Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer
Abstract
:1. Introduction
2. Transcriptomic Profiling and Pathway Analysis
3. Shutting Down Mitochondrial Genes—Inhibition of Mitochondrial Biogenesis Pathways
4. Genes/Proteins Associated with Energy Sensing
4.1. Kinases, Enzymes, and Sensors of Energy Metabolism
4.2. Sirtuin, a Metabolic Sensor
4.3. Soluble Guanylyl Cyclase, an ATP Sensor
4.4. Phosphatidylinositol-5-phosphate 4-kinase-β, a GTP Sensor
4.5. Glucokinase, a Glucose Sensor
4.6. Glutamine Metabolism
5. Pathways Associated with Energy Sensors and Metabolism
5.1. AMPK Signaling Pathway
5.2. ERK/MAPK Signaling Pathway
5.3. HIF-1α Signaling Pathway
5.4. Glutamine and Glutaminergic Receptor Signaling Pathway
5.5. p53 Signaling Pathway
5.6. Autophagy Pathway
5.7. PI3K/AKT/mTOR Signaling Pathway
6. Therapeutic Routes Involving Targeting of Energy Sensing
6.1. Metabolic Therapy: The Inhibition of Tumor Cell Energy Metabolism
6.2. New Generation of Selective JAK Inhibitors
6.3. Nucleic Acid Sensing
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 19 October 2022).
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Iommarini, L.; Ghelli, A.; Gasparre, G.; Porcelli, A.M. Mitochondrial metabolism and energy sensing in tumor progression. Biochim. Biophys. Acta BBA-Bioenerg. 2017, 1858, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Owen, O.E.; Kalhan, S.C.; Hanson, R.W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 2002, 277, 30409–30412. [Google Scholar] [CrossRef] [PubMed]
- Schiliro, C.A.-O.; Firestein, B.A.-O. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef]
- Shi, X.; Young, S.; Cai, K.; Yang, J.; Morahan, G. Cancer susceptibility genes: Update and systematic perspectives. Innovation 2022, 3, 100277. [Google Scholar] [CrossRef]
- Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]
- Green, D.R.; Galluzzi, L.; Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011, 333, 1109–1112. [Google Scholar] [CrossRef]
- Wagner, A.; Kosnacova, H.; Chovanec, M.; Jurkovicova, D. Mitochondrial genetic and epigenetic regulations in cancer: Therapeutic potential. Int. J. Mol. Sci. 2022, 23, 7897. [Google Scholar] [CrossRef]
- Fuhrmann, D.C.; Brüne, B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017, 12, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Kopinski, P.K.; Singh, L.N.; Zhang, S.; Lott, M.T.; Wallace, D.C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 2021, 21, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Hvinden, I.C.; Cadoux-Hudson, T.; Schofield, C.J.; McCullagh, J.S.O. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep. Med. 2021, 2, 100469. [Google Scholar] [CrossRef]
- Sheehan, C.; Muir, A. The requirement for mitochondrial respiration in cancer varies with disease stage. PLoS Biol. 2022, 20, e3001800. [Google Scholar] [CrossRef]
- Ferreira, T.; Rodriguez, S. Mitochondrial DNA: Inherent complexities relevant to genetic analyses. Genes 2024, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, G.; Shan, P.; Qiu, X.; Dong, S.; Liao, L.; Yu, C.; Wang, T.; Gu, X.; Li, Q.; et al. Regulation of energy homeostasis by the ubiquitin-independent regγ proteasome. Nat. Commun. 2016, 7, 12497. [Google Scholar] [CrossRef]
