Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome with and without Hunner Lesion: A Review and Future Perspectives
Abstract
:1. Introduction
2. Disease Concept and Classification of IC/BPS
3. Biomarkers of IC/BPS
3.1. Immunological Inflammatory Process in the Bladder
3.1.1. Chemokines
3.1.2. Proinflammatory Cytokines
3.1.3. Toll-like Receptor
3.1.4. Angiogenic Factors
3.2. Neurogenic Inflammation
Mast Cell Infiltration
3.3. Urothelial Deficiency
3.3.1. Glycosaminoglycans
3.3.2. Growth Factors for Epithelium
3.4. Nociceptive Reflux Pathways
3.5. Somatic Symptoms
4. Summary and Future Perspectives
Funding
Conflicts of Interest
Abbreviations
APF | antiproliferative factor |
BAFF | tumor necrosis factor family B-cell-activating factor |
CCL2 | chemokine (C-C motif) ligand 2 |
CXCL10 | chemokine (C-X-C motif) ligand 10 |
EGF | epidermal growth factor |
ESSIC | International Society for the Study of BPS |
FSS | functional somatic syndrome |
GAG | glycosaminoglycan |
HB-EGF | heparin-binding growth factor-like growth factor |
HIF1α | hypoxia-inducible factor 1α |
IC/BPS | interstitial cystitis/bladder pain syndrome |
MMP | matrix metalloproteinase |
NGF | matrix metalloproteinase |
PD-ECGF | platelet-derived endothelial cell growth factor |
TLR | Toll-like receptor |
UCPPS | urological chronic pelvic pain syndrome |
VEGF | vascular endothelial growth factor |
References
- Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2020, 27, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Hanno, P.M.; Erickson, D.; Moldwin, R.; Faraday, M.M. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J. Urol. 2015, 193, 1545–1553. [Google Scholar] [CrossRef]
- Van de Merwe, J.P.; Nordling, J.; Bouchelouche, P.; Bouchelouche, K.; Cervigni, M.; Daha, L.K.; Elneil, S.; Fall, M.; Hohlbrugger, G.; Irwin, P.; et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: An ESSIC proposal. Eur. Urol. 2008, 53, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Hanno, P. Phenotyping of interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2019, 26 (Suppl. S1), 17–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, Y.; Luo, Y.; Hanno, P.M.; Maeda, D.; Homma, Y. Interstitial cystitis/bladder pain syndrome: The evolving landscape, animal models and future perspectives. Int. J. Urol. 2020, 27, 491–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, D.; Akiyama, Y.; Morikawa, T.; Kunita, A.; Ota, Y.; Katoh, H.; Niimi, A.; Nomiya, A.; Ishikawa, S.; Goto, A.; et al. Hunner-Type (Classic) Interstitial Cystitis: A Distinct Inflammatory Disorder Characterized by Pancystitis, with Frequent Expansion of Clonal B-Cells and Epithelial Denudation. PLoS ONE 2015, 10, e0143316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, Y. Update on the Pathophysiology of Interstitial Cystitis /Bladder Pain Syndrome. Curr. Bladder Dysfunc. Rep. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Akiyama, Y.; Maeda, D.; Katoh, H.; Morikawa, T.; Niimi, A.; Nomiya, A.; Sato, Y.; Kawai, T.; Goto, A.; Fujimura, T.; et al. Molecular Taxonomy of Interstitial Cystitis/Bladder Pain Syndrome Based on Whole Transcriptome Profiling by Next-Generation RNA Sequencing of Bladder Mucosal Biopsies. J. Urol. 2019, 202, 290–300. [Google Scholar] [CrossRef]
- Akiyama, Y.; Homma, Y.; Maeda, D. Pathology and terminology of interstitial cystitis/bladder pain syndrome: A review. Histol. Histopathol. 2019, 34, 25–32. [Google Scholar] [CrossRef]
- Warren, J.W. Bladder pain syndrome/interstitial cystitis as a functional somatic syndrome. J. Psychosom. Res. 2014, 77, 510–515. [Google Scholar] [CrossRef]
- Ronstrom, C.; Lai, H.H. Presenting an atlas of Hunner lesions in interstitial cystitis which can be identified with office cystoscopy. Neurourol. Urodyn. 2020, 39, 2394–2400. [Google Scholar] [CrossRef]
- Fall, M.; Nordling, J.; Cervigni, M.; Dinis Oliveira, P.; Fariello, J.; Hanno, P.; Kabjorn-Gustafsson, C.; Logadottir, Y.; Meijlink, J.; Mishra, N.; et al. Hunner lesion disease differs in diagnosis, treatment and outcome from bladder pain syndrome: An ESSIC working group report. Scand. J. Urol. 2020, 54, 91–98. [Google Scholar] [CrossRef]
- Lai, H.H.; Pickersgill, N.A.; Vetter, J.M. Hunner Lesion Phenotype in Interstitial Cystitis/Bladder Pain Syndrome: A Systematic Review and Meta-Analysis. J. Urol. 2020, 204, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Doiron, R.C.; Tolls, V.; Irvine-Bird, K.; Kelly, K.L.; Nickel, J.C. Clinical Phenotyping Does Not Differentiate Hunner Lesion Subtype of Interstitial Cystitis/Bladder Pain Syndrome: A Relook at the Role of Cystoscopy. J. Urol. 2016, 196, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.M.; Killinger, K.A.; Mounayer, M.H.; Boura, J.A. Are ulcerative and nonulcerative interstitial cystitis/painful bladder syndrome 2 distinct diseases? A study of coexisting conditions. Urology 2011, 78, 301–308. [Google Scholar] [CrossRef]
- Chennamsetty, A.; Khourdaji, I.; Goike, J.; Killinger, K.A.; Girdler, B.; Peters, K.M. Electrosurgical management of Hunner ulcers in a referral center’s interstitial cystitis population. Urology 2015, 85, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.W.; Howard, F.M.; Cross, R.K.; Good, J.L.; Weissman, M.M.; Wesselmann, U.; Langenberg, P.; Greenberg, P.; Clauw, D.J. Antecedent nonbladder syndromes in case-control study of interstitial cystitis/painful bladder syndrome. Urology 2009, 73, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.W.; Wesselmann, U.; Morozov, V.; Langenberg, P.W. Numbers and types of nonbladder syndromes as risk factors for interstitial cystitis/painful bladder syndrome. Urology 2011, 77, 313–319. [Google Scholar] [CrossRef]
- Johansson, S.L.; Fall, M. Clinical features and spectrum of light microscopic changes in interstitial cystitis. J. Urol. 1990, 143, 1118–1124. [Google Scholar] [CrossRef]
- Wennevik, G.E.; Meijlink, J.M.; Hanno, P.; Nordling, J. The Role of Glomerulations in Bladder Pain Syndrome: A Review. J. Urol. 2016, 195, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Morikawa, T.; Maeda, D.; Shintani, Y.; Niimi, A.; Nomiya, A.; Nakayama, A.; Igawa, Y.; Fukayama, M.; Homma, Y. Increased CXCR3 Expression of Infiltrating Plasma Cells in Hunner Type Interstitial Cystitis. Sci. Rep. 2016, 6, 28652. [Google Scholar] [CrossRef] [PubMed]
- Homma, Y.; Nomiya, A.; Tagaya, M.; Oyama, T.; Takagaki, K.; Nishimatsu, H.; Igawa, Y. Increased mRNA expression of genes involved in pronociceptive inflammatory reactions in bladder tissue of interstitial cystitis. J. Urol. 2013, 190, 1925–1931. [Google Scholar] [CrossRef]
- Ogawa, T.; Homma, T.; Igawa, Y.; Seki, S.; Ishizuka, O.; Imamura, T.; Akahane, S.; Homma, Y.; Nishizawa, O. CXCR3 binding chemokine and TNFSF14 over expression in bladder urothelium of patients with ulcerative interstitial cystitis. J. Urol. 2010, 183, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Killinger, K.; Tyagi, V.; Nirmal, J.; Chancellor, M.; Peters, K.M. Urinary chemokines as noninvasive predictors of ulcerative interstitial cystitis. J. Urol. 2012, 187, 2243–2248. [Google Scholar] [CrossRef] [Green Version]
