Avian MHC Evolution in the Era of Genomics: Phase 1.0
Abstract
:1. Introduction
2. The Avian Major Histocompatibility Complex (MHC) Enters the Genomic Era
2.1. Technical Advances: Large-Scale MHC Structure
2.2. Technical Advances: MHC Genotyping within Populations
3. Avian MHC Spreads Its Wings
3.1. High-throughput Studies of Avian Ecology and MHC
3.2. Fitness Assocations with MHC from Ecological Studies
3.3. Next Steps in Ecological Studies of MHC Variation
4. Macroevolution of the MHC Across the Avian Tree of Life
4.1. Variation in the Number of MHC Genes Across the Avian Tree of Life
4.2. MHC Gene Duplication and Life History
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Kaufman, J. Antigen processing and presentation: Evolution from a bird’s eye view. Mol. Immunol. 2013, 55, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J. Generalists and Specialists: A New View of How MHC Class I Molecules Fight Infectious Pathogens. Trends Immunol. 2018, 39, 367–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu. Rev. Immunol. 2018, 36, 383–409. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.M.; Taylor, R.L., Jr. Brief review of the chicken Major Histocompatibility Complex: The genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult. Sci. 2016, 95, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.; Milne, S.; Gobel, T.W.F.; Walker, B.A.; Jacob, J.P.; Auffray, C.; Zoorob, R.; Beck, S. The chicken B locus is a minimal essential major histocompatibility complex. Nature 1999, 401, 923–925. [Google Scholar] [CrossRef] [PubMed]
- Wallny, H.J.; Avila, D.; Hunt, L.G.; Powell, T.J.; Riegert, P.; Salomonsen, J.; Skjodt, K.; Vainio, O.; Vilbois, F.; Wiles, M.V.; et al. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. PNAS 2006, 103, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Potts, W.K.; Manning, C.J.; Wakeland, E.K. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 1991, 352, 619. [Google Scholar] [CrossRef]
- Manning, C.J.; Wakeland, E.K.; Potts, W.K. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature 1992, 360, 581. [Google Scholar] [CrossRef]
- Brown, J.L.; Eklund, A. Kin Recognition and the Major Histocompatibility Complex: An Integrative Review. Am. Nat. 1994, 143, 435–461. [Google Scholar] [CrossRef]
- Brown, J.L. A theory of mate choice based on heterozygosity. Behav. Ecol. 1997, 8, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.V.; Grahn, M.; Potts, W.K. Dynamics of Mhc evolution in birds and crocodilians: Amplification of class II genes with degenerate primers. Mol. Ecol. 1995, 4, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.V.; Wakeland, E.; Potts, W. Contrasting histories of avian and mammalian Mhc genes revealed by class II B sequences from songbirds. PNAS 1995, 92, 12200–12204. [Google Scholar] [CrossRef] [PubMed]
- Von Schantz, T.; Wittzell, H.; Bose, N.; Grahn, M.; Persson, K. MHC genotype and male ornamentation: Genetic evidence for the Hamilton-Zuk model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1996, 263, 265–271. [Google Scholar]
- Von Schantz, T.; Wittzell, H.; Göransson, G.; Grahn, M. Mate choice, male condition-dependent ornamentation and MHC in the pheasant. Hereditas 1997, 127, 133–140. [Google Scholar] [CrossRef]
- Wittzell, H.; Vonschantz, T.; Zoorob, R.; Auffray, C. Molecular characterization of 3 MHC class-II B-haplotypes in the Ring-necked Pheasant. Immunogenetics 1994, 39, 395–403. [Google Scholar] [CrossRef]
- Edwards, S.V.; Potts, W.K. Polymorphism of Mhc genes: Implications for conservation genetics of vertebrates. In Molecular Genetic Approaches to Conservation; Smith, T.B., Wayne, R.K., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 214–237. [Google Scholar]
- Lamichhaney, S.; Fan, G.; Widemo, F.; Gunnarsson, U.; Thalmann, D.S.; Hoeppner, M.P.; Kerje, S.; Gustafson, U.; Shi, C.; Zhang, H. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 2016, 48, 84. [Google Scholar] [CrossRef]
- Bosse, M.; Spurgin, L.G.; Laine, V.N.; Cole, E.F.; Firth, J.A.; Gienapp, P.; Gosler, A.G.; McMahon, K.; Poissant, J.; Verhagen, I.; et al. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 2017, 358, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Lamichhaney, S.; Han, F.; Berglund, J.; Wang, C.; Almén, M.S.; Webster, M.T.; Grant, B.R.; Grant, P.R.; Andersson, L. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 2016, 352, 470–474. [Google Scholar] [CrossRef]
- Emlen, S.T.; Oring, L.W. Ecology, sexual selection, and the evolution of mating systems. Science 1977, 197, 215–223. [Google Scholar] [CrossRef]
- Hill, A.V. HLA associations with malaria in Africa: Some implications for MHC evolution. In Molecular Evolution of the Major Histocompatibility Complex; Klein, J., Klein, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 403–420. [Google Scholar]