- Grummt, I.; Pikaard, C.S. Epigenetic silencing of rna polymerase i transcription. Nat. Rev. Mol. Cell Biol. 2003, 4, 641–649. [Google Scholar] [CrossRef]
- Murayama, A.; Ohmori, K.; Fujimura, A.; Minami, H.; Yasuzawa-Tanaka, K.; Kuroda, T.; Oie, S.; Daitoku, H.; Okuwaki, M.; Nagata, K.; et al. Epigenetic control of rdna loci in response to intracellular energy status. Cell 2008, 133, 627–639. [Google Scholar] [CrossRef]
- Jariel-Encontre, I.; Bossis, G.; Piechaczyk, M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim. Biophys. Acta 2008, 1786, 153–177. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, M.S. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev. Endocr. Metab. Disord. 2014, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ralston, A. Simultaneous gene transcription and translation in bacteria. Nat. Educ. 2008, 1, 4. [Google Scholar]
- Scull, C.E.; Dandpat, S.S.; Romero, R.A.; Walter, N.G. Transcriptional riboswitches integrate timescales for bacterial gene expression control. Front. Mol. Biosci. 2020, 7, 607158. [Google Scholar] [CrossRef]
- Croteau, E.; Renaud, J.M.; Richard, M.A.; Ruddy, T.D.; Bénard, F.; deKemp, R.A. Pet metabolic biomarkers for cancer. Biomark. Cancer 2016, 8, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Flores, D.; Gripo, A.-A.; Rodríguez, A.-B.; Franco, L. Consequences of glucose enriched diet on oncologic patients. Appl. Sci. 2023, 13, 2757. [Google Scholar] [CrossRef]
- Wallace, D.C. Bioenergetics in human evolution and disease: Implications for the origins of biological complexity and the missing genetic variation of common diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120267. [Google Scholar] [CrossRef]
- Kasperski, A.; Kasperska, R. Bioenergetics of life, disease and death phenomena. Theory Biosci. 2018, 137, 155–168. [Google Scholar] [CrossRef]
- Scagliola, A.; Mainini, F.; Cardaci, S. The tricarboxylic acid cycle at the crossroad between cancer and immunity. Antioxid. Redox Signal 2020, 32, 834–852. [Google Scholar] [CrossRef]
- Freyssenet, D. Energy sensing and regulation of gene expression in skeletal muscle. J. Appl. Physiol. 2007, 102, 529–540. [Google Scholar] [CrossRef]
- Sumita, K.; Lo, Y.H.; Takeuchi, K.; Senda, M.; Kofuji, S.; Ikeda, Y.; Terakawa, J.; Sasaki, M.; Yoshino, H.; Majd, N.; et al. The lipid kinase pi5p4kβ is an intracellular gtp sensor for metabolism and tumorigenesis. Mol. Cell 2016, 61, 187–198. [Google Scholar] [CrossRef]
- Takeuchi, K.; Senda, M.; Lo, Y.H.; Kofuji, S.; Ikeda, Y.; Sasaki, A.T.; Senda, T. Structural reverse genetics study of the pi5p4kβ-nucleotide complexes reveals the presence of the gtp bioenergetic system in mammalian cells. FEBS J. 2016, 283, 3556–3562. [Google Scholar] [CrossRef]
- Boison, D. Adenosine kinase: Exploitation for therapeutic gain. Pharmacol. Rev. 2013, 65, 906–943. [Google Scholar] [CrossRef]
- Boison, D.; Jarvis, M.F. Adenosine kinase: A key regulator of purinergic physiology. Biochem. Pharmacol. 2021, 187, 114321. [Google Scholar] [CrossRef]
- Sacha, T. Imatinib in chronic myeloid leukemia: An overview. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014007. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. Amp-activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes. Dev. 2011, 25, 1895–1908. [Google Scholar] [CrossRef] [PubMed]