- Furuta, A.; Yamamoto, T.; Suzuki, Y.; Gotoh, M.; Egawa, S.; Yoshimura, N. Comparison of inflammatory urine markers in patients with interstitial cystitis and overactive bladder. Int. Urogynecol. J. 2018, 29, 961–966. [Google Scholar] [CrossRef]
- Niimi, A.; Igawa, Y.; Aizawa, N.; Honma, T.; Nomiya, A.; Akiyama, Y.; Kamei, J.; Fujimura, T.; Fukuhara, H.; Homma, Y. Diagnostic value of urinary CXCL10 as a biomarker for predicting Hunner type interstitial cystitis. Neurourol. Urodyn. 2018, 37, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine biomarkers in ESSIC type 2 interstitial cystitis/bladder pain syndrome and overactive bladder with developing a novel diagnostic algorithm. Sci. Rep. 2021, 11, 914. [Google Scholar] [CrossRef]
- Peters, K.M.; Jayabalan, N.; Bui, D.; Killinger, K.; Chancellor, M.; Tyagi, P. Effect of Sacral Neuromodulation on Outcome Measures and Urine Chemokines in Interstitial Cystitis/Painful Bladder Syndrome Patients. Low. Urin. Tract Symptoms 2015, 7, 77–83. [Google Scholar] [CrossRef]
- Lotz, M.; Villiger, P.; Hugli, T.; Koziol, J.; Zuraw, B.L. Interleukin-6 and interstitial cystitis. J. Urol. 1994, 152, 869–873. [Google Scholar] [CrossRef]
- Logadottir, Y.; Delbro, D.; Fall, M.; Gjertsson, I.; Jirholt, P.; Lindholm, C.; Peeker, R. Cytokine expression in patients with bladder pain syndrome/interstitial cystitis ESSIC type 3C. J. Urol. 2014, 192, 1564–1568. [Google Scholar] [CrossRef]
- Erickson, D.R.; Xie, S.X.; Bhavanandan, V.P.; Wheeler, M.A.; Hurst, R.E.; Demers, L.M.; Kushner, L.; Keay, S.K. A comparison of multiple urine markers for interstitial cystitis. J. Urol. 2002, 167, 2461–2469. [Google Scholar] [CrossRef]
- Lamale, L.M.; Lutgendorf, S.K.; Zimmerman, M.B.; Kreder, K.J. Interleukin-6, histamine, and methylhistamine as diagnostic markers for interstitial cystitis. Urology 2006, 68, 702–706. [Google Scholar] [CrossRef]
- Corcoran, A.T.; Yoshimura, N.; Tyagi, V.; Jacobs, B.; Leng, W.; Tyagi, P. Mapping the cytokine profile of painful bladder syndrome/interstitial cystitis in human bladder and urine specimens. World J. Urol. 2013, 31, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufour, A. Degradomics of matrix metalloproteinases in inflammatory diseases. Front. Biosci. (Sch. Ed.) 2015, 7, 150–167. [Google Scholar] [CrossRef]
- Van Lint, P.; Libert, C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J. Leukoc. Biol. 2007, 82, 1375–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagher, A.; Curatolo, A.; Sachdev, M.; Stephens, A.J.; Mullins, C.; Landis, J.R.; van Bokhoven, A.; El-Hayek, A.; Froehlich, J.W.; Briscoe, A.C.; et al. Identification of novel non-invasive biomarkers of urinary chronic pelvic pain syndrome: Findings from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. BJU Int. 2017, 120, 130–142. [Google Scholar] [CrossRef]
- Katsifis, G.E.; Rekka, S.; Moutsopoulos, N.M.; Pillemer, S.; Wahl, S.M. Systemic and local interleukin-17 and linked cytokines associated with Sjogren’s syndrome immunopathogenesis. Am. J. Pathol. 2009, 175, 1167–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silfvast-Kaiser, A.; Paek, S.Y.; Menter, A. Anti-IL17 therapies for psoriasis. Expert Opin. Biol. Ther. 2019, 19, 45–54. [Google Scholar] [CrossRef]
