Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment
Abstract
:1. Introduction
2. Urease
3. Flagellum
4. Cytotoxin-Associated Gene A
5. Vacuolating Cytotoxin A
6. Catalase
7. Superoxidase Dismutase
8. Lewis Antigens
9. Arginase
10. Phospholipases
11. Lipopolysaccharide
12. Blood Group Antigen-Binding Adhesin
13. Sialic Acid-Binding Adhesin
14. Outer Inflammatory Protein A
15. Duodenal Ulcer Promoting Gene A
16. Adherence-Associated Lipoprotein A and B
17. LacdiNAc-Specific Adhesin
18. Helicobacter pylori Outer Membrane Protein Q
19. Helicobacter pylori Outer Membrane Protein Z
20. Induced by Contact with Epithelium Gene A
21. Cholesteryl α-Glucosyltransferase
22. γ-Glutamyl-Transpeptidase
23. Neutrophil-Activating Protein
24. High Temperature Requirement A
25. Heat Shock Proteins
26. Conclusions
Funding
Conflicts of Interest
Abbreviations
αCGL | cholesteryl α-glucoside |
αCgT | cholesteryl α-glucosyltransferase |
AlpA | adherence-associated lipoprotein A |
AlpB | adherence-associated lipoprotein B |
AmiE and AmiF | aliphatic amidases—E and F |
ASPP2 | apoptosis-stimulating protein of p53 2 |
BabA | blood group antigen binding fadhesin |
cagPAI | cag pathogenicity island |
CEACAM | carcinoembryonic antigen-related cell adhesion molecules |
Cu/Zn-SOD | copper-zinc superoxide dismutase |
CXCR7 | CXC chemokine receptor 7 |
Dps | DNA-protecting protein under severe conditions |
DupA | duodenal ulcer promoting gene A |
EC-SOD | extracellular matrix superoxide dismutase |
EMT | epithelial-mesenchymal transition |
GC | gastric cancer |
GGT | γ-glutamyl-transpeptidase |
GERD | gastroesophageal reflux disease |
GSK-3 | glycogen synthase kinase 3 |
H. pylori | Helicobacter pylori |
HopQ | Helicobacter pylori outer membrane protein Q |
HopZ | Helicobacter pylori outer membrane protein Z |
Hsps | heat shock proteins |
HtrA | high temperature requirement A |
IBD | inflammatory bowel disease |
IceA | induced by contact with epithelium gene A |
iNOS | nitric oxide synthase |
LabA | LacdiNAc-specific adhesin |
(Le) antigens | Lewis antigens |
LPS | lipopolysaccharide |
LRP-1 | lipoprotein receptor-related protein-1 |
MALT | mucosa-associated lymphoid tissue lymphoma |
MAP | mitogen-activated protein |
MAPK | mitogen-activated protein kinase |
MD-2 | myeloid differential protein-2 |
MHC | major histocompatibility complex |
MMP-1 | matrix metalloproteinase 1 |
Mn-SOD | manganese superoxide dismutase |
Mox1 | mitogen oxidase 1 |
NAP | neutrophil-activating protein |
NUD | non-ulcer dyspepsia |
OipA | outer inflammatory protein A |
OMP | outer membrane protein |
OMPLA | outer membrane phospholipase A |
OMVs | outer membrane vesicles |
PAI-2 | plasminogen activator inhibitor-2 |
PD-1 | programmed death-ligand 1 |
PDCD4 | programmed cell death protein 4 |
PLA1 | phospholipase A1 |
PLA2 | phospholipase A2 |
PLC | phospholipase C |
PLC–IP3 | phospholipase C – inositol 1,4,5-trisphosphate |
PLD | phospholipase D |
ROS | reactive oxygen species |
RPTPα | receptor-like protein tyrosine phosphatases β |
RPTPβ | receptor-like protein tyrosine phosphatases α |
RUNX3 | run-related transcription factor 3 |
SabA | sialic acid–binding adhesin |
SOD | superoxide dismutase |
T4SS | type 4 secretion system |
TF | tissue factor |
TFF | trefoil factor family |
TGF-β1 | transforming growth factor-beta 1 |
TLR4 | toll-like receptor 4 |
TNF-α | tumor necrosis factor alpha |
VacA | vacuolating cytotoxin |
Vn | vitronectin |
WHO | World Health Organization |
YAP | yes-associated protein |
References
- Ishaq, S.; Nunn, L. Helicobacter pylori and gastric cancer: A state of the art review. Gastroenterol. Hepatol. Bed Bench 2015, 8, S6–S14. [Google Scholar] [PubMed]
- International Agency for Research on Cancer (IARC). Schistosomes, Liver Flukes and Helicobacter pylori; IARC: Lyon, France, 1994; pp. 1–241. [Google Scholar]
- Burucoa, C.; Axon, A. Epidemiology of Helicobacter pylori infection. Helicobacter 2017, 22, e12403. [Google Scholar] [CrossRef] [PubMed]
- Pucułek, M.; Machlowska, J.; Wierzbicki, R.; Baj, J.; Maciejewski, R.; Sitarz, R. Helicobacter pylori associated factors in the development of gastric cancer with special reference to the early-onset subtype. Oncotarget 2018, 9, 31146–31162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.; Yamaoka, Y. Survival of Helicobacter pylori in gastric acidic territory. Helicobacter 2017, 22, e12386. [Google Scholar] [CrossRef] [PubMed]
- Ciaula, A.D.; Baj, J.; Garruti, G.; Celano, G.; Angelis, M.D.; Wang, H.H.; Di Palo, D.M.; Bonfrate, L.; Wang, D.Q.H.; Portincasa, P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J. Clin. Med. 2020, 9, 2648. [Google Scholar] [CrossRef]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef]
- Oleastro, M.; Ménard, A. The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis. Biology 2013, 2, 1110–1134. [Google Scholar] [CrossRef] [Green Version]
- Banic, M.; Franceschi, F.; Babic, Z.; Gasbarrini, A. Extragastric manifestations of Helicobacter pylori infection. Helicobacter 2012, 17, 49–55. [Google Scholar] [CrossRef]
- González, C.; Megraud, F.; Buissonniere, A.; Lujan Barroso, L.; Agudo, A.; Duell, E.J.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Palli, D.; Krogh, V.; et al. Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: The Eurgast-EPIC project. Ann. Oncol. 2012, 23, 1320–1324. [Google Scholar] [CrossRef]
- Machlowska, J.; Kapusta, P.; Baj, J.; Morsink, F.H.M.; Wołkow, P.; Maciejewski, R.; Offerhaus, G.J.A.; Sitarz, R. High-Throughput Sequencing of Gastric Cancer Patients: Unravelling Genetic Predispositions Towards an Early-Onset Subtype. Cancers 2020, 12, 1981. [Google Scholar] [CrossRef]
- Baj, J.; Brzozowska, K.; Forma, A.; Maani, A.; Sitarz, E.; Portincasa, P. Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis. Int. J. Mol. Sci. 2020, 21, 2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baj, J.; Korona-Głowniak, I.; Forma, A.; Maani, A.; Sitarz, E.; Rahnama-Hezavah, M.; Radzikowska, E.; Portincasa, P. Mechanisms of the Epithelial–Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020, 9, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watari, J. Helicobacter pyloriassociated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J. Gastroenterol. 2014, 20, 5461. [Google Scholar] [CrossRef] [PubMed]
- Potamitis, G.S.; Axon, A.T.R. Helicobacter pylori and Nonmalignant Diseases. Helicobacter 2015, 20, 26–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanas, A.; Chan, F.K.L. Peptic ulcer disease. Lancet 2017, 390, 613–624. [Google Scholar] [CrossRef]
- Bravo, D.; Hoare, A.; Soto, C.; Valenzuela, M.A.; Quest, A.F. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects. World J. Gastroenterol. 2018, 24, 3071–3089. [Google Scholar] [CrossRef] [PubMed]
- Pucułek, M.; Baj, J.; Portincasa, P.; Sitarz, M.; Grochowski, C.; Radzikowska, E. The morphology and application of stem cells in digestive system surgery. Folia Morphol. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, D.R.; Weeks, D.; Hong, C.; Postius, S.; Melchers, K.; Sachs, G. The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 1998, 114, 58–70. [Google Scholar] [CrossRef]
- Sidebotham, R.L.; Worku, M.L.; Karim, Q.N.; Dhir, N.K.; Baron, J.H. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment. Eur. J. Gastroenterol. Hepatol. 2003, 15, 395–401. [Google Scholar] [CrossRef]
- Can, F.; Karahan, C.; Dolapci, I.; Demirbilek, M.; Tekeli, A.; Arslan, H. Urease Activity and Urea Gene Sequencing of Coccoid Forms of H. pylori Induced by Different Factors. Curr. Microbiol. 2008, 56, 150–155. [Google Scholar] [CrossRef]
- Nolan, K.J.; Mcgee, D.J.; Mitchell, H.M.; Kolesnikow, T.; Harro, J.M.; Orourke, J.; Wilson, J.E.; Danon, S.J.; Moss, N.D.; Mobley, H.L.T.; et al. In Vivo Behavior of a Helicobacter pylori SS1 nixA Mutant with Reduced Urease Activity. Infect. Immun. 2002, 70, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmalstig, A.A.; Benoit, S.L.; Misra, S.K.; Sharp, J.S.; Maier, R.J. Noncatalytic Antioxidant Role for Helicobacter pylori Urease. J. Bacteriol. 2018, 200, e00124-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassermann, G.E.; Olivera-Severo, D.; Uberti, A.F.; Carlini, C.R. Helicobacter pylori urease activates blood platelets through a lipoxygenase-mediated pathway. J. Cell. Mol. Med. 2010, 14, 2025–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivera-Severo, D.; Uberti, A.F.; Marques, M.S.; Pinto, M.T.; Gomez-Lazaro, M.; Figueiredo, C.; Leite, M.; Carlini, C.R. A new role for Helicobacter pylori urease: Contributions to angiogenesis. Front. Microbiol. 2017, 8, 1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belzer, C.; Stoof, J.; Beckwith, C.S.; Kuipers, E.J.; Kusters, J.G.; Vliet, A.H.M.V. Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology 2005, 151, 3989–3995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauerfeind, P.; Garner, R.; Dunn, B.E.; Mobley, H.L. Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut 1997, 40, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghalehnoei, H.; Ahmadzadeh, A.; Farzi, N.; Alebouyeh, M.; Aghdaei, H.A.; Azimzadeh, P.; Molaei, M.; Zali, M.R. Relationship between ureB Sequence Diversity, Urease Activity and Genotypic Variations of Different Helicobacter pylori Strains in Patients with Gastric Disorders. Pol. J. Microbiol. 2016, 65, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Mcgee, D.J.; Coker, C.; Testerman, T.L.; Harro, J.M.; Gibson, S.V.; Mobley, H.L.T. The Helicobacter pylori flbA flagellar biosynthesis and regulatory gene is required for motility and virulence and modulates urease of H. pylori and Proteus mirabilis. J. Med. Microbiol. 2002, 51, 958–970. [Google Scholar] [CrossRef] [Green Version]
- Tarsia, C.; Danielli, A.; Florini, F.; Cinelli, P.; Ciurli, S.; Zambelli, B. Targeting Helicobacter pylori urease activity and maturation: In-cell high-throughput approach for drug discovery. Biochimica et Biophysica Acta (BBA). Gen. Subj. 2018, 1862, 2245–2253. [Google Scholar] [CrossRef]
- Suerbaum, S. The complex flagella of gastric Helicobacter species. Trends Microbiol. 1995, 3, 168–170. [Google Scholar] [CrossRef]
- Geis, G.; Suerbaum, S.; Forsthoff, B.; Leying, H.; Opferkuch, W. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J. Med. Microbiol. 1993, 38, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.E.; Hardcastle, J.M.; Wang, J.; Pincus, Z.; Tsang, J.; Hoover, T.R.; Bansil, R.; Salama, N.R. Helicobacter pyloristrains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol. Microbiol. 2015, 99, 88–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkx-Jacques, A.; Obhi, R.K.; Bethune, G.; Creuzenet, C. The Helicobacter pylori flaA1 and wbpB Genes Control Lopopolysaccharide and Flagellum Synthesis and Function. J. Bacteriol. 2004, 186, 2253–2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, C.-Y.; Sheu, B.-S.; Wu, J.-J. CsrA RegulatesHelicobacter pyloriJ99 Motility and Adhesion by Controlling Flagella Formation. Helicobacter 2014, 19, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Yoshiyama, H.; Takeuchi, H.; Mizote, T.; Okita, K.; Nakazawa, T. Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment. Infect. Immun. 1998, 66, 4832–4837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiyama, H.; Nakazawa, T. Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microb. Infect. 2000, 2, 55–60. [Google Scholar] [CrossRef]
- O’Toole, P.W.; Lane, M.C.; Porwollik, S. Helicobacter pylori motility. Microb. Infect. 2000, 2, 1207–1214. [Google Scholar] [CrossRef]
- Ottemann, K.M.; Lowenthal, A.C. Helicobacter pylori Uses Motility for Initial Colonization and To Attain Robust Infection. Infect. Immun. 2002, 70, 1984–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowenthal, A.C.; Hill, M.; Sycuro, L.K.; Mehmood, K.; Salama, N.R.; Ottemann, K.M. Functional Analysis of the Helicobacter pylori Flagellar Switch Proteins. J. Bacteriol. 2009, 191, 7147–7156. [Google Scholar] [CrossRef] [Green Version]
- Lertsethtakarn, P.; Ottemann, K.M.; Hendrixson, D.R. Motility and Chemotaxis in Campylobacter and Helicobacter. Ann. Rev. Microbiol. 2011, 65, 389–410. [Google Scholar] [CrossRef] [PubMed]
- Gu, H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr. Microbiol. 2017, 74, 863–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hathroubi, S.; Zerebinski, J.; Ottemann, K.M. The Helicobacter pylori Biofilm Involves a Multi-Gene Stress-Biased Response Including a Structural Role for Flagella. MBio 2018, 9, e01973-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, R.X.; Luo, D.J.; Sun, A.H.; Yan, J. Diversity of Helicobacter pylori isolates in expression of antigens and induction of antibodies. World J. Gastroenterol. 2008, 14, 4816–4822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skene, C.; Young, A.; Every, A.; Sutton, P. Helicobacter pyloriflagella: Antigenic profile and protective immunity. FEMS Immunol. Med. Microbiol. 2007, 50, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Lawson, A.J. Helicobacter. In Manual of Clinical Microbiology, 10th ed.; James, V., Karen, C., Guido, F., Eds.; ASM: Washington, DC, USA, 2011; pp. 900–915. [Google Scholar]
- Lee, S.K.; Stack, A.; Katzowitsch, E.; Aizawa, S.I.; Suerbaum, S.; Josenhans, C. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microb. Infect. 2003, 5, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Clyne, M.; Ocroinin, T.; Suerbaum, S.; Josenhans, C.; Drumm, B. Adherence of Isogenic Flagellum-Negative Mutants ofHelicobacter pylori and Helicobacter mustelae to Human and Ferret Gastric Epithelial Cells. Infect. Immun. 2000, 68, 4335–4339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghwan, C.R. Host Cell Contact Induces Fur-dependent Expression of Virulence Factors CagA and VacA inHelicobacter pylori. Helicobacter 2013, 19, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kyrillos, A.; Arora, G.; Murray, B.; Rosenwald, A.G. The Presence of Phage Orthologous Genes inHelicobacter pyloriCorrelates with the Presence of the Virulence FactorsCagAandVacA. Helicobacter 2015, 21, 226–233. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Pinto-Ribeiro, I.; Wen, X.; Marcos-Pinto, R.; Dinis-Ribeiro, M.; Carneiro, F.; Figueiredo, C. Helicobacter pylori cagAPromoter Region Sequences Influence CagA Expression and Interleukin 8 Secretion. J. Infect. Dis. 2015, 213, 669–673. [Google Scholar] [CrossRef]
- Eskandari-Nasab, E.; Sepanjnia, A.; Moghadampour, M.; Hadadi-Fishani, M.; Rezaeifar, A.; Asadi-Saghandi, A.; Sadeghi-Kalani, B.; Manshadi, M.D.; Pourrajab, F.; Pourmasoumi, H. Circulating levels of interleukin (IL)-12 and IL-13 in Helicobacter pylori-infected patients, and their associations with bacterial CagA and VacA virulence factors. Scand. J. Infect. Dis. 2012, 45, 342–349. [Google Scholar] [CrossRef]
- Bridge, D.R.; Blum, F.C.; Jang, S.; Kim, J.; Cha, J.-H.; Merrell, D.S. Creation and Initial Characterization of Isogenic Helicobacter pylori CagA EPIYA Variants Reveals Differential Activation of Host Cell Signaling Pathways. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Júnior, M.F.; Batista, S.D.A.; Barbuto, R.C.; Gomes, A.D.; Queiroz, D.M.M.; Araújo, I.D.; Caliari, M.V. CagA-positive Helicobacter pylori strain containing three EPIYA C phosphorylation sites produces increase of G cell and decrease of D cell in experimentally infected gerbils (Meriones unguiculatus). Adv. Med. Sci. 2016, 61, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-H.; Chang, Y.-C.; Du, S.-Y.; Wang, H.-J.; Kuo, C.-H.; Fang, S.-H.; Fu, H.; Lin, H.; Chiang, A.; Wang, W. Cholesterol Depletion Reduces Helicobacter pylori CagA Translocation and CagA-Induced Responses in AGS Cells. Infect. Immun. 2008, 76, 3293–3303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figura, N.; Trabalzini, L.; Mini, R.; Bernardini, G.; Scaloni, A.; Talamo, F.; Lusini, P.; Ferro, E.; Martelli, P.; Santucci, A. Inactivation of Helicobacter pylori cagA Gene Affects Motility. Helicobacter 2004, 9, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Baidya, A.K.; Bhattacharya, S.; Chowdhury, R. Role of the Flagellar Hook-Length Control Protein FliK and σ28incagAExpression in Gastric Cell–AdheredHelicobacter pylori. J. Infect. Dis. 2014, 211, 1779–1789. [Google Scholar] [CrossRef] [Green Version]
- Bergé, C.; Terradot, L. Structural Insights into Helicobacter pylori Cag Protein Interactions with Host Cell Factors. In Current Topics in Microbiology and Immunology Molecular Pathogenesis and Signal Transduction by Helicobacter pylori; Springer: Cham, Switzerland, 2017; pp. 129–147. [Google Scholar]
- Shibata, A.; Parsonnet, J.; Longacre, T.A.; Garcia, M.I.; Puligandla, B.; Davis, R.E.; Vogelman, J.H.; Orentreich, N.; Habel, L.A. CagA status of Helicobacter pylori infection and p53 gene mutation in gastric adenocarcinoma. Carcinogenesis 2002, 23, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Mansour, K.B.; Fendri, C.; Zribi, M.; Masmoudi, A.; Labbene, M.; Fillali, A.; Mami, N.B.; Najjar, T.; Meherzi, A.; Sfar, T.; et al. Prevalence of Helicobacter pylori vacA, cagA, iceA and oipA genotypes in Tunisian patients. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, R.; Hanafiah, A.; Rose, I.M.; Manaf, M.R.A.; Abdullah, S.A.; Sagap, I.; van Belkum, A.; Yaacob, J.A. Helicobacter pylori cagA gene variants in Malaysians of different ethnicity. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 865–869. [Google Scholar] [CrossRef] [Green Version]
- Chomvarin, C.; Namwat, W.; Chaicumpar, K.; Mairiang, P.; Sangchan, A.; Sripa, B.; Tor-Udom, S.; Vilaichone, R. Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA and babA2 genotypes in Thai dyspeptic patients. Int. J. Infect. Dis. 2008, 12, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, M.Q.D.F.; Silva, C.I.S.; Braga-Neto, M.B.; Fialho, A.B.C.; Fialho, A.N.; Barbosa, A.M.C.; Cruz, F.W.S.; Rocha, G.A.; Queiroz, D.M.M.d.; Braga, L.L.B.C. Helicobacter pylori vacA and cagA genotypes in patients from northeastern Brazil with upper gastrointestinal diseases. Memó. Inst. Oswaldo Cruz 2012, 107, 561–563. [Google Scholar] [CrossRef]
- Faundez, G.; Troncoso, M.; Figueroa, G. cagA and vacA in strains of Helicobacter pylori from ulcer and non-ulcerative dyspepsia patients. BMC Gastroenterol. 2002, 2, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, A.; Ryberg, A.; Dehnoei, M.; Borch, K.; Monstein, H.-J. Association between cagA and vacA genotypes and pathogenesis in a Helicobacter pylori infected population from South-eastern Sweden. BMC Microbiol. 2012, 12, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahara, S.; Sugimoto, M.; Vilaichone, R.-K.; Mahachai, V.; Miyajima, H.; Furuta, T.; Yamaoka, Y. Role of Helicobacter pylori cagA EPIYA motif and vacAgenotypes for the development of gastrointestinal diseases in Southeast Asian countries: A meta-analysis. BMC Infect. Dis. 2012, 12, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ando, T.; Peek, R.M.; Pride, D.; Levine, S.M.; Takata, T.; Lee, Y.-C.; Kusugami, K.; van der Ende, A.; Kuipers, E.J.; Kusters, J.G.; et al. Polymorphisms of Helicobacter pylori HP0638 Reflect Geographic Origin and Correlate with cagA Status. J. Clin. Microbiol. 2002, 40, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.I.; Yoon, C.; Park, M.R.; Lee, D.; Kook, M.-C.; Lin, J.-X.; Kang, J.H.; Ashktorab, H.; Smoot, D.T.; Yoon, S.S.; et al. CDX1 Expression Induced by CagA-Expressing Helicobacter pylori Promotes Gastric Tumorigenesis. Mol. Cancer Res. 2019, 17, 2169–2183. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zeng, J.; Liang, X.; Wang, W.; Zhou, Y.; Sun, Y.; Liu, S.; Li, W.; Chen, C.; Jia, J. Helicobacter pylori Promotes Epithelial–Mesenchymal Transition in Gastric Cancer by Downregulating Programmed Cell Death Protein 4 (PDCD4). PLoS ONE 2014, 9, e105306. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wei, H.; Yi, J.; Xie, B.; Chen, J.; Zhou, C.; Wang, L.; Yang, Y. Chronic CagA-positive Helicobacter pylori infection with MNNG stimulation synergistically induces mesenchymal and cancer stem cell-like properties in gastric mucosal epithelial cells. J. Cell. Biochem. 2019, 120, 17635–17649. [Google Scholar] [CrossRef]
- Bessède, E.; Staedel, C.; Amador, L.A.A.; Nguyen, P.H.; Chambonnier, L.; Hatakeyama, M.; Belleannee, G.; Megraud, F.; Varon, C. Helicobacter pylori generates cells with cancer stem cell properties via epithelial–mesenchymal transition-like changes. Oncogene 2013, 33, 4123–4131. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-G.; Kim, H.S.; Lee, Y.S.; Kim, S.; Cha, S.Y.; Ota, I.; Kim, N.H.; Cha, Y.H.; Yang, D.H.; Lee, Y.; et al. Helicobacter pylori CagA promotes Snail-mediated epithelial–mesenchymal transition by reducing GSK-3 activity. Nat. Commun. 2014, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Krzysiek-Maczka, G.; Targosz, A.; Szczyrk, U.; Strzalka, M.; Brzozowski, T.; Ptak-Belowska, A. Involvement of epithelial-mesenchymal transition-inducing transcription factors in the mechanism of Helicobacter pylori-induced fibroblasts activation. J. Physiol. Pharmacol. 2019, 70, 727–736. [Google Scholar]
- Huang, L.; Wang, Z.Y.; Pan, D.D. Penicillin-binding protein 1A mutation-positive Helicobacter pylori promotes epithelial-mesenchymal transition in gastric cancer via the suppression of microRNA-134. Int. J. Oncol. 2018, 54, 916–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.S.; Melo, J.; Cavadas, B.; Mendes, N.; Pereira, L.; Carneiro, F.; Figueiredo, C.; Leite, M. Afadin Downregulation by Helicobacter pylori Induces Epithelial to Mesenchymal Transition in Gastric Cells. Front. Microbiol. 2018, 9, 2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Feng, Y.; Hu, Y.; He, C.; Xie, C.; Ouyang, Y.; Artim, S.C.; Huang, D.; Zhu, Y.; Luo, Z. Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway. J. Exp. Clin. Cancer Res. 2018, 37, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, B.J.; Gorrell, R.J.; Tafreshi, M.; Hatakeyama, M.; Kwok, T.; Price, J.T. The Helicobacter pylori cytotoxin CagA is essential for suppressing host heat shock protein expression. Cell Stress Chaperones 2016, 21, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, T.; Nishiumi, S.; Ito, Y.; Yamakawa, A.; Yamazaki, Y.; Yoshida, M.; Azuma, T. Associations between cagA, vacA, and the clinical outcimes of Helicobacter pylori infections in Okinawa, Japan. Kobe. J. Med. Sci. 2017, 63, E58–E67. [Google Scholar]
- Kaklikkaya, N.; Cubukcu, K.; Aydin, F.; Bakir, T.; Erkul, S.; Tosun, I.; Topbas, M.; Yazici, Y.; Buruk, C.K.; Erturk, M. Significance of cagA status and vacA subtypes of Helicobacter pylori in determining gastric histopathology: Virulence markers of H. pylori and histopathology. J. Gastroenterol. Hepatol. 2006, 21, 1042–1047. [Google Scholar] [CrossRef]
- Zambon, C.-F. Helicobacter pylori babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. J. Clin. Pathol. 2003, 56, 287–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Li, Q.; Gong, Y.; Yuan, Y. The association between vacA or cagA status and eradication outcome of Helicobacter pylori infection: A meta-analysis. PLoS ONE 2017, 12, e0177455. [Google Scholar] [CrossRef] [PubMed]
- Raju, D.; Hussey, S.; Ang, M.; Terebiznik, M.R.; Sibony, M.; Galindo-Mata, E.; Gupta, V.; Blanke, S.R.; Delgado, A.; Romero-Gallo, J.; et al. Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 2012, 142, 1160–1171. [Google Scholar] [CrossRef] [Green Version]
- Wada, A. Helicobacter pylori Vacuolating Cytotoxin, VacA, Is Responsible for Gastric Ulceration. J. Biochem. 2004, 136, 741–746. [Google Scholar] [CrossRef]
- Mcclain, M.; Beckett, A.; Cover, T. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins 2017, 9, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keikha, M.; Ali-Hassanzadeh, M.; Karbalaei, M. Association of Helicobacter pylori vacAgenotypes and peptic ulcer in Iranian population: A systematic review and meta-analysis. BMC Gastroenterol. 2020, 20, 266. [Google Scholar] [CrossRef] [PubMed]
- Atrisco-Morales, J.; Martínez-Santos, V.I.; Román-Román, A.; Alarcón-Millán, J.; De Sampedro-Reyes, J.; Cruz-Del Carmen, I.; Martínez-Carrillo, D.N.; Fernández-Tilapa, G. vacA s1m1 genotype and cagA EPIYA-ABC pattern are predominant among Helicobacter pylori strains isolated from Mexican patients with chronic gastritis. J. Med. Microbiol. 2010, 67, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Román-Román, A.; Martínez-Carrillo, D.N.; Atrisco-Morales, J.; Azúcar-Heziquio, J.C.; Cuevas-Caballero, A.S.; Castañón-Sánchez, C.A.; Reyes-Ríos, R.; Betancourt-Linares, R.; Reyes-Navarrete, S.; Cruz-Del Carmen, I.; et al. Helicobacter pylori vacA s1m1genotype but not cagA or babA2 increase the risk of ulcer and gastric cancer in patients from Southern Mexico. Gut Pathog. 2017, 13, 18, PMCID:PMC5390388. [Google Scholar] [CrossRef] [PubMed]
- Ricci, V. Relationship between VacA Toxin and Host Cell Autophagy in Helicobacter pylori Infection of the Human Stomach: A Few Answers, Many Questions. Toxins. 2016, 8, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, N.; Tay, A.C.Y.; Marshall, B.J.; Jain, U. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: An overview. Helicobacter 2018, 24, e12544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, A.; Langner, C.; Schirrmeister, W.; Habendorf, W.; Weigt, J.; Venerito, M.; Tammer, I.; Schluter, D.; Schlaermann, P.; Meyer, T.F.; et al. Helicobacter pylori vacA genotype is a predominant determinant of immune response to Helicobacter pylori CagA. World J. Gastroenterol. 2017, 23, 4712–4723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djekic, A.; Müller, A. The Immunomodulator VacA Promotes Immune Tolerance and Persistent Helicobacter pylori Infection through Its Activities on T-Cells and Antigen-Presenting Cells. Toxins 2016, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Necchi, V.; Sommi, P.; Vanoli, A.; Fiocca, R.; Ricci, V.; Solcia, E. Natural history of Helicobacter pylori VacA toxin in human gastric epithelium in vivo: Vacuoles and beyond. Sci. Rep. 2017, 7, 14526. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Greenfield, L.K.; Bronte-Tinkew, D.; Capurro, M.I.; Rizzuti, D.; Jones, N.L. VacA promotes CagA accumulation in gastric epithelial cells during Helicobacter pylori infection. Sci. Rep. 2019, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridge, D.R.; Merrell, D.S. Polymorphism in the Helicobacter pylori CagA and VacA toxins and disease. Gut Microb. 2013, 4, 101–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foegeding, N.J.; Raghunathan, K.; Campbell, A.M.; Kim, S.W.; Lau, K.S.; Kenworthy, A.K.; Cover, T.L.; Ohi, M.D. Intracellular Degradation of Helicobacter pylori VacA Toxin as a Determinant of Gastric Epithelial Cell Viability. Infect. Immun. 2019, 87, e00783-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basiri, Z.; Safaralizadeh, R.; Bonyadi, M.J.; Somi, M.H.; Mahdavi, M.; Latifi-Navid, S. Helicobacter pylori vacA d1 Genotype Predicts Risk of Gastric Adenocarcinoma and Peptic Ulcers in Northwestern Iran. Asian Pac. J. Cancer Prev. 2014, 15, 1575–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, T.; Sohail, K.; Rizwan, M.; Mukhtar, M.; Bilal, R.; Khanum, A. Prevalence ofHelicobacter pyloripathogenicity-associatedcagAandvacAgenotypes among Pakistani dyspeptic patients. FEMS Immunol. Med. Microbiol. 2009, 55, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhti, S.Z.; Latifi-Navid, S.; Mohammadi, S.; Zahri, S.; Bakhti, F.S.; Feizi, F.; Yazdanbod, A.; Siavoshi, F. Relevance ofHelicobacter pylori vacA 3ʹ-end Region Polymorphism to Gastric Cancer. Helicobacter 2015, 21, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.F.; Yadyad, M.J.; Goodarzi, H.; Hashemi, S.J.; Aslani, S.; Assarzadegan, M.-A.; Ranjbar, R. CagA and vacA allelic combination of Helicobacter pylori in gastroduodenal disorders. Microb. Pathogen. 2018, 122, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Yamaoka, Y. The association of vacA genotype and Helicobacter pylori-related disease in Latin American and African populations. Clin. Microbiol. Infect. 2009, 15, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Mottaghi, B.; Safaralizadeh, R.; Bonyadi, M.; Latifi-Navid, S.; Somi, M.H. Helicobacter pylori vacA i region polymorphism but not babA2 status associated to gastric cancer risk in northwestern Iran. Clin. Exp. Med. 2014, 16, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Bachir, M.; Allem, R.; Tifrit, A.; Medjekane, M.; Drici, A.E.-M.; Diaf, M.; Douidi, K.T. Primary antibiotic resistance and its relationship with cagA and vacA genes in Helicobacter pylori isolates from Algerian patients. Braz. J. Microbiol. 2018, 49, 544–551. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Machado, J.C.; Figueiredo, C. Clinical relevance of Helicobacter pylori vacA and cagA genotypes in gastric carcinoma. Best Pract. Res.Clin. Gastroenterol. 2014, 28, 1003–1015. [Google Scholar] [CrossRef]
- Trang, T.T.H.; Binh, T.T.; Yamaoka, Y. Relationship between vacA Types and Development of Gastroduodenal Diseases. Toxins 2016, 8, 182. [Google Scholar] [CrossRef] [PubMed]
- Rahimian, G.; Sanei, M.H.; Shirzad, H.; Azadegan-Dehkordi, F.; Taghikhani, A.; Salimzadeh, L.; Hashemzadeh-Chaleshtori, M.; Rafieian-Kopaei, M.; Bagheri, N. Virulence factors of Helicobacter pylori vacA increase markedly gastric mucosal TGF-β1 mRNA expression in gastritis patients. Microb. Pathog. 2014, 67, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Figura, N.; Valassina, M.; Moretti, E.; Vindigni, C.; Collodel, G.; Iacoponi, F.; Giordano, N.; Roviello, F.; Marrelli, D. Histological variety of gastric carcinoma and Helicobacter pylori cagA and vacA polymorphism. Eur. J. Gastroenterol. Hepatol. 2015, 27, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Capurro, M.I.; Greenfield, L.K.; Prashar, A.; Xia, S.; Abdullah, M.; Wong, H.; Zhong, X.Z.; Bertaux-Skeirik, N.; Chakrabarti, J.; Siddiqui, I.; et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat. Microbiol. 2019, 4, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.G.; Hazell, S.L. Localisation ofHelicobacter pyloricatalase in both the periplasm and cytoplasm, and its dependence on the twin-arginine target protein, KapA, for activity. FEMS Microbiol. Lett. 2003, 229, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Mahawar, M.; Tran, V.; Sharp, J.S.; Maier, R.J. Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J. Biol. Chem. 2011, 286, 19159–19169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonjakuakul, J.K.; Syvanen, M.; Suryaprasad, A.; Bowlus, C.L.; Solnick, J.V. Transcription profile of Helicobacter pylori in the human stomach reflects its physiology in vivo. J. Infect. Dis. 2004, 190, 946–956. [Google Scholar] [CrossRef] [Green Version]
- Switala, J.; Loewen, P.C. Diversity of properties among catalases. Arch. Biochem. Biophys. 2002, 401, 145–154. [Google Scholar] [CrossRef]
- Benoit, S.L.; Maier, R.J. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress. J. Biol. Chem. 2016, 291, 23366–23373. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.; Mukherjee, O.; Ermert, D.; Singh, B.; Su, Y.-C.; Agarwal, V.; Blom, A.M.; Riesbeck, K. Moonlighting of Helicobacter pylori catalase protects against complement-mediated killing by utilising the host molecule vitronectin. Sci. Rep. 2016, 6, 24391. [Google Scholar] [CrossRef] [Green Version]
- Ramarao, N.; Gray-Owen, S.D.; Meyer, T.F. Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity. Mol. Microbiol. 2000, 38, 103. [Google Scholar] [CrossRef] [PubMed]
- Basu, M.; Czinn, S.J.; Blanchard, T.G. Absence of Catalase Reduces Long-Term Survival of Helicobacter pylori in Macrophage Phagosomes. Helicobacter 2004, 9, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.G.; Wilson, J.E.; Danon, S.J.; Dixon, M.F.; Donegan, K.; Hazell, S.L. Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology 2003, 149, 665–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazell, S.L.; Graham, D.Y. Unsaturated fatty acids and viability of Helicobacter (Campylobacter) pylori. J. Clin. Microbiol. 1990, 28, 1060–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, M.; Suzuki, H.; Suzuki, M.; Kai, A.; Miura, S.; Ishii, H. Catalase and Superoxide Dismutase Secreted fromHelicobacter pylori. Helicobacter 1997, 2, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Guy, B.; Krell, T.; Sanchez, V.; Kennel, A.; Manin, C.; Sodoyer, R. Do Th1 or Th2 sequence motifs exist in proteins? Immunol. Lett. 2005, 96, 261–275. [Google Scholar] [CrossRef]
- Harris, A.G.; Hinds, F.E.; Beckhouse, A.G.; Kolesnikow, T.; Hazell, S.L. Resistance to hydrogen peroxide in Helicobacter pylori: Role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated ‘KatA-associated protein’, KapA (HP0874). Microbiology 2002, 148, 3813–3825. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, M.; Joh, T.; Watanabe, K.; Todoroki, I.; Seno, K.; Ohara, H.; Nomura, T.; Miyata, M.; Kasugai, K.; Tochikubo, K.; et al. Immune responses in mice to intranasal and intracutaneous administration of a DNA vaccine encoding Helicobacter pylori-catalase. Vaccine 2002, 20, 2336–2342. [Google Scholar] [CrossRef]
- Švagelj, D.; Terzić, V.; Dovhanj, J.; Švagelj, M.; Cvrković, M.; Švagelj, I. Superoxide dismutases in chronic gastritis. Apmis 2016, 124, 252–256. [Google Scholar] [CrossRef]
- Smoot, D.T.; Elliott, T.B.; Verspaget, H.W.; Jones, D.; Allen, C.R.; Vernon, K.G.; Bremner, T.; Kidd, I.R.; Kim, K.S.; Groupman, J.D. Influence of Helicobacter pylori on reactive oxygen-induced gastric epithelial cell injury. Carcinogenesis 2000, 21, 2091–2095. [Google Scholar] [CrossRef] [Green Version]
- Bauer, G.; Bereswill, S.; Aichele, P.; Glocker, E. Helicobacter pylori protects oncogenically transformed cells from reactive oxygen species-mediated intercellular induction of apoptosis. Carcinogenesis 2014, 35, 1582–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negovan, A.; Iancu, M.; Tripon, F.; Crauciuc, A.; Mocan, S.; Bănescu, C. The CAT-262 C>T, MnSOD Ala16Val, GPX1 Pro198Leu Polymorphisms Related to Oxidative Stress and the Presence of Gastric Lesions. J. Gastrointest. Liver Dis. 2018, 27, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Stent, A.; Every, A.L.; Chionh, Y.T.; Ng, G.Z.; Sutton, P. Superoxide dismutase from Helicobacter pylori suppresses the production of pro-inflammatory cytokines during in vivo infection. Helicobacter 2017, 23. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, K.; Kato, K.; Moriya, T.; Suzuki, T.; Saito, M.; Kikuchi, T.; Yang, J.; Imatani, A.; Sekine, H.; Ohara, S.; et al. Analysis of cell damage in Helicobacter pylori-associated gastritis. Pathol. Int. 2002, 52, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Seyler, R.W.; Olson, J.W.; Maier, R.J. Superoxide Dismutase-Deficient Mutants ofHelicobacter pylori Are Hypersensitive to Oxidative Stress and Defective in Host Colonization. Infect. Immun. 2001, 69, 4034–4040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishita, K.; Takeuchi, H.; Morimoto, N.; Shimamura, T.; Kadota, Y.; Tsuda, M.; Taniguchi, T.; Ukeda, H.; Yamamoto, T.; Sugiura, T. Superoxide dismutase activity of Helicobacter pylori per se from 158 clinical isolates and the characteristics. Microbiol. Immunol. 2012, 56, 262–272. [Google Scholar] [CrossRef]
- Lee, H.S.; Choe, G.; Kim, W.H.; Kim, H.H.; Song, J.; Park, K.U. Expression of Lewis antigens and their precursors in gastric mucosa: Relationship with Helicobacter pylori infection and gastric carcinogenesis. J. Pathol. 2006, 209, 88–94. [Google Scholar] [CrossRef]
- Wang, G.; Ge, Z.; Rasko, D.A.; Taylor, D.E. Lewis antigens in Helicobacter pylori: Biosynthesis and phase variation. Mol. Microbiol. 2002, 36, 1187–1196. [Google Scholar] [CrossRef]
- Lozniewski, A.; Haristoy, X.; Rasko, D.A.; Hatier, R.; Plenat, F.; Taylor, D.E.; Angioi-Duprez, K. Influence of Lewis Antigen Expression by Helicobacter pylori on Bacterial Internalization by Gastric Epithelial Cells. Infect. Immun. 2003, 71, 2902–2906. [Google Scholar] [CrossRef] [Green Version]
- Moran, A.P. Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr. Res. 2008, 343, 1952–1965. [Google Scholar] [CrossRef]
- Pohl, M.A.; Zhang, W.; Shah, S.N.; Sanabria-Valentín, E.L.; Perez-Perez, G.I.; Blaser, M.J. Genotypic and Phenotypic Variation of Lewis Antigen Expression in Geographically Diverse Helicobacter pylori Isolates. Helicobacter 2011, 16, 475–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boren, T.; Falk, P.; Roth, K.A.; Larson, G.; Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993, 262, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; David, L.; Reis, C.A.; Costa, J.; Sobrinho-Simões, M. Expression of mucins (MUC1, MUC2, MUC5AC, and MUC6) and type 1 Lewis antigens in cases with and withoutHelicobacter pyloricolonization in metaplastic glands of the human stomach. J. Pathol. 2002, 197, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-J.; Wu, J.-J.; Sheu, B.-S.; Chen, C.-R.; Lu, C.-C.; Yang, H.-B. Helicobacter pylori infection can change the intensity of gastric Lewis antigen expressions differently between adults and children. J. Biomed. Sci. 2007, 15, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, A.M.; Marques, T.; Soares, P.C.M.; David, L.; Reis, C.A.; Serpa, J. Lewis Antigen Expression in Gastric Mucosa of Children: Relationship With Helicobacter pylori Infection. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Rasko, D.A.; Keelan, M.; Thomson, A.B.; Taylor, D.E. Lewis antigen phenotype is altered in Helicobacter pylori isolated from asymptomatic subjects. Gastroenterology 2000, 118. [Google Scholar] [CrossRef]
- Martins, L.C. ABH and Lewis antigen distributions in blood, saliva and gastric mucosa and H pylori infection in gastric ulcer patients. World J. Gastroenterol. 2006, 12, 1120. [Google Scholar] [CrossRef]
- Heneghan, M.A.; McCarthy, C.F.; Janulaityte, D.; Moran, A.P. Relationship of Anti-Lewis x and Anti-Lewis y Antibodies in Serum Samples from Gastric Cancer and Chronic Gastritis Patients to Helicobacter pylori-Mediated Autoimmunity. Infect. Immun. 2001, 69, 4774–4781. [Google Scholar] [CrossRef] [Green Version]
- Sheu, S.M.; Sheu, B.S.; Yang, H.B.; Lei, H.Y.; Wu, J.J. Anti-Lewis X Antibody Promotes Helicobacter pylori Adhesion to Gastric Epithelial Cells. Infect. Immun. 2007, 75, 2661–2667. [Google Scholar] [CrossRef] [Green Version]
- Hynes, S.O.; Keenan, J.I.; Ferris, J.A.; Annuk, H.; Moran, A.P. Lewis Epitopes on Outer Membrane Vesicles of Relevance to Helicobacter pylori Pathogenesis. Helicobacter 2005, 10, 146–156. [Google Scholar] [CrossRef]
- Chmiela, M.; Wadstrom, T.; Folkesson, H.; Małecka, I.P.; Czkwianianc, E.; Rechciński, T.; Rudnicka, W. Anti-Lewis X antibody and Lewis X–anti-Lewis X immune complexes in Helicobacter pylori infection. Immunol. Lett. 1998, 61, 119–125. [Google Scholar] [CrossRef]
- Mendz, G.L.; Hazell, S.L. The urea cycle of Helicobacter pylori. Microbiology 1996, 142, 2959–2967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGee, D.J.; Zabaleta, J.; Viator, R.J.; Testerman, T.L.; Ochoa, A.C.; Mendz, G.L. Purification and characterization of Helicobacter pylori arginase, RocF: Unique features among the arginase superfamily. Eur. J. Biochem. 2004, 271, 1952–1962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Wu, C.; Lu, D.; Guo, G.; Mao, X.; Zhang, Y.; Wang, D.C.; Li, D.; Zou, Q. Expression, purification and characterization of arginase from Helicobacter pylori in its apo form. PLoS ONE 2011, 6, e26205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, J.; Zhang, R.; Guo, Y.; Wu, C.; Mao, X.; Guo, G.; Zhang, Y.; Li, D.; Zou, Q. Structural, enzymatic and biochemical studies on Helicobacter pylori arginase. Int. J. Biochem Cell Biol. 2013, 45, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta, J.; McGee, D.J.; Zea, A.H.; Hernández, C.P.; Rodriguez, P.C.; Sierra, R.A.; Correa, P.; Ochoa, A.C. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J. Immunol. 2004, 173, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Gobert, A.P.; McGee, D.J.; Akhtar, M.; Mendz, G.L.; Newton, J.C.; Cheng, Y.; Mobley, H.L.; Wilson, K.T. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: A strategy for bacterial survival. Proc. Natl. Acad. Sