. J. Cell Biol. 2003, 163, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Liu, S.; Li, Y.; Wang, X.; Xue, W.; Ge, G.; Luo, X. The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury. PLoS ONE 2012, 7, e34608. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Dai, S.; Wu, W.-J.; Tan, W.; Zhu, X.; Mu, J.; Guo, Y.; Bolli, R.; Rokosh, G. Stromal Cell–Derived Factor-1α Confers Protection Against Myocardial Ischemia/Reperfusion Injury. Circulation 2007, 116, 654–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, E.; Ohashi, K.; Sato, Y.; Kashiwagi, M.; Joguchi, A.; Naruse, N. A possible role of autogenous IFN-β for cytokine productions in human fibroblasts. J. Cell. Biochem. 2007, 100, 1459–1476. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Andrews, W.W.; Mercer, B.M.; Moawad, A.H.; Meis, P.J.; Iams, J.D.; Das, A.; Caritis, S.N.; Roberts, J.M.; Miodovnik, M.; et al. The Preterm Prediction Study: Granulocyte colony-stimulating factor and spontaneous preterm birth. Am. J. Obstet. Gynecol. 2000, 182, 625–630. [Google Scholar] [CrossRef]
- Cheng, M.-X.; Li, J.-Z.; Chen, Y.; Cao, D.; Gong, J.-P.; Tu, B. VEGF-C attenuates ischemia reperfusion injury of liver graft in rats. Transpl. Immunol. 2019, 54, 59–64. [Google Scholar] [CrossRef]
- Haga, H.; Yan, I.K.; Borrelli, D.A.; Matsuda, A.; Parasramka, M.; Shukla, N.; Lee, D.D.; Patel, T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury. Liver Transplant. 2017, 23, 791–803. [Google Scholar] [CrossRef]
- Barzegar, M.; Kaur, G.; Gavins, F.; Wang, Y.; Boyer, C.; Alexander, J.S. Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res. 2019, 37, 101421. [Google Scholar] [CrossRef]
- Beiral, H.J.V.; Rodrigues-Ferreira, C.; Fernandes, A.M.; Gonsalez, S.R.; Mortari, N.C.; Takiya, C.M.; Sorenson, M.M.; Figueiredo-Freitas, C.; Galina, A.; Vieyra, A. The Impact of Stem Cells on Electron Fluxes, Proton Translocation, and ATP Synthesis in Kidney Mitochondria after Ischemia/Reperfusion. Cell Transplant. 2014, 23, 207–220. [Google Scholar] [CrossRef]
- Ueda, K.; Takano, H.; Hasegawa, H.; Niitsuma, Y.; Qin, Y.; Ohtsuka, M.; Komuro, I. Granulocyte Colony Stimulating Factor Directly Inhibits Myocardial Ischemia-Reperfusion Injury Through Akt–Endothelial NO Synthase Pathway. Arter. Thromb. Vasc. Biol. 2006, 26, e108–e113. [Google Scholar] [CrossRef]
- Schulz, R.; Kelm, M.; Heusch, G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 2004, 61, 402–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, M.; Qin, Y.; Takano, H.; Minamino, T.; Zou, Y.; Toko, H.; Ohtsuka, M.; Matsuura, K.; Sano, M.; Nishi, J.-I.; et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med. 2005, 11, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Lane, T.; Law, P.; Maruyama, M.; Young, D.; Burgess, J.; Mullen, M.; Mealiffe, M.; Terstappen, L.; Hardwick, A.; Moubayed, M. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: Potential role in allogeneic marrow transplantation. Blood 1995, 85, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broxmeyer, H.E.; Orschell, C.M.; Clapp, D.W.; Hangoc, G.; Cooper, S.; Plett, P.A.; Liles, W.C.; Li, X.; Graham-Evans, B.; Campbell, T.B.; et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 2005, 201, 1307–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liles, W.C.; Broxmeyer, H.E.; Rodger, E.; Wood, B.; Hübel, K.; Cooper, S.; Hangoc, G.; Bridger, G.J.; Henson, G.W.; Calandra, G.; et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003, 102, 2728–2730. [Google Scholar] [CrossRef]
- Devine, S.M.; Flomenberg, N.; Vesole, D.H.; Liesveld, J.; Weisdorf, D.; Badel, K.; Calandra, G.; DiPersio, J.F. Rapid Mobilization of CD34+ Cells Following Administration of the CXCR4 Antagonist AMD3100 to Patients With Multiple Myeloma and Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 2004, 22, 1095–1102. [Google Scholar] [CrossRef]
- Flomenberg, N. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 2005, 106, 1867–1874. [Google Scholar] [CrossRef]
- Micallef, I.N.; Stiff, P.J.; DiPersio, J.F.; Maziarz, R.T.; Mccarty, J.M.; Bridger, G.; Calandra, G. Successful Stem Cell Remobilization Using Plerixafor (Mozobil) Plus Granulocyte Colony-Stimulating Factor in Patients with Non-Hodgkin Lymphoma: Results from the Plerixafor NHL Phase 3 Study Rescue Protocol. Biol. Blood Marrow Transplant. 2009, 15, 1578–1586. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Huang, Z.; Han, F.; Cai, R.; Cao, R.; Zhao, D.-Q.; Hong, L.; Na, N.; Li, H.; Miao, B.; et al. Allogeneic mesenchymal stem cells as induction therapy are safe and feasible in renal allografts: Pilot results of a multicenter randomized controlled trial. J. Transl. Med. 2018, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