- Loye, J.E.; Zuk, M. Bird-parasite Interactions: Ecology, Evolution and Behavior (Ornithology Series), 1st ed.; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Westerdahl, H.; Wittzell, H.; von Schantz, T. Polymorphism and transcription of Mhc class I genes in a passerine bird, the great reed warbler. Immunogenetics 1999, 49, 158–170. [Google Scholar] [CrossRef]
- Westerdahl, H.; Wittzell, H. k.; von Schantz, T. r. Mhc diversity in two passerine birds: No evidence for a minimal essential Mhc. Immunogenetics 2000, 52, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, E.D.; Mirarab, S.; Aberer, A.J.; Li, B.; Houde, P.; Li, C.; Ho, S.Y.W.; Faircloth, B.C.; Nabholz, B.; Howard, J.T.; et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014, 346, 1320–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, S.V.; Gasper, J.; Garrigan, D.; Martindale, D.A.; Koop, B.F. A 39-kb sequence around a blackbird Mhc class II B gene: Ghost of selection past and songbird genome architecture. Mol. Biol. Evol. 2000, 17, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Gasper, J.; Shiina, T.; Inoko, H.; Edwards, S.V. Songbird genomics: Analysis of 45-kb upstream of a polymorphic Mhc class II gene in Red-winged Blackbird (Agelaius phoeniceus). Genomics 2001, 75, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.M.; Gasper, J.; Hoekstra, H.; Hill, C.; Edwards, S.V. MHC class II pseudogene and genomic signature of a 32-kb cosmid in the House Finch (Carpodacus mexicanus). Genome Res. 2000, 10, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Westerdahl, H.; Wittzell, H.; von Schantz, T.; Bensch, S. MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 2004, 92, 534. [Google Scholar] [CrossRef] [PubMed]
- Burri, R.; Promerová, M.; Goebel, J.; Fumagalli, L. PCR-based isolation of multigene families: Lessons from the avian MHC class IIB. Mol. Ecol. Resour. 2014, 14, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.M.; Edwards, S.V. The evolution of the major histocompatibility complex in birds. Bioscience 2002, 52, 423–431. [Google Scholar] [CrossRef]
- Balakrishnan, C.; Ekblom, R.; Volker, M.; Westerdahl, H.; Godinez, R.; Kotkiewicz, H.; Burt, D.; Graves, T.; Griffin, D.; Warren, W.; et al. Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol. 2010, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, R.; Stapley, J.; Ball, A.D.; Birkhead, T.; Burke, T.; Slate, J. Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata). Immunogenetics 2011, 63, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Goebel, J.; Promerová, M.; Bonadonna, F.; McKoy, K.; Strandh, M.; Yannic, G.; Burri, R.; Fumagalli, L. 100 million years of multigene family evolution: Origins and evolution of the avian MHC class IIB. BMC Genom. 2017, 18, 460. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Lan, H.; Sun, L.; Deng, Y.-L.; Tang, K.-Y.; Wan, Q.-H. Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure. Sci. Rep. 2015, 5, 7963. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ekblom, R.; Strand, T.M.; Portela-Bens, S.; Höglund, J. Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC. BMC Genom. 2012, 13, 553. [Google Scholar] [CrossRef] [PubMed]
- Eimes, J.; Reed, K.; Mendoza, K.; Bollmer, J.; Whittingham, L.; Bateson, Z.; Dunn, P. Greater prairie chickens have a compact MHC-B with a single class IA locus. Immunogenetics 2013, 65, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; He, K.; Wu, S.-Y.; Wan, Q.-H. Isolation of a 97-kb Minimal Essential MHC B Locus from a New Reverse-4D BAC Library of the Golden Pheasant. PLoS ONE 2012, 7, e32154. [Google Scholar] [CrossRef] [PubMed]
- Shiina, T.; Shimizu, S.; Hosomichi, K.; Kohara, S.; Watanabe, S.; Hanzawa, K.; Beck, S.; Kulski, J.K.; Inoko, H. Comparative Genomic Analysis of Two Avian (Quail and Chicken) MHC Regions. J. Immunol. 2004, 172, 6751–6763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biedrzycka, A.; O’Connor, E.; Sebastian, A.; Migalska, M.; Radwan, J.; Zajac, T.; Bielanski, W.; Solarz, W.; Cmiel, A.; Westerdahl, H. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions. BMC Evol. Biol. 2017, 17, 159. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, R.; Wennekes, P.; Horsburgh, G.J.; Burke, T. Characterization of the house sparrow (Passer domesticus) transcriptome: A resource for molecular ecology and immunogenetics. Mol. Ecol. Resour. 2014, 14, 636–646. [Google Scholar] [CrossRef]
- Drews, A. Avian MHC: Characterization and expression patterns of classical and non-classical MHC-I genes. Ph.D. Thesis, Lund University, Scania, Sweden, 2018. [Google Scholar]
- Drews, A.; Strandh, M.; Raberg, L.; Westerdahl, H. Expression and phylogenetic analyses reveal paralogous lineages of putatively classical and non-classical MHC-I genes in three sparrow species (Passer). BMC Evol. Biol. 2017, 17, 152. [Google Scholar] [CrossRef]
- Kaufman, J.; Jansen, J.; Shaw, I.; Walker, B.; Milne, S.; Beck, S.; Salomonsen, J. Gene organisation determines evolution of function in the chicken MHC. Immunol. Rev. 1999, 167, 101–117. [Google Scholar] [CrossRef]
- Strand, T.; Westerdahl, H.; Höglund, J.V.; Alatalo, R.; Siitari, H. The Mhc class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 2007, 59, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Bauer, M.M.; Monson, M.S.; Benoit, B.; Chaves, L.D.; O’Hare, T.H.; Delany, M.E. Defining the Turkey MHC: Identification of expressed class I- and class IIB-like genes independent of the MHC-B. Immunogenetics 2011, 63, 753. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.-Q.; Zhong, G.-H.; He, K.; Sun, D.-D.; Wan, Q.-H. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus). Int. J. Immunogenet. 2016, 43, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.; Krueth, S.; Reed, K. Characterization of the turkey MHC chromosome through genetic and physical mapping. Cytogenet. Genome Res. 2007, 117, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Briles, W.E.; Goto, R.M.; Auffray, C.; Miller, M.M. A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 1993, 37, 408–414. [Google Scholar] [CrossRef]
- Shiina, T.; Blancher, A. The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells 2019, 8, 978. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Dijkstra, J.M. Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019, 8, 378. [Google Scholar] [CrossRef]
- Glaberman, S.; Du Pasquier, L.; Caccone, A. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galápagos Marine Iguana (Amblyrhynchus cristatus). PLoS ONE 2008, 3, e2859. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.C.; Belov, K.; Daugherty, C.H. Characterization of MHC class II genes from an ancient reptile lineage, Sphenodon (tuatara). Immunogenetics 2005, 57, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Flajnik, M.F.; Kasahara, M.; Shum, B.P.; Salter-Cid, L.; Taylor, E.; Du Pasquier, L. A novel type of class I gene organization in vertebrates: A large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J. 1993, 12, 4385–4396. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Janeway, C.A.J.; Travers, P.; Walport, M.; Ehrenstein, M. Janeway’s Immunobiology 7th Ed; Garland Science: New York, NY, USA, 2008. [Google Scholar]
- Shawar, S.M.; Vyas, J.M.; Rodgers, J.R.; Rich, R.R. Antigen presentation by major histocompatibility complex class IB molecules. Annu. Rev. Immunol. 1994, 12, 839–880. [Google Scholar] [CrossRef] [PubMed]
- Afanassieff, M.; Goto, R.M.; Ha, J.; Sherman, M.A.; Zhong, L.; Auffray, C.; Coudert, F.; Zoorob, R.; Miller, M.M. At Least One Class I Gene in Restriction Fragment Pattern-Y (Rfp-Y), the Second MHC Gene Cluster in the Chicken, Is Transcribed, Polymorphic, and Shows Divergent Specialization in Antigen Binding Region. J. Immunol. 2001, 166, 3324–3333. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.D.; Goto, R.M.; Foster, D.N.; Bacon, L.D.; Miller, M.M. At least one YMHCI molecule in the chicken is alloimmunogenic and dynamically expressed on spleen cells during development. Immunogenetics 2006, 58, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, A.; Mills, J.A.; Baker, A.J. Characterization and locus-specific typing of MHC class I genes in the red-billed gull (Larus scopulinus) provides evidence for major, minor, and nonclassical loci. Immunogenetics 2011, 63, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Buehler, D.M.; Verkuil, Y.I.; Tavares, E.S.; Baker, A.J. Characterization of MHC class I in a long-distance migrant shorebird suggests multiple transcribed genes and intergenic recombination. Immunogenetics 2013, 65, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L.; Nei, M. Evolution of the major histocompatibility complex: Independent origin of nonclassical class I genes in different groups of mammals. Mol. Biol. Evol. 1989, 6, 559–579. [Google Scholar] [PubMed]
- Taniguchi, Y.; Matsumoto, K.; Matsuda, H.; Yamada, T.; Sugiyama, T.; Homma, K.; Kaneko, Y.; Yamagishi, S.; Iwaisaki, H. Structure and Polymorphism of the Major Histocompatibility Complex Class II Region in the Japanese Crested Ibis, Nipponia nippon. PLoS ONE 2014, 9, e108506. [Google Scholar] [CrossRef]
- Tsuji, H.; Taniguchi, Y.; Ishizuka, S.; Matsuda, H.; Yamada, T.; Naito, K.; Iwaisaki, H. Structure and polymorphisms of the major histocompatibility complex in the Oriental stork, Ciconia boyciana. Sci. Rep. 2017, 7, 42864. [Google Scholar] [CrossRef] [Green Version]
- Peona, V.; Weissensteiner, M.H.; Suh, A. How complete are “complete” genome assemblies?—An avian perspective. Mol. Ecol. Resour. 2018, 18, 1188–1195. [Google Scholar] [CrossRef]