- Moser, T.S.; Schieffer, D.; Cherry, S. Amp-activated kinase restricts rift valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog. 2012, 8, e1002661. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, C.K.; Rayginia, T.P.; Shifana, S.C.; Anto, N.P.; Kalimuthu, K.; Isakov, N.; Anto, R.J. The role of ampk in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front. Immunol. 2023, 14, 1114582. [Google Scholar] [CrossRef]
- Jeon, S.M. Regulation and function of ampk in physiology and diseases. Exp. Mol. Med. 2016, 48, e245. [Google Scholar] [CrossRef]
- DeMille, D.; Grose, J.H. Pas kinase: A nutrient sensing regulator of glucose homeostasis. IUBMB Life 2013, 65, 921–929. [Google Scholar] [CrossRef]
- Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5, 253–295. [Google Scholar] [CrossRef]
- Li, X. Sirt1 and energy metabolism. Acta Biochim. Biophys. Sin. 2013, 45, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Cantó, C.; Jiang, L.Q.; Deshmukh, A.S.; Mataki, C.; Coste, A.; Lagouge, M.; Zierath, J.R.; Auwerx, J. Interdependence of ampk and sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S. Nicotinamide mononucleotide, a key nad(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N.; Chandra, M.; Tuteja, R.; Misra, M.K. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J. Biomed. Biotechnol. 2004, 2004, 227–237. [Google Scholar] [CrossRef]
- Ruiz-Stewart, I.; Tiyyagura, S.R.; Lin, J.E.; Kazerounian, S.; Pitari, G.M.; Schulz, S.; Martin, E.; Murad, F.; Waldman, S.A. Guanylyl cyclase is an atp sensor coupling nitric oxide signaling to cell metabolism. Proc. Natl. Acad. Sci. USA 2004, 101, 37–42. [Google Scholar] [CrossRef]
- Liu, R.; Kang, Y.; Chen, L. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nat. Commun. 2021, 12, 5492. [Google Scholar] [CrossRef]
- Lima, K.; Coelho-Silva, J.L.; Kinker, G.S.; Pereira-Martins, D.A.; Traina, F.; Fernandes, P.; Markus, R.P.; Lucena-Araujo, A.R.; Machado-Neto, J.A. Pip4k2a and pip4k2c transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genet. 2019, 233–234, 56–66. [Google Scholar] [CrossRef]
- Bulley, S.J.; Clarke, J.H.; Droubi, A.; Giudici, M.L.; Irvine, R.F. Exploring phosphatidylinositol 5-phosphate 4-kinase function. Adv. Biol. Regul. 2015, 57, 193–202. [Google Scholar] [CrossRef]
- Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 2018, 39, 489–517. [Google Scholar] [CrossRef]
- Efeyan, A.; Comb, W.C.; Sabatini, D.M. Nutrient-sensing mechanisms and pathways. Nature 2015, 517, 302–310. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, K.G. Targeting glutamine metabolism for cancer treatment. BioMol. Ther. 2018, 26, 19–28. [Google Scholar] [CrossRef]
- Yang, L.; Venneti, S.; Nagrath, D. Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 2017, 19, 163–194. [Google Scholar] [CrossRef]
- Jin, J.; Byun, J.-K.; Choi, Y.-K.; Park, K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Ung, C.Y.; Onoufriadis, A.; Parsons, M.; McGrath, J.A.; Shaw, T.J. Metabolic perturbations in fibrosis disease. Int. J. Biochem. Cell Biol. 2021, 139, 106073. [Google Scholar] [CrossRef] [PubMed]