- Schrepf, A.; O’Donnell, M.A.; Luo, Y.; Bradley, C.S.; Kreder, K.J.; Lutgendorf, S.K. Inflammation and Symptom Change in Interstitial Cystitis or Bladder Pain Syndrome: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network Study. Urology 2016, 90, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Ichihara, K.; Aizawa, N.; Akiyama, Y.; Kamei, J.; Masumori, N.; Andersson, K.E.; Homma, Y.; Igawa, Y. Toll-like receptor 7 is overexpressed in the bladder of Hunner-type interstitial cystitis, and its activation in the mouse bladder can induce cystitis and bladder pain. Pain 2017, 158, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Jing, X.; Lutgendorf, S.K.; Bradley, C.S.; Schrepf, A.; Erickson, B.A.; Magnotta, V.A.; Ness, T.J.; Kreder, K.J.; O’Donnell, M.A.; et al. Cystitis-induced bladder pain is Toll-like receptor 4 dependent in a transgenic autoimmune cystitis murine model: A MAPP Research Network animal study. Am. J. Physiol. Ren. Physiol. 2019, 317, F90–F98. [Google Scholar] [CrossRef] [PubMed]
- Schrepf, A.; Bradley, C.S.; O’Donnell, M.; Luo, Y.; Harte, S.E.; Kreder, K.; Lutgendorf, S. Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research, N. Toll-like Receptor 4 and comorbid pain in Inter-stitial Cystitis/Bladder Pain Syndrome: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain research network study. Brain Behav. Immun. 2015, 49, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Kiuchi, H.; Tsujimura, A.; Takao, T.; Yamamoto, K.; Nakayama, J.; Miyagawa, Y.; Nonomura, N.; Takeyama, M.; Okuyama, A. Increased vascular endothelial growth factor expression in patients with bladder pain syndrome/interstitial cystitis: Its association with pain severity and glomerulations. BJU Int. 2009, 104, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Koskela, L.R.; Thiel, T.; Ehren, I.; De Verdier, P.J.; Wiklund, N.P. Localization and expression of inducible nitric oxide synthase in biopsies from patients with interstitial cystitis. J. Urol. 2008, 180, 737–741. [Google Scholar] [CrossRef]
- Logadottir, Y.R.; Ehren, I.; Fall, M.; Wiklund, N.P.; Peeker, R.; Hanno, P.M. Intravesical nitric oxide production discriminates between classic and nonulcer interstitial cystitis. J. Urol. 2004, 171, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Miyakawa, J.; O’Donnell, M.A.; Kreder, K.J.; Luo, Y.; Maeda, D.; Ushiku, T.; Kume, H.; Homma, Y. Overexpression of HIF1alpha in Hunner Lesions of Interstitial Cystitis: Pathophysiological Implications. J. Urol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Tamaki, M.; Ogawa, O.; Yoshimura, N. Over expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in patients with interstitial cystitis and bladder carcinoma. J. Urol. 2002, 167, 347–351. [Google Scholar] [CrossRef]
- Tamaki, M.; Saito, R.; Ogawa, O.; Yoshimura, N.; Ueda, T. Possible mechanisms inducing glomerulations in interstitial cystitis: Relationship between endoscopic findings and expression of angiogenic growth factors. J. Urol. 2004, 172, 945–948. [Google Scholar] [CrossRef]
- Larsen, S.; Thompson, S.A.; Hald, T.; Barnard, R.J.; Gilpin, C.J.; Dixon, J.S.; Gosling, J.A. Mast cells in interstitial cystitis. Br. J. Urol. 1982, 54, 283–286. [Google Scholar] [CrossRef]