- Dilthey, A.; Cox, C.; Iqbal, Z.; Nelson, M.R.; McVean, G. Improved genome inference in the MHC using a population reference graph. Nat. Genet. 2015, 47, 682. [Google Scholar] [CrossRef]
- Larsen, P.A.; Heilman, A.M.; Yoder, A.D. The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms. BMC Genom. 2014, 15, 720. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, C.J.; Karl, J.A.; Wiseman, R.W.; Mate, S.; Koroleva, G.; Garcia, K.; Sanchez-Lockhart, M.; O’Connor, D.H.; Palacios, G. No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum. Immunol. 2015, 76, 891–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, D.; Huddleston, J.; Chaisson, M.J.; Hill, C.M.; Kronenberg, Z.N.; Munson, K.M.; Malig, M.; Raja, A.; Fiddes, I.; Hillier, L.W. Long-read sequence assembly of the gorilla genome. Science 2016, 352, aae0344. [Google Scholar] [CrossRef] [PubMed]
- Warren, W.C.; Hillier, L.W.; Tomlinson, C.; Minx, P.; Kremitzki, M.; Graves, T.; Markovic, C.; Bouk, N.; Pruitt, K.D.; Thibaud-Nissen, F.; et al. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3: Genes|Genomes|Genet. 2017, 7, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Redin, D.; Frick, T.; Aghelpasand, H.; Theland, J.; Käller, M.; Borgström, E.; Olsen, R.-A.; Ahmadian, A. Efficient whole genome haplotyping and high-throughput single molecule phasing with barcode-linked reads. bioRxiv 2018, 356121. [Google Scholar] [CrossRef]
- Weisenfeld, N.I.; Kumar, V.; Shah, P.; Church, D.M.; Jaffe, D.B. Direct determination of diploid genome sequences. Genome Res. 2017, 27, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Fuselli, S.; Baptista, R.; Panziera, A.; Magi, A.; Guglielmi, S.; Tonin, R.; Benazzo, A.; Bauzer, L.; Mazzoni, C.; Bertorelle, G. A new hybrid approach for MHC genotyping: High-throughput NGS and long read MinION nanopore sequencing, with application to the non-model vertebrate Alpine chamois (Rupicapra rupicapra). Heredity 2018, 121, 293–303. [Google Scholar] [CrossRef]
- Nei, M.; Gu, X.; Sitnikova, T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. PNAS 1997, 94, 7799–7806. [Google Scholar] [CrossRef] [Green Version]
- Salomonsen, J.; Marston, D.; Avila, D.; Bumstead, N.; Johansson, B.; Juul-Madsen, H.; Olesen, G.D.; Riegert, P.; Skjødt, K.; Vainio, O.; et al. The properties of the single chicken MHC classical class II α chain (B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules. Immunogenetics 2003, 55, 605–614. [Google Scholar] [CrossRef]
- Ren, L.; Yang, Z.; Wang, T.; Sun, Y.; Guo, Y.; Zhang, Z.; Fei, J.; Bao, Y.; Qin, T.; Wang, J.; et al. Characterization of the MHC class II α-chain gene in ducks. Immunogenetics 2011, 63, 667. [Google Scholar] [CrossRef]
- Bollmer, J.L.; Dunn, P.O.; Freeman-Gallant, C.R.; Whittingham, L.A. Social and extra-pair mating in relation to major histocompatibility complex variation in common yellowthroats. Proc. R. Soc. B Biol. Sci. 2012, 279, 4778–4785. [Google Scholar] [CrossRef] [PubMed]
- Zagalska-Neubauer, M.; Babik, W.; Stuglik, M.; Gustafsson, L.; Cichon, M.; Radwan, J. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher. BMC Evol. Biol. 2010, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.M.; Maniatis, T.; Lerman, L.S. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 1987, 155, 501–527. [Google Scholar] [PubMed]
- Orita, M.; Iwahana, H.; Kanazawa, H.; Hayashi, K.; Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 1989, 86, 2766–2770. [Google Scholar] [CrossRef] [PubMed]
- Argüello, J.R.; Little, A.-M.; Bohan, E.; Goldman, J.M.; Marsh, S.G.E.; Madrigal, J.A. High resolution HLA class I typing by reference strand mediated conformation analysis (RSCA). Tissue Antigens 1998, 52, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Vlček, J.; Hoeck, P.E.A.; Keller, L.F.; Wayhart, J.P.; Dolinová, I.; Štefka, J. Balancing selection and genetic drift create unusual patterns of MHCIIβ variation in Galápagos mockingbirds. Mol. Ecol. 2016, 25, 4757–4772. [Google Scholar] [CrossRef] [PubMed]
- Gaigher, A.; Roulin, A.; Gharib, W.H.; Taberlet, P.; Burri, R.; Fumagalli, L. Lack of evidence for selection favouring MHC haplotypes that combine high functional diversity. Heredity 2018, 120, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Worley, K.; Gillingham, M.; Jensen, P.; Kennedy, L.; Pizzari, T.; Kaufman, J.; Richardson, D. Single locus typing of MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 2008, 60, 233–247. [Google Scholar] [CrossRef]
- Loiseau, C.; Zoorob, R.; Robert, A.; Chastel, O.; Julliard, R.; Sorci, G. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus). Proc. R. Soc. B Biol. Sci. 2010, 278, 1264–1272. [Google Scholar] [CrossRef]