- Still, E.R.; Yuneva, M.O. Hopefully devoted to q: Targeting glutamine addiction in cancer. Br. J. Cancer 2017, 116, 1375–1381. [Google Scholar] [CrossRef]
- Li, T.; Copeland, C.; Le, A. Glutamine metabolism in cancer. In The Heterogeneity of Cancer Metabolism; Le, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 17–38. [Google Scholar]
- Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; et al. Ampk is a negative regulator of the warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013, 17, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304–1305. [Google Scholar] [CrossRef] [PubMed]
- Kurelac, I.; Umesh Ganesh, N.; Iorio, M.; Porcelli, A.M.; Gasparre, G. The multifaceted effects of metformin on tumor microenvironment. Semin. Cell Dev. Biol. 2020, 98, 90–97. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, Y.; Xia, Y.; Ji, H.; Chen, X.; Guo, F.; Lyssiotis, C.A.; Aldape, K.; Cantley, L.C.; Lu, Z. Erk1/2-dependent phosphorylation and nuclear translocation of pkm2 promotes the warburg effect. Nat. Cell Biol. 2012, 14, 1295–1304. [Google Scholar] [CrossRef]
- Papa, S.; Choy, P.M.; Bubici, C. The erk and jnk pathways in the regulation of metabolic reprogramming. Oncogene 2019, 38, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 2014, 87, 20130676. [Google Scholar] [CrossRef]
- Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer cell metabolism in hypoxia: Role of hif-1 as key regulator and therapeutic target. Int. J. Mol. Sci. 2021, 22, 5703. [Google Scholar] [CrossRef]
- Semenza, G.L. Hif-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig. 2013, 123, 3664–3671. [Google Scholar] [CrossRef] [PubMed]
- Ema, M.; Hirota, K.; Mimura, J.; Abe, H.; Yodoi, J.; Sogawa, K.; Poellinger, L.; Fujii-Kuriyama, Y. Molecular mechanisms of transcription activation by hlf and hif1alpha in response to hypoxia: Their stabilization and redox signal-induced interaction with cbp/p300. EMBO J. 1999, 18, 1905–1914. [Google Scholar] [CrossRef]
- Pan, M.; Reid, M.A.; Lowman, X.H.; Kulkarni, R.P.; Tran, T.Q.; Liu, X.; Yang, Y.; Hernandez-Davies, J.E.; Rosales, K.K.; Li, H.; et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 2016, 18, 1090–1101. [Google Scholar] [CrossRef]
- Graeber, T.G.; Peterson, J.F.; Tsai, M.; Monica, K.; Fornace, A.J.; Giaccia, A.J. Hypoxia induces accumulation of p53 protein, but activation of a g1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell Biol. 1994, 14, 6264–6277. [Google Scholar] [PubMed]
- Shen, J.; Wang, Q.; Mao, Y.; Gao, W.; Duan, S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm 2023, 4, e288. [Google Scholar] [CrossRef]
- Rodriguez, O.C.; Choudhury, S.; Kolukula, V.; Vietsch, E.E.; Catania, J.; Preet, A.; Reynoso, K.; Bargonetti, J.; Wellstein, A.; Albanese, C.; et al. Dietary downregulation of mutant p53 levels via glucose restriction: Mechanisms and implications for tumor therapy. Cell Cycle 2012, 11, 4436–4446. [Google Scholar] [CrossRef]
- Hernández Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188556. [Google Scholar] [CrossRef]