Ref. | Author | Year | Model | miRNA | Effect | Detection Technique |
---|---|---|---|---|---|---|
[63] | Miller et al. | 1979 | synthetic | antisense oligonucleotides | Base specific hybridization | n/a |
[64] | Nielsen et al. | 1991 | synthetic | antisense oligonucleotides | Base specific hybridization | n/a |
[65] | Altmann et al. | 1996 | synthetic | antisense oligonucleotides | 2nd generation | n/a |
[66] | Fire et al. | 1998 | C. elegans | sequence specific post-transcriptional gene silencing | dsRNA interference | n/a |
[71] | Godwin et al. | 2010 | Mouse | miR-21 | Protective apoptosis kidney | Microarray + PCR |
[72] | Farid et al. | 2012 | Human (n = 107) | miR-122, miR-148a, miR-192 | Liver injury | RT-PCR (biased) |
[74] | Hu et al. | 2013 | Rat | miR-192, miR-22 | Liver injury | Microarray |
[74] | Hu et al. | 2013 | Rat | miR-146 | Acute rejection kidney | Microarray |
[73] | Lankisch et al. | 2014 | Human (n = 88) | miR-517, miR-892a, miR-106a | ITBL | Microarray + PCR |
[69] | Amrouche et al. | 2017 | Mouse, human | miR-146 | AKI/IRI | RT-PCR (biased) |
[70] | Khalid et al. | 2018 | Human | miR-9, miR-10, miR-21, miR-29a, miR-221, miR-429 | DGF | Microarray |
Reference | Year | Patients | Target | Mechanism in IRI | Intervention | Follow-up | Outcome | Clinical Notes |
---|---|---|---|---|---|---|---|---|
[53] | 2005, Vincenti et al. | n = 218 | CTLA4 | Immune activation | Belatacept | 1 year | BPAR 6mo | Non-inferior to CI |
[54] | 2010, Vincenti et al. | n = 686 | CTLA4 | Immune activation | Belatacept | 1 year | Composite | Posttxp lymphoproliferative more common in Belatacept, higher early acute rejection |
[102] | 2016, Rekers et al. | n = 109 (KTX recipients) | Myeloid cells | Secrete S-100 and A6 | Immunomodulation | 10 years | Graft survival | S100 = less DC maturation = less T cell activity = better graft outcomes |
[88] | 2017, Diuwe et al. | n = 94 | TNF alpha | Immune activation | Etanercept | 3 years | Composite | Ex vivo, no differences between groups |
[92] | 2017, Krogstrup et al. | n = 225 (KTX recipients) | All pathways | Global | RIPC (BP cuff) | 21 days | Time to 50% drop in plasma Cr | No sig. differences, RIPC protocol not optimized? |
[85] | 2017, Aliakbarian et al. | n = 115 (LTX recipients) | N-acetylcysteine | Hepatoprotective | Adding to UW solution | Hospital stay | Postreperfusion hypotension | Hypotension after reperfusion more common in experimental group |
[31] | 2018, Jordan et al. | n = 105 (KTX recipients) | C1 esterase inhibitor | Vascular leakage | Intra-op C1 inhibitor | 1 year | Graft function | DGF is IRI-induced |
[24] | 2018, Kaabak et al. | n = 57 (KTX recipients) | C5b-9 | Immune activation | Pre-op Eculizumab | 3 years | Graft function | Better early graft function and biopsy scores but unacceptably high number of early graft losses |
[10] | 2018, Casciato et al. | n = 40 (LTX recipients) | Alpha lipoic acid | Antioxidant (HIF-alpha) | ALA before reperfusion | 30 days | Gene changes to hypoxia/ROS | qPCR for panel of postreperfusion genes, alarmins |
[130] | 2018, Sun et al. | n = 42 (KTX recipients) | Allogenic MSC | Immunomodulation | UC-MSC before and during Txp | 1 year | Graft function | Novel cell-based approach, delivery not optimized yet (renal artery?) |
[89] | 2018, Ritschl et al. | n = 50 (KTX recipients) | Periop organ | ECD, DCD grafts | Perioperative perfusion with ATLG | 1 year | Need for dialysis | No change in long term |
[93] | 2019, Veighey et al. | n = 406 KTX live donor pairs | Global | Global | RIPC = cuff to limb | 5 years | Early eGFR, 5yr-survival | Living donation is a scheduled surgery, much easier to arrange for RIPC. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, A.R.; Sánchez-Tarjuelo, R.; Cravedi, P.; Ochando, J.; López-Hoyos, M. Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation. Int. J. Mol. Sci. 2020, 21, 8549. https://doi.org/10.3390/ijms21228549
Fernández AR, Sánchez-Tarjuelo R, Cravedi P, Ochando J, López-Hoyos M. Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation. International Journal of Molecular Sciences. 2020; 21(22):8549. https://doi.org/10.3390/ijms21228549
Chicago/Turabian StyleFernández, André Renaldo, Rodrigo Sánchez-Tarjuelo, Paolo Cravedi, Jordi Ochando, and Marcos López-Hoyos. 2020. "Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation" International Journal of Molecular Sciences 21, no. 22: 8549. https://doi.org/10.3390/ijms21228549
APA StyleFernández, A. R., Sánchez-Tarjuelo, R., Cravedi, P., Ochando, J., & López-Hoyos, M. (2020). Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation. International Journal of Molecular Sciences, 21(22), 8549. https://doi.org/10.3390/ijms21228549