- Richardson, D.S.; Komdeur, J.; Burke, T.; Von Schantz, T. MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc. R. Soc. B Biol. Sci. 2005, 272, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Whittingham, L.A.; Dunn, P.O.; Freeman-Gallant, C.R.; Taff, C.C.; Johnson, J.A. Major histocompatibility complex variation and blood parasites in resident and migratory populations of the common yellowthroat. J. Evol. Biol. 2018, 31, 1544–1557. [Google Scholar] [CrossRef] [PubMed]
- Sepil, I.; Lachish, S.; Hinks, A.E.; Sheldon, B.C. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130134. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, E.A.; Strandh, M.; Hasselquist, D.; Nilsson, J.-Å.; Westerdahl, H. The evolution of highly variable immunity genes across a passerine bird radiation. Mol. Ecol. 2016, 25, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Jarvi, S.I.; Bianchi, K.R.; Farias, M.E.; Txakeeyang, A.; McFarland, T.; Belcaid, M.; Asano, A. Characterization of class II β chain major histocompatibility complex genes in a family of Hawaiian honeycreepers: ‘amakihi (Hemignathus virens). Immunogenetics 2016, 68, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Roved, J.; Hansson, B.; Tarka, M.; Hasselquist, D.; Westerdahl, H. Evidence for sexual conflict over major histocompatibility complex diversity in a wild songbird. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepil, I.; Lachish, S.; Sheldon, B.C. Mhc-linked survival and lifetime reproductive success in a wild population of great tits. Mol. Ecol. 2013, 22, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Bollmer, J.L.; Dunn, P.O.; Whittingham, L.A.; Wimpee, C. Extensive MHC Class II B Gene Duplication in a Passerine, the Common Yellowthroat (Geothlypis trichas). J. Hered. 2010, 101, 448–460. [Google Scholar] [CrossRef]
- Alcaide, M.; Liu, M.; Edwards, S.V. Major histocompatibility complex class I evolution in songbirds: Universal primers, rapid evolution and base compositional shifts in exon 3. PeerJ 2013, 1, e86. [Google Scholar] [CrossRef]
- Bonneaud, C.; Sorci, G.; Morin, V.; Westerdahl, H.; Zoorob, R.; Wittzell, H. Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 2004, 55, 855–865. [Google Scholar] [CrossRef]
- Richardson, D.S.; Westerdahl, H. MHC diversity in two Acrocephalus species: The outbred Great reed warbler and the inbred Seychelles warbler. Mol. Ecol. 2003, 12, 3523–3529. [Google Scholar] [CrossRef]
- Wutzler, R.; Foerster, K.; Kempenaers, B. MHC class I variation in a natural blue tit population (Cyanistes caeruleus). Genetica 2012, 140, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.C.; Edwards, S.V. Structure and Evolution of a New Avian MHC Class II B Gene in a Sub-Antarctic Seabird, the Thin-Billed Prion (Procellariiformes: Pachyptila belcheri). J. Mol. Evol. 2009, 68, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Huse, S.M.; Huber, J.A.; Morrison, H.G.; Sogin, M.L.; Welch, D.B. Accuracy and Quality of Massively Parallel DNA Pyrosequencing. Genome Biol. 2007, 8, R143. [Google Scholar] [CrossRef] [PubMed]
- Quince, C.; Lanzen, A.; Davenport, R.J.; Turnbaugh, P.J. Removing noise from pyrosequenced amplicons. BMC Bioinform. 2011, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Lighten, J.; van Oosterhout, C.; Bentzen, P. Critical review of NGS analyses for de novo genotyping multigene families. Mol. Ecol. 2014, 23, 3957–3972. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycka, A.; Sebastian, A.; Migalska, M.; Westerdahl, H.; Radwan, J. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird. Mol. Ecol. Resour. 2017, 17, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.; Courtiol, A.; Mazzoni, C.J. MHC genotyping of non-model organisms using next-generation sequencing: A new methodology to deal with artefacts and allelic dropout. BMC Genom. 2013, 14, 542. [Google Scholar] [CrossRef] [PubMed]
- Minias, P.; Pikus, E.; Whittingham, L.A.; Dunn, P.O. Evolution of Copy Number at the MHC Varies across the Avian Tree of Life. Genome Biol. Evol. 2018, 11, 17–28. [Google Scholar] [CrossRef]
- Balasubramaniam, S.; Bray, R.D.; Mulder, R.A.; Sunnucks, P.; Pavlova, A.; Melville, J. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines. BMC Evol. Biol. 2016, 16, 112. [Google Scholar] [CrossRef]
- Biedrzycka, A.; Bielanski, W.; Cmiel, A.; Solarz, W.; Zajac, T.; Migalska, M.; Sebastian, A.; Westerdahl, H.; Radwan, J. Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine. Mol. Ecol. 2018, 27, 2594–2603. [Google Scholar] [CrossRef]
- Westerdahl, H.; Waldenstrom, J.; Hansson, B.; Hasselquist, D.; von Schantz, T.; Bensch, S. Associations between malaria and MHC genes in a migratory songbird. Proc. R. Soc. B. Biol. Sci. 2005, 272, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Westerdahl, H. Passerine MHC: Genetic variation and disease resistance in the wild. J. Ornithol. 2007, 148, 469–477. [Google Scholar] [CrossRef]