- Levine, B.; Yuan, J. Autophagy in cell death: An innocent convict? J. Clin. Investig. 2005, 115, 2679–2688. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 2018, 14, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Pattingre, S.; Bauvy, C.; Codogno, P. Amino acids interfere with the erk1/2-dependent control of macroautophagy by controlling the activation of raf-1 in human colon cancer ht-29 cells. J. Biol. Chem. 2003, 278, 16667–16674. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Lei, Y.; Cong, C.; Tan, D.; Zhou, X. Research progress on the pi3k/akt signaling pathway in gynecological cancer (review). Mol. Med. Rep. 2019, 19, 4529–4535. [Google Scholar] [CrossRef] [PubMed]
- Osaki, M.; Oshimura, M.; Ito, H. Pi3k-akt pathway: Its functions and alterations in human cancer. Apoptosis 2004, 9, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of pi3k/akt pathway in cancer onset and drug resistance: An updated review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef]
- Szymonowicz, K.; Oeck, S.; Malewicz, N.M.; Jendrossek, V. New insights into protein kinase b/akt signaling: Role of localized akt activation and compartment-specific target proteins for the cellular radiation response. Cancers 2018, 10, 78. [Google Scholar] [CrossRef]
- Barra, F.; Evangelisti, G.; Ferro Desideri, L.; Di Domenico, S.; Ferraioli, D.; Vellone, V.G.; De Cian, F.; Ferrero, S. Investigational pi3k/akt/mtor inhibitors in development for endometrial cancer. Expert. Opin. Investig. Drugs 2019, 28, 131–142. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. Pi3k/akt/mtor signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Kim, J.; Guan, K.L. Mtor as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Tapia, O.; Riquelme, I.; Leal, P.; Sandoval, A.; Aedo, S.; Weber, H.; Letelier, P.; Bellolio, E.; Villaseca, M.; Garcia, P.; et al. The pi3k/akt/mtor pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014, 465, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. Mtor signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Pena-Leon, V.; Perez-Lois, R.; Seoane, L.M. Mtor pathway is involved in energy homeostasis regulation as a part of the gut-brain axis. Int. J. Mol. Sci. 2020, 21, 5715. [Google Scholar] [CrossRef]
- Cota, D.; Proulx, K.; Smith, K.A.; Kozma, S.C.; Thomas, G.; Woods, S.C.; Seeley, R.J. Hypothalamic mtor signaling regulates food intake. Science 2006, 312, 927–930. [Google Scholar] [CrossRef]
- Guppy, M.; Leedman, P.; Zu, X.; Russell, V. Contribution by different fuels and metabolic pathways to the total atp turnover of proliferating mcf-7 breast cancer cells. Biochem. J. 2002, 364, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Sánchez, R.; Rodríguez-Enríquez, S.; Marín-Hernández, A.; Saavedra, E. Energy metabolism in tumor cells. FEBS J. 2007, 274, 1393–1418. [Google Scholar] [CrossRef]
- Martin, M.; Beauvoit, B.; Voisin, P.J.; Canioni, P.; Guérin, B.; Rigoulet, M. Energetic and morphological plasticity of c6 glioma cells grown on 3-d support; effect of transient glutamine deprivation. J. Bioenerg. Biomembr. 1998, 30, 565–578. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V.; Lewis, B.C.; Dolde, C.; Dang, G.; Shim, H. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J. Bioenerg. Biomembr. 1997, 29, 345–354. [Google Scholar] [CrossRef]