- Kastrup, J.; Hald, T.; Larsen, S.; Nielsen, V.G. Histamine content and mast cell count of detrusor muscle in patients with interstitial cystitis and other types of chronic cystitis. Br. J. Urol. 1983, 55, 495–500. [Google Scholar] [CrossRef]
- Aldenborg, F.; Fall, M.; Enerback, L. Proliferation and transepithelial migration of mucosal mast cells in interstitial cystitis. Immunology 1986, 58, 411–416. [Google Scholar]
- Lynes, W.L.; Flynn, S.D.; Shortliffe, L.D.; Lemmers, M.; Zipser, R.; Roberts, L.J., 2nd; Stamey, T.A. Mast cell involvement in interstitial cystitis. J. Urol. 1987, 138, 746–752. [Google Scholar] [CrossRef]
- Christmas, T.J.; Rode, J. Characteristics of mast cells in normal bladder, bacterial cystitis and interstitial cystitis. Br. J. Urol. 1991, 68, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Sant, G.R.; El-Mansoury, M.; Letourneau, R.; Ucci, A.A., Jr.; Meares, E.M., Jr. Activation of bladder mast cells in interstitial cystitis: A light and electron microscopic study. J. Urol. 1995, 153, 629–636. [Google Scholar] [CrossRef]
- Peeker, R.; Enerback, L.; Fall, M.; Aldenborg, F. Recruitment, distribution and phenotypes of mast cells in interstitial cystitis. J. Urol. 2000, 163, 1009–1015. [Google Scholar] [CrossRef]
- Yamada, T.; Murayama, T.; Mita, H.; Akiyama, K. Subtypes of bladder mast cells in interstitial cystitis. Int. J. Urol. 2000, 7, 292–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.S.; Mortensen, S.; Nordling, J.; Horn, T. Quantifying mast cells in bladder pain syndrome by immunohistochemical analysis. BJU Int. 2008, 102, 204–207. [Google Scholar] [CrossRef]
- Liu, H.-T.; Jiang, Y.-H.; Kuo, H.-C. Alteration of Urothelial Inflammation, Apoptosis, and Junction Protein in Patients with Various Bladder Conditions and Storage Bladder Symptoms Suggest Common Pathway Involved in Underlying Pathophysiology. LUTS Low. Urin. Tract Symptoms 2015, 7, 102–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamper, M.; Regauer, S.; Welter, J.; Eberhard, J.; Viereck, V. Are mast cells still good biomarkers for bladder pain syndrome/interstitial cystitis? J. Urol. 2015, 193, 1994–2000. [Google Scholar] [CrossRef]
- Akiyama, Y.; Maeda, D.; Morikawa, T.; Niimi, A.; Nomiya, A.; Yamada, Y.; Igawa, Y.; Goto, A.; Fukayama, M.; Homma, Y. Digital quantitative analysis of mast cell infiltration in interstitial cystitis. Neurourol. Urodyn. 2018, 37, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Geppetti, P.; Nassini, R.; Materazzi, S.; Benemei, S. The concept of neurogenic inflammation. BJU Int. 2008, 101 (Suppl. S3), 2–6. [Google Scholar] [CrossRef] [PubMed]
- Krumins, S.A.; Broomfield, C.A. C-terminal substance P fragments elicit histamine release from a murine mast cell line. Neuropeptides 1993, 24, 5–10. [Google Scholar] [CrossRef]
- Leon, A.; Buriani, A.; Dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R. Mast cells synthesize, store, and release nerve growth factor. Proc. Natl. Acad. Sci. USA 1994, 91, 3739–3743. [Google Scholar] [CrossRef] [Green Version]
- van Houwelingen, A.H.; Kool, M.; de Jager, S.C.; Redegeld, F.A.; van Heuven-Nolsen, D.; Kraneveld, A.D.; Nijkamp, F.P. Mast cell-derived TNF-alpha primes sensory nerve endings in a pulmonary hypersensitivity reaction. J. Immunol. 2002, 168, 5297–5302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, A.; Hagiyama, M.; Oonuma, J. Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J. Smooth Muscle Res. Nihon Heikatsukin Gakkai Kikanshi 2008, 44, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steers, W.D.; Tuttle, J.B. Mechanisms of Disease: The role of nerve growth factor in the pathophysiology of bladder disorders. Nat. Clin. Pract. Urol. 2006, 3, 101–110. [Google Scholar] [CrossRef]