- Loiseau, C.; Zoorob, R.; Garnier, S.; Birard, J.; Federici, P.; Julliard, R.; Sorci, G. Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol. Lett. 2008, 11, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Radwan, J.; Zagalska-Neubauer, M.; Cichon, M.; Sendecka, J.; Kulma, K.; Gustafsson, L.; Babik, W. MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Mol. Ecol. 2012, 21, 2469–2479. [Google Scholar] [CrossRef]
- Westerdahl, H.; Stjernman, M.; Råberg, L.; Lannefors, M.; Nilsson, J.-Å. MHC-I Affects Infection Intensity but Not Infection Status with a Frequent Avian Malaria Parasite in Blue Tits. PLoS ONE 2013, 8, e72647. [Google Scholar] [CrossRef] [PubMed]
- Dunn, P.O.; Bollmer, J.L.; Freeman-Gallant, C.R.; Whittingham, L.A. MHC variation is related to sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evol. Int. J. Org. Evol. 2013, 67, 679–687. [Google Scholar] [CrossRef]
- Westerdahl, H.; Asghar, M.; Hasselquist, D.; Bensch, S. Quantitative disease resistance: To better understand parasite-mediated selection on major histocompatibility complex. Proc. R. Soc. B Biol. Sci. 2011, 279, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Slade, J.W.G.; Sarquis-Adamson, Y.; Gloor, G.B.; Lachance, M.-A.; MacDougall-Shackleton, E.A. Population differences at MHC do not explain enhanced resistance of song sparrows to local parasites. J. Hered. 2016, 108, 127–134. [Google Scholar] [CrossRef]
- Jarvi, S.I.; Schultz, J.J.; Atkinson, C.T. PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J. Parasitol. 2002, 88, 153–158. [Google Scholar] [CrossRef]
- Rivero-de Aguilar, J.; Westerdahl, H.; Martínez-de la Puente, J.; Tomás, G.; Martínez, J.; Merino, S. MHC-I provides both quantitative resistance and susceptibility to blood parasites in blue tits in the wild. J. Avian Biol. 2016, 47, 669–677. [Google Scholar] [CrossRef]
- Bonneaud, C.; Pérez-Tris, J.; Federici, P.; Chastel, O.; Sorci, G. Major histocompatability alleles associated with local resistance to malaria in a passerine. Evol. Int. J. Org. Evol. 2006, 60, 383–389. [Google Scholar] [CrossRef]
- Chappell, P.; Meziane el, K.; Harrison, M.; Magiera, L.; Hermann, C.; Mears, L.; Wrobel, A.G.; Durant, C.; Nielsen, L.L.; Buus, S.; et al. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding. eLife 2015, 4, e05345. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.; Salomonsen, J. The “Minimal Essential MHC” Revisited: Both Peptide-Binding and Cell Surface Expression Level of MHC Molecules are Polymorphisms Selected by Pathogens in Chickens. Hereditas 1997, 127, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Hawley, D.M.; Fleischer, R.C. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird. PLoS ONE 2012, 7, e30222. [Google Scholar] [CrossRef] [PubMed]
- Bonneaud, C.; Balenger, S.L.; Russell, A.F.; Zhang, J.W.; Hill, G.E.; Edwards, S.V. Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. PNAS 2011, 108, 7866–7871. [Google Scholar] [CrossRef] [Green Version]
- Bonneaud, C.; Balenger, S.L.; Zhang, J.; Edwards, S.V.; Hill, G.E. Innate immunity and the evolution of resistance to an emerging infectious disease in a wild bird. Mol. Ecol. 2012, 21, 2628–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, W.K.; Wakeland, E.K. Evolution of MHC genetic diversity: A tale of incest, pestilence and sexual preference. Trends Genet. 1993, 9, 408–412. [Google Scholar] [CrossRef]
- Zelano, B.; Edwards, S.V. An Mhc Component to Kin Recognition and Mate Choice in Birds: Predictions, Progress, and Prospects. Am. Nat. 2002, 160, S225–S237. [Google Scholar] [CrossRef]
- Ekblom, R.; Sæther, S.A.; Grahn, M.; Fiske, P.; Kålås, J.A.; Höglund, J. Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol. Ecol. 2004, 13, 3821–3828. [Google Scholar] [CrossRef]
- Bonneaud, C.; Chastel, O.; Federici, P.; Westerdahl, H.; Sorci, G. Complex Mhc-based mate choice in a wild passerine. Proc. R. Soc. B Biol. Sci. 2006, 273, 1111–1116. [Google Scholar] [CrossRef]
- Strandh, M.; Westerdahl, H.; Pontarp, M.; Canbäck, B.; Dubois, M.-P.; Miquel, C.; Taberlet, P.; Bonadonna, F. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proc. R. Soc. B Biol. Sci. 2012, 279, 4457–4463. [Google Scholar] [CrossRef] [PubMed]
- Løvlie, H.; Gillingham, M.A.F.; Worley, K.; Pizzari, T.; Richardson, D.S. Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131296. [Google Scholar] [CrossRef] [PubMed]
- Griggio, M.; Biard, C.; Penn, D.J.; Hoi, H. Female house sparrows” count on” male genes: Experimental evidence for MHC-dependent mate preference in birds. BMC Evol. Biol. 2011, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Freeman-Gallant, C.R.; Meguerdichian, M.; Wheelwright, N.T.; Sollecito, S.V. Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol. Ecol. 2003, 12, 3077–3083. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; O’Dwyer, K.; Westerdahl, H.; Senior, A.; Nakagawa, S. A quantitative review of MHC-based mating preference: The role of diversity and dissimilarity. Mol. Ecol. 2014, 23, 5151–5163. [Google Scholar] [CrossRef] [PubMed]