- Rashid, A.; Pizer, E.S.; Moga, M.; Milgraum, L.Z.; Zahurak, M.; Pasternack, G.R.; Kuhajda, F.P.; Hamilton, S.R. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am. J. Pathol. 1997, 150, 201–208. [Google Scholar]
- Nguyen, T.T.T.; Zhang, Y.; Shang, E.; Shu, C.; Torrini, C.; Zhao, J.; Bianchetti, E.; Mela, A.; Humala, N.; Mahajan, A.; et al. Hdac inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J. Clin. Investig. 2020, 130, 3699–3716. [Google Scholar] [CrossRef]
- Kherlopian, A.R.; Song, T.; Duan, Q.; Neimark, M.A.; Po, M.J.; Gohagan, J.K.; Laine, A.F. A review of imaging techniques for systems biology. BMC Syst. Biol. 2008, 2, 74. [Google Scholar] [CrossRef] [PubMed]
- Tanner, L.B.; Goglia, A.G.; Wei, M.H.; Sehgal, T.; Parsons, L.R.; Park, J.O.; White, E.; Toettcher, J.E.; Rabinowitz, J.D. Four key steps control glycolytic flux in mammalian cells. Cell Syst. 2018, 7, 49–62.e8. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Enríquez, S.; Vital-González, P.A.; Flores-Rodríguez, F.L.; Marín-Hernández, A.; Ruiz-Azuara, L.; Moreno-Sánchez, R. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol. Appl. Pharmacol. 2006, 215, 208–217. [Google Scholar] [CrossRef]
- Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: Cancer’s achilles’ heel. Cancer Cell 2008, 13, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Ban, J.; Xia, Y.; Zhou, F.; Yuan, C.; Jia, H.; Huang, H.; Jiang, M.; Liang, M.; Li, Z.; et al. Echinacea purpurea-derived homogeneous polysaccharide exerts anti-tumor efficacy via facilitating m1 macrophage polarization. Innovation 2023, 4, 100391. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, C.; Li, J.; Gao, Y.Z.; Wang, Z.; Wei, Y. Emerging paradigms in exploring the interactions among diet, probiotics, and cancer immunotherapeutic response. Innovation 2023, 4, 100456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, Q.; Ren, X.; Luo, M.; Liu, Y.; Liu, P.; Ye, Y.; Chen, X.; Liu, H.; Han, L. Characterization of intratumor microbiome in cancer immunotherapy. Innovation 2023, 4, 100482. [Google Scholar] [CrossRef]
- Speirs, C.; Williams, J.J.L.; Riches, K.; Salt, I.P.; Palmer, T.M. Linking energy sensing to suppression of jak-stat signalling: A potential route for repurposing ampk activators? Pharmacol. Res. 2018, 128, 88–100. [Google Scholar] [CrossRef]
- Kong, L.-Z.; Kim, S.-M.; Wang, C.; Lee, S.Y.; Oh, S.-C.; Lee, S.; Jo, S.; Kim, T.-D. Understanding nucleic acid sensing and its therapeutic applications. Exp. Mol. Med. 2023, 55, 2320–2331. [Google Scholar] [CrossRef]
- Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cgas-sting pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, J.; Alu, A.; Han, X.; Wei, Y.; Wei, X. Cgas-sting pathway in cancer biotherapy. Mol. Cancer 2020, 19, 136. [Google Scholar] [CrossRef] [PubMed]
- Iurescia, S.; Fioretti, D.; Rinaldi, M. Targeting cytosolic nucleic acid-sensing pathways for cancer immunotherapies. Front. Immunol. 2018, 9, 711. [Google Scholar] [CrossRef] [PubMed]
Ingenuity Canonical Pathways | −log (p-Value) | z-Score | Molecules |
---|---|---|---|
Tumor Microenvironment Pathway | 8.83 | −2.77 | AKT3, CCL2, CFLAR, COL1A1, COL1A2, COL3A1, CSF1, CXCL12, EGF, FGF1, FGF2, FGF7, FN1, FOS, FOXO1, FOXO4, HGF, HLA-E, IGF1, IL6, IL6R, ITGB3, JUN, LEP, LEPR, MMP1, MMP10, MMP11, MMP13, MMP24, MMP28, MMP3, MMP9, MRAS, MYC, OSM, PDCD1LG2, PDGFA, PDGFD, PIK3C2G, PIK3R1, PTGS2, RASD1, RRAS2, SLC2A4, SPP1, TSLP, VEGFD |