- Weston, A.P.; Biddle, W.L.; Bhatia, P.S.; Miner, P.B., Jr. Terminal ileal mucosal mast cells in irritable bowel syndrome. Dig. Dis. Sci. 1993, 38, 1590–1595. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Clayton, N.; Breslin, N.P.; Harman, I.; Bountra, C.; McLaren, A.; O’Morain, C.A. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol. Motil. 2000, 12, 449–457. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Cochrane, D.E. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol. 2004, 146, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Guilarte, M.; Alonso, C.; Malagelada, J.R. Pathogenesis of irritable bowel syndrome: The mast cell connection. Scand. J. Gastroenterol. 2005, 40, 129–140. [Google Scholar] [CrossRef]
- Liu, H.T.; Kuo, H.C. Increased urine and serum nerve growth factor levels in interstitial cystitis suggest chronic inflammation is involved in the pathogenesis of disease. PLoS ONE 2012, 7, e44687. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Peng, C.H.; Liu, H.T.; Kuo, H.C. Increased proinflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome. PLoS ONE 2013, 8, e76779. [Google Scholar] [CrossRef]
- Felsen, D.; Frye, S.; Trimble, L.A.; Bavendam, T.G.; Parsons, C.L.; Sim, Y.; Vaughan, E.D., Jr. Inflammatory mediator profile in urine and bladder wash fluid of patients with interstitial cystitis. J. Urol. 1994, 152, 355–361. [Google Scholar] [CrossRef]
- Bosch, P.C. A Randomized, Double-blind, Placebo-controlled Trial of Certolizumab Pegol in Women with Refractory Interstitial Cystitis/Bladder Pain Syndrome. Eur. Urol. 2018, 74, 623–630. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, X.X.; Homma, Y.; Yoshimura, N.; Iwaki, H.; Kageyama, S.; Yoshiki, T.; Kakehi, Y. Uroplakin III-delta4 messenger RNA as a promising marker to identify nonulcerative interstitial cystitis. J. Urol. 2007, 178, 1322–1327. [Google Scholar] [CrossRef]
- Parsons, C.L.; Lilly, J.D.; Stein, P. Epithelial dysfunction in nonbacterial cystitis (interstitial cystitis). J. Urol. 1991, 145, 732–735. [Google Scholar] [CrossRef]
- Lokeshwar, V.B.; Selzer, M.G.; Cerwinka, W.H.; Gomez, M.F.; Kester, R.R.; Bejany, D.E.; Gousse, A.E. Urinary uronate and sulfated glycosaminoglycan levels: Markers for interstitial cystitis severity. J. Urol. 2005, 174, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, Y.; Yu, M.; Ji, D.; Yang, Z.; Kong, C. c-Jun is involved in interstitial cystitis antiproliferative factor (APF)-induced growth inhibition of human bladder cancer T24 cells. Urol. Oncol. 2013, 31, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Keay, S.K.; Dimitrakov, J.D.; Freeman, M.R. p53 mediates interstitial cystitis antiproliferative factor (APF)-induced growth inhibition of human urothelial cells. FEBS Lett. 2007, 581, 3795–3799. [Google Scholar] [CrossRef] [Green Version]
- Keay, S.; Zhang, C.O.; Kagen, D.I.; Hise, M.K.; Jacobs, S.C.; Hebel, J.R.; Gordon, D.; Whitmore, K.; Bodison, S.; Warren, J.W. Concentrations of specific epithelial growth factors in the urine of interstitial cystitis patients and controls. J. Urol. 1997, 158, 1983–1988. [Google Scholar] [CrossRef]
- Sairanen, J.; Hotakainen, K.; Tammela, T.L.; Stenman, U.H.; Ruutu, M. Urinary epidermal growth factor and interleukin-6 levels in patients with painful bladder syndrome/interstitial cystitis treated with cyclosporine or pentosan polysulfate sodium. Urology 2008, 71, 630–633. [Google Scholar] [CrossRef]
- Keay, S.; Zhang, C.O.; Chai, T.; Warren, J.; Koch, K.; Grkovic, D.; Colville, H.; Alexander, R. Antiproliferative factor, heparin-binding epidermal growth factor-like growth factor, and epidermal growth factor in men with interstitial cystitis versus chronic pelvic pain syndrome. Urology 2004, 63, 22–26. [Google Scholar] [CrossRef]
- Zhang, C.O.; Li, Z.L.; Kong, C.Z. APF, HB-EGF, and EGF biomarkers in patients with ulcerative vs. non-ulcerative interstitial cystitis. BMC Urol. 2005, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Keay, S.K.; Zhang, C.O.; Shoenfelt, J.; Erickson, D.R.; Whitmore, K.; Warren, J.W.; Marvel, R.; Chai, T. Sensitivity and specificity of antiproliferative factor, heparin-binding epidermal growth factor-like growth factor, and epidermal growth factor as urine markers for interstitial cystitis. Urology 2001, 57, 9–14. [Google Scholar] [CrossRef]
- Zhang, C.O.; Li, Z.L.; Shoenfelt, J.L.; Kong, C.Z.; Chai, T.C.; Erickson, D.R.; Peters, K.M.; Rovner, E.S.; Keay, S. Comparison of APF activity and epithelial growth factor levels in urine from Chinese, African-American, and white American patients with interstitial cystitis. Urology 2003, 61, 897–901. [Google Scholar] [CrossRef]
- Rashid, H.H.; Reeder, J.E.; O’Connell, M.J.; Zhang, C.O.; Messing, E.M.; Keay, S.K. Interstitial cystitis antiproliferative factor (APF) as a cell-cycle modulator. BMC Urol. 2004, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Freeman, M.R. Antiproliferative factor signaling and interstitial cystitis/painful bladder syndrome. Int. Neurourol. J. 2011, 15, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.C.; Zhang, C.O.; Shoenfelt, J.L.; Johnson, H.W.; Warren, J.W.; Keay, S. Bladder stretch alters urinary heparin-binding epidermal growth factor and antiproliferative factor in patients with interstitial cystitis. J. Urol. 2000, 163, 1440–1444. [Google Scholar] [CrossRef]
- Erickson, D.R.; Kunselman, A.R.; Bentley, C.M.; Peters, K.M.; Rovner, E.S.; Demers, L.M.; Wheeler, M.A.; Keay, S.K. Changes in urine markers and symptoms after bladder distention for interstitial cystitis. J. Urol. 2007, 177, 556–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.T.; Shie, J.H.; Chen, S.H.; Wang, Y.S.; Kuo, H.C. Differences in mast cell infiltration, E-cadherin, and zonula occludens-1 expression between patients with overactive bladder and interstitial cystitis/bladder pain syndrome. Urology 2012, 80, 225.e13-8. [Google Scholar] [CrossRef]
- Keay, S.; Kaczmarek, P.; Zhang, C.O.; Koch, K.; Szekely, Z.; Barchi, J.J., Jr.; Michejda, C. Normalization of proliferation and tight junction formation in bladder epithelial cells from patients with interstitial cystitis/painful bladder syndrome by d-proline and d-pipecolic acid derivatives of antiproliferative factor. Chem. Biol. Drug Des. 2011, 77, 421–430. [Google Scholar] [CrossRef]
- Chen, I.C.; Lee, M.H.; Lin, H.H.; Wu, S.L.; Chang, K.M.; Lin, H.Y. Somatoform disorder as a predictor of interstitial cystitis/bladder pain syndrome: Evidence from a nested case-control study and a retrospective cohort study. Medicine 2017, 96, e6304. [Google Scholar] [CrossRef] [PubMed]
- Kutch, J.J.; Ichesco, E.; Hampson, J.P.; Labus, J.S.; Farmer, M.A.; Martucci, K.T.; Ness, T.J.; Deutsch, G.; Apkarian, A.V.; Mackey, S.C.; et al. Brain signature and functional impact of centralized pain: A multidisciplinary approach to the study of chronic pelvic pain (MAPP) network study. Pain 2017, 158, 1979–1991. [Google Scholar] [CrossRef] [PubMed]
- Bourke, J.H.; Langford, R.M.; White, P.D. The common link between functional somatic syndromes may be central sensitisation. J. Psychosom. Res. 2015, 78, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Berk, M.; Maes, M. Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr. Scand. 2014, 129, 83–97. [Google Scholar] [CrossRef] [PubMed]
Candidate | Subtype † | Specific Notes | Reference |
---|---|---|---|
APF | Unspecified | Increased urinary APF activity and related changes in intensity levels to bladder distension [88,89] | [84,85,86,87,88,89] |
BAFF | HL | Overexpression of BAFF protein in the HL bladder | [8] |
CCL2 | HL and NHL | Elevated urinary levels of CCL2 in HL and/or NHL compared with those in OAB [25,27], and association with treatment response of neuromodulation [28]. | [25,27,28] |
CXCL10 | HL | Urinary levels of CXCL10 discriminated HL from NHL and correlated with symptom severity [26] | [24,25,26] |
EGF | Unspecified | Significantly higher urinary levels of EGF in IC/BPS than in non-IC conditions | [80,81,82,83] |
HB-EGF | Unspecified | Lowered urinary levels of HB-EGF in IC/BPS and increased by therapeutic hydrodistension [88,89] | [80,82,83,88,89] |
HIF1α | HL | Up-regulation of HIF1α in mRNA and protein levels in the HL bladder | [8,46] |
IL-6 | Unspecified | Elevated urinary IL-6 levels in IC/BPS and correlation with symptom severity [31] | [31,32,72,73] |
IL-17 | HL | Overexpression of IL-17A in the HL bladder | [8,30] |
MMP-9 | Unspecified | Elevated urinary levels of MMP-9 in UCPPS and association with clinical symptoms | [36] |
NGF | NHL | Increased levels of NGF in serum [71,72], urine [27,71], and bladder [22] of NHL | [22,27,71,72] |
NO | HL | Up-regulation of mRNA and protein levels of NO products in the HL bladder | [30,44,45] |
PD-ECGF | NHL | Increased urinary levels of PD-ECGF and high association with bladder glomerulations [48] | [47,48] |
TLR4 | Unspecified | Increased response to TLR4 stimulation in PBMC of IC/BPS patients and significant association with symptom changes and spread | [39,42] |
TLR7 | HL | Overexpression of mRNA and protein of TLR7 in the HL bladder | [40] |
TNFα | Unspecified | Increased levels of TNFα in the serum [72] and urine [73] of IC/BPS patients | [72,73] |
VEGF | HL | Overexpression of VEGF in the HL bladder [8] and significant association between urinary levels of VEGF and clinical symptoms in UCPPS [36] | [8,36,43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akiyama, Y. Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome with and without Hunner Lesion: A Review and Future Perspectives. Diagnostics 2021, 11, 2238. https://doi.org/10.3390/diagnostics11122238
Akiyama Y. Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome with and without Hunner Lesion: A Review and Future Perspectives. Diagnostics. 2021; 11(12):2238. https://doi.org/10.3390/diagnostics11122238
Chicago/Turabian StyleAkiyama, Yoshiyuki. 2021. "Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome with and without Hunner Lesion: A Review and Future Perspectives" Diagnostics 11, no. 12: 2238. https://doi.org/10.3390/diagnostics11122238