- Ujvari, B.; Belov, K. Major histocompatibility complex (MHC) markers in conservation biology. Int. J. Mol. Sci. 2011, 12, 5168–5186. [Google Scholar] [CrossRef] [PubMed]
- Radwan, J.; Biedrzycka, A.; Babik, W. Does reduced MHC diversity decrease viability of vertebrate populations? Biol. Conserv. 2010, 143, 537–544. [Google Scholar] [CrossRef]
- Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2005, 2, 16. [Google Scholar] [CrossRef]
- Hughes, A.L. MHC Polymorphism and the Design of Captive Breeding Programs. Conserv. Biol. 1991, 5, 249–251. [Google Scholar] [CrossRef]
- Meyer-Lucht, Y.; Mulder, K.P.; James, M.C.; McMahon, B.J.; Buckley, K.; Piertney, S.B.; Höglund, J. Adaptive and neutral genetic differentiation among Scottish and endangered Irish red grouse (Lagopus lagopus scotica). Conserv. Genet. 2016, 17, 615–630. [Google Scholar] [CrossRef]
- Miller, H.C.; Lambert, D.M. Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol. Ecol. 2004, 13, 3709–3721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Fang, S.-G.; Xi, Y.-M. Major Histocompatibility Complex Variation in the Endangered Crested Ibis Nipponia nippon and Implications for Reintroduction. Biochem. Genet. 2006, 44, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.R.; Cook, R.G. MHC class Ib molecules bridge innate and acquired immunity. Nat. Rev. Immunol. 2005, 5, 459–471. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, C.A.; Bell, J.I. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol. Rev. 1998, 16, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.A.; Veniamin, S.M.; Parks-Dely, J.A.; Magor, K.E. The MHC of the Duck (Anas platyrhynchos) Contains Five Differentially Expressed Class I Genes. J. Immunol. 2005, 175, 6702–6712. [Google Scholar] [CrossRef]
- Shiina, T.; Oka, A.; Imanishi, T.; Hanzawa, K.; Gojobori, T.; Watanabe, S.; Inoko, H. Multiple class I loci expressed by the quail Mhc. Immunogenetics 1999, 49, 456–460. [Google Scholar] [CrossRef]
- Zhang, Q.; Hill, G.E.; Edwards, S.V.; Backström, N. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines. BMC Genom. 2014, 15, 305. [Google Scholar] [CrossRef]
- Wang, B.A.; Ekblom, R.; Castoe, T.A.; Jones, E.P.; Kozma, R.; Bongcam-Rudloff, E.; Pollock, D.D.; Hoglund, J. Transcriptome sequencing of black grouse (Tetrao tetrix) for immune gene discovery and microsatellite development. Open Biol. 2012, 2. [Google Scholar] [CrossRef]
- Newhouse, D.J.; Hofmeister, E.K.; Balakrishnan, C.N. Transcriptional response to West Nile virus infection in the zebra finch (Taeniopygia guttata). Royal Soc. Open Sci. 2017, 4. [Google Scholar] [CrossRef]
- Jax, E.; Wink, M.; Kraus, R.H.S. Avian transcriptomics: Opportunities and challenges. J. Ornithol. 2018, 159, 599–629. [Google Scholar] [CrossRef]
- Pardal, S.; Drews, A.; Alves, J.A.; Ramos, J.A.; Westerdahl, H. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit. Immunogenetics 2017, 69, 463–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monson, M.S.; Mendoza, K.M.; Velleman, S.G.; Strasburg, G.M.; Reed, K.M. Expression profiles for genes in the turkey major histocompatibility complex B-locus. Poult. Sci. 2013, 92, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Camp, S.; Collen, T.; Avila, D.; Salomonsen, J.; Wallny, H.J.; van Hateren, A.; Hunt, L.; Jacob, J.P.; Johnston, F.; et al. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 2007, 27, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Follin, E.; Karlsson, M.; Lundegaard, C.; Nielsen, M.; Wallin, S.; Paulsson, K.; Westerdahl, H. In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function. Immunogenetics 2013, 65, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Pierini, F.; Lenz, T.L. Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection. Mol. Biol. Evol. 2018, 35, 2145–2158. [Google Scholar] [CrossRef] [PubMed]
- Manczinger, M.; Boross, G.; Kemény, L.; Müller, V.; Lenz, T.L.; Papp, B.; Pál, C. Pathogen diversity drives the evolution of generalist MHC-II alleles in human populations. PLoS Biol. 2019, 17, e3000131. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Rooney, A.P. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 2005, 39, 121–152. [Google Scholar] [CrossRef] [PubMed]
- Kelley, J.; Walter, L.; Trowsdale, J. Comparative genomics of major histocompatibility complexes. Immunogenetics 2005, 56, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Spurgin, L.G.; Van Oosterhout, C.; Illera, J.C.; Bridgett, S.; Gharbi, K.; Emerson, B.C.; Richardson, D.S. Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol. Ecol. 2011, 20, 5213–5225. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T. Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. PNAS 1991, 88, 6716–6720. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-M.; Cooper, D.N.; Chuzhanova, N.; Ferec, C.; Patrinos, G.P. Gene conversion: Mechanisms, evolution and human disease. Nat. Rev. Genet. 2007, 8, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Alcaide, M.; Edwards, S.; Cadahía, L.; Negro, J. MHC class I genes of birds of prey: Isolation, polymorphism and diversifying selection. Conserv. Genet. 2009, 10, 1349–1355. [Google Scholar] [CrossRef]