ERK/MAPK Signaling | 4.68 | −2.95 | CREB3L1, CREB3L4, CREB5, DUSP1, DUSP6, ELF5, ESR1, ETS1, ETS2, FOS, FYN, HSPB1, HSPB7, ITGA1, ITGA10, ITGA6, ITGA7, ITGA9, ITGB3, ITGB4, ITGB8, KSR1, MRAS, MYC, PAK3, PAK5, PIK3C2G, PIK3R1, PLA2G4A, PLA2G5, PLCG2, PPARG, PPM1J, PPM1L, PPP1R14A, PPP1R14B, PPP2R1B, PPP2R2C, PRKAR2B, PRKCA, RAPGEF3, RASD1, RRAS2, TLN2 |
HIF1α Signaling | 4.31 | −4.62 | ADM, AKT3, BMP6, CAMK1, EDN1, EGF, EGLN3, FGF2, FLT4, FOXP3, HGF, HSPA6, IGF1, IL6, IL6R, JUN, KDR, LDHB, MAP2K6, MET, MMP1, MMP10, MMP11, MMP13, MMP24, MMP28, MMP3, MMP9, MRAS, PIK3C2G, PIK3R1, PLCG2, PRKCA, PRKD1, PRKD3, RASD1, RRAS2, SLC2A4, TF, TGFA, VEGFD, VIM |
Integration of Energy Metabolism | 4.73 | −3.30 | ACSL4, ADCY4, ADCY5, ADIPOQ, ADRA2A, CACNB3, CD36, GNAI1, GNG11, GNG12, GNG2, GNG7, ITPR1, ITPR2, KCNB1, KCNJ11, MLXIPL, PFKFB1, PLCB1, PPP2R1B, PRKAR2B, PRKCA, RAPGEF3, STXBP1, VAMP2 |
AMPK Signaling | 3.17 | −3.15 | ACACB, ADIPOQ, ADRA1A, ADRA2A, ADRB1, ADRB2, AK4, AK5, AK8, AKT3, CCNA2, CREB3L1, CREB3L4, CREB5, FOXO1, FOXO4, GNAI1, GNAL, GNAZ, GNG11, GNG12, GNG2, GNG7, IRS1, IRS2, KAT2B, LEP, LIPE, MRAS, PFKFB1, PFKFB3, PIK3C2G, PIK3R1, PPARGC1A, PPM1F, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PRKAR2B, RAB3A, RAB9B, SLC2A4 |
RAR Activation | 3.14 | −4.56 | ACVR1C, ACVR2A, ADCY4, ADCY5, ADH1B, ADH1C, AKR1C3, AKT3, ALDH1A1, ALDH1A2, ALDH1A3, CNGA1, COL10A1, COL1A1, COL1A2, COL3A1, CRABP2, CREB3L1, CREB3L4, CREB5, DHRS3, DRD2, DUSP1, EDA, EGF, FABP5, FOS, GUCY1A1, HOXA3, HOXA5, HOXD3, HOXD4, HSD17B6, IL17B, IL17D, IL33, IL6, JUN, KAT2B, KIT, KLF2, LEP, LIF, LIPE, LRAT, LTB, MAPK10, MEIS1, MEIS2, MMP1, MMP11, MMP13, MMP3, MMP9, MPPED2, NR2F1, NR2F6, NRIP2, OSM, PDE11A, PDE1A, PDE1B, PDE1C, PDE2A, PDE3A, PDE3B, PDE5A, PDE7B, PDE9A, PIK3C2G, PIK3R1, PPARG, PPARGC1A, PRKAR2B, RARB, RBP4, RBP7, RDH16, RDH5, RET, RHOJ, RHOQ, RHOU, RND1, RND3, RPS6KA2, RXRG, SDR16C5, SOCS3, STAT5A, STAT5B, STRA6, TGFBR2, TGFBR3, TNFSF12, TNFSF4, ZBTB16 |
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages | 3.23 | −3.88 | AKT3, APOC1, APOD, CAT, CLU, FOS, HOXA10, IFNGR1, JUN, MAP3K5, MAP3K8, MAPK10, NGFR, PIK3C2G, PIK3R1, PLCG2, PPARA, PPM1J, PPM1L, PPP1R14A, PPP1R14B, PPP2R1B, PPP2R2C, PRKCA, PRKD1, PRKD3, RBP4, RHOJ, RHOQ, RHOU, RND1, RND3, S100A8, SIRPA, TLR4, TNFRSF1B |
Glutaminergic Receptor Signaling Pathway | 3.32 | −5.25 | ADCY4, ADCY5, AKT3, CACNA2D1, CACNB3, CACNG4, CREB3L1, CREB3L4, CREB5, GABRB3, GABRD, GABRE, GABRP, GNAI1, GNAL, GPLD1, GRIA4, GRIK5, GUCY1A1, ITPR1, ITPR2, LCAT, NR3C1, PIK3C2G, PIK3R1, PLA2G4A, PLA2G5, PLA2R1, PLAAT3, PLAAT5, PLB1, PLCB1, PLCE1, PLCG2, PLCH2, PLCL2, PLD1, PNPLA2, PRKAR2B, PRKCA, PRKD1, PRKD3, SCN2A, SCN2B, SCN3A, SCN3B, SCN4A, SCN4B, SCN7A, SLC1A3, SLC1A7, SLC38A5, STX1B, TRPC1, VAMP2 |
Glycosaminoglycan Metabolism | 3.16 | −2.06 | B3GNT3, B4GALT6, BGN, CHPF, CSGALNACT1, DCN, DSEL, FMOD, GPC3, HMMR, HPSE2, LYVE1, OGN, OMD, PRELP, SDC1, ST3GAL6, UST, VCAN |
p53 Signaling | 2.45 | 0.24 | AKT3, BBC3, BIRC5, CCND2, CDKN2A, CHEK1, E2F1, GADD45G, JUN, KAT2B, PCNA, PIK3C2G, PIK3R1, PLAGL1, PMAIP1, SERPINB5, SNAI2, TP53AIP1, TP63, TRIM29 |
PPAR Signaling | 2.33 | 2.52 | FOS, IL1R1, IL1RL2, IL33, JUN, MRAS, NGFR, NR2F1, PDGFA, PDGFD, PDGFRA, PPARA, PPARG, PPARGC1A, PTGS2, RASD1, RRAS2, STAT5A, STAT5B, TNFRSF1B, TRAF2 |
Autophagy | 2.01 | −1.50 | AKT3, BMP6, CREB3L1, CREB3L4, CREB5, DAPK2, E2F1, EGF, FGF2, FOS, FOXO1, GABARAPL1, HGF, IGF1, IRS1, IRS2, JUN, MAP1LC3C, MAPK10, MYC, NGFR, NOD2, PIK3C2G, PIK3R1, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PRKAR2B, RAB7B, SESN1, SLC7A5, TGFA, TLR4, TNFRSF1B |
PI3K/AKT Signaling | 1.62 | −0.90 | AKT3, FOXO1, GDF15, GHR, IFNLR1, IL11RA, IL17RD, IL1R1, IL1RL2, IL20RA, IL22RA1, IL6R, ITGA1, ITGA10, ITGA6, ITGA7, ITGA9, ITGB3, ITGB4, ITGB8, MAP3K5, MAP3K8, MRAS, PIK3R1, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PTGS2, RASD1, RRAS2 |
Triacylglycerol Degradation | 0.77 | −2.64 | AADAC, ABHD6, ALDH2, CES1, LIPE, LPL, MGLL, PLB1, PNPLA2 |
Triglyceride Metabolism | 1.18 | −2.64 | CAV1, FABP4, FABP5, LIPE, LPIN1, MGLL, PLIN1 |
mTOR Signaling | 0.54 | −3.71 | AKT3, EIF3L, EIF4A1, GPLD1, IRS1, MRAS, PIK3C2G, PIK3R1, PLD1, PPM1J, PPM1L, PPP2R1B, PPP2R2C, PRKCA, PRKD1, PRKD3, RASD1, RHOJ, RHOQ, RHOU, RND1, RND3, RPS6KA2, RPS6KA3, RRAS2, VEGFD |
Xenobiotic Metabolism AHR Signaling Pathway | 0.33 | −2.53 | ABCG2, ALDH1A1, ALDH1A2, ALDH1A3, ALDH1L1, ALDH2, GSTM2, GSTP1, HDAC4, IL6 |
Sirtuin Signaling Pathway | 0.32 | −1.17 | ABCA1, ACADL, ACSS2, CPS1, DUSP6, E2F1, EPAS1, FOXO1, FOXO4, GABARAPL1, GADD45G, IDH2, JUN, LDHB, LDHD, MAP1LC3C, MAPK15, MYC, PCK1, PFKFB3, PPARA, PPARG, PPARGC1A, RARB, SOD2, SOD3, TUBA1C, TUBA3C/TUBA3D |
Mitochondrial Biogenesis | 0.41 | −2.12 | ACSS2, CHD9, IDH2, MEF2C, PPARA, PPARGC1A, PPARGC1B, SOD2 |
Mitochondrial Dysfunction | 0.46 | −1.49 | ACADL, ATP1A2, ATP1B2, BBC3, CACNA2D1, CACNB3, CACNG4, CAPN11, CAPN9, CLIC2, COX6C, COX7A1, CREB3L1, CREB3L4, CREB5, FBXW7, GPX3, GSTM2, GSTP1, HAP1, IDH2, ITPR1, ITPR2, LRRK2, MAOA, MAOB, MAP3K5, MAPK10, PIK3C2G, PIK3R1, PPARG, PPARGC1A, PRKAR2B, PRKN, RAPGEF3, SNCA, SOD2 |
TCA Cycle and Respiratory Electron Transport | 0.62 | −1.41 | ADHFE1, IDH2, LDHB, ME1, ME3, PDK4, PDP2, SLC16A3 |
Energy-Sensing Molecules | Molecules Whose Changes in Concentration Are Sensed |
---|---|
AMP-activated protein kinase (AMPK) | AMP and glycogen |
Cytosolic guanylyl cyclase (cGC) and Basic helix loop helix-leucine zipper partner for the Max-like protein, Mlx (MondoA) | ATP |
Guanylyl cyclase | cGMP |
Phosphatidylinositol-5-phosphate 4-kinase-β (PI5PK4β) | GTP |
Hypoxia-inducible factor 1 (HIF1) | Molecular oxygen (O2) |
Peroxisome proliferator-activated receptors (PPARS) | Intracellular free fatty acids |
Sirtuin 1, 3 (Sirt1 and Sirt3) proteins and AMPK | NAD+ |
Glucokinase | Glucose |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirza, Z.; Karim, S. Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer. Cells 2024, 13, 1474. https://doi.org/10.3390/cells13171474
Mirza Z, Karim S. Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer. Cells. 2024; 13(17):1474. https://doi.org/10.3390/cells13171474
Chicago/Turabian StyleMirza, Zeenat, and Sajjad Karim. 2024. "Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer" Cells 13, no. 17: 1474. https://doi.org/10.3390/cells13171474