- Alcaide, M.; Edwards, S.V.; Negro, J.J. Characterization, polymorphism, and evolution of MHC class IIB genes in birds of prey. J. Mol. Evol. 2007, 65, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Burri, R.; Niculita-Hirzel, H.; Salamin, N.; Roulin, A.; Fumagalli, L. Evolutionary Patterns of MHC Class II B in Owls and Their Implications for the Understanding of Avian MHC Evolution. Mol. Biol. Evol. 2008, 25, 1180–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burri, R.; Salamin, N.; Studer, R.A.; Roulin, A.; Fumagalli, L. Adaptive Divergence of Ancient Gene Duplicates in the Avian MHC Class II B. Mol. Biol. Evol. 2010, 27, 2360–2374. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.-Z.; Innan, H. Very low gene duplication rate in the yeast genome. Science 2004, 306, 1367–1370. [Google Scholar] [CrossRef]
- Minias, P.; Whittingham, L.A.; Dunn, P.O. Coloniality and migration are related to selection on MHC genes in birds. Evol. Int. J. Org. Evol. 2017, 71, 432–441. [Google Scholar] [CrossRef]
- O’Connor, E.A.; Cornwallis, C.K.; Hasselquist, D.; Nilsson, J.-Å.; Westerdahl, H. The evolution of immunity in relation to colonization and migration. Nat. Ecol. Evol. 2018, 2, 841–849. [Google Scholar] [CrossRef]
- Berthold, P.; Helbig, A.J.; Mohr, G.; Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 1992, 360, 668–670. [Google Scholar] [CrossRef]
- Able, K.P.; Belthoff, J.R. Rapid ‘evolution’ of migratory behaviour in the introduced house finch of eastern North America. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1998, 265, 2063–2071. [Google Scholar] [CrossRef]
- Grayson, P.; Sin, S.Y.; Sackton, T.B.; Edwards, S.V. Comparative genomics as a foundation for evo-devo studies in birds. In Avian and Reptilian Developmental Biology; Sheng, G., Ed.; Humana Press: New York, NY, USA, 2017; pp. 11–46. [Google Scholar]
Past | Present | Near Future | |||
---|---|---|---|---|---|
(1990s) | (2000s) | (2010+) | (2019+) | (2019+) | |
Method | Fragment analysis of genomic DNA (RFLP & Southern blot) [15,23] | Fragment analyses of PCR products (e.g., DGGE) [83,84,85] | High-throughput sequencing of PCR products (e.g., Illumina amplicon sequencing) [40,86,87] | Long-read sequencing (PacBio & Oxford nanopore) | Amplification of specific gene copies (High-throughput sequencing & qPCR) |
Pros | No PCR artifacts Robust gene copy numbers | Moderate resolution | High resolution High coverage | No PCR artifacts Very long reads (100,000 bp possible) Gene synteny | Expression data Gene-specific amplification |
Cons | Low resolution No sequence data | Artifactual alleles possible No sequence data | Artifactual alleles possible Short reads (up to 300 bp) | Low coverage Sequencing errors | Limited data on MHC diversity |
Species | Country | Class | Resistance | MHC Association | Reference |
---|---|---|---|---|---|
Cyanistes caeruleus | Sweden | MHC-I | Intensity | Alleles | Westerdahl et al. 2013 [110] |
Cyanistes caeruleus | Spain | MHC-I | Prevalence Intensity | Alleles | Rivero-de Aguilar et al. 2016 [115] |
Parus major | UK | MHC-I | Prevalence Intensity | Supertypes | Sepil et al. 2013 [87] |
Passer domesticus | France | MHC-I | Prevalence | Alleles | Bonneud et al. 2006 [116] Loiseau et al. 2008; 2010 [84,108] |
Acrocephalus arundinaceus | Sweden | MHC-I | Prevalence Intensity | Diversity Alleles | Westerdahl et al. 2005 [106] Westerdahl et al. 2011 [112] |
Acrocephalus schoenobaenus | Poland | MHC-I | Prevalence | Supertypes | Biedrzycka et al. 2018 [105] |
Ficedula albicollis | Sweden | MHC-IIB | Prevalence | Diversity | Radwan et al. 2012 [109] |
Geothlypis trichas | US | MHC-IIB | Prevalence | Alleles Diversity | Dunn et al. 2013 [111] Whittingham et al. 2018 [86] |
Melospiza melodia | Canada | MHC-I | Prevalence | Diversity | Slade et al. 2016 [113] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, E.A.; Westerdahl, H.; Burri, R.; Edwards, S.V. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019, 8, 1152. https://doi.org/10.3390/cells8101152
O’Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells. 2019; 8(10):1152. https://doi.org/10.3390/cells8101152
Chicago/Turabian StyleO’Connor, Emily A., Helena Westerdahl, Reto Burri, and Scott V. Edwards. 2019. "Avian MHC Evolution in the Era of Genomics: Phase 1.0" Cells 8, no. 10: 1152. https://doi.org/10.3390/cells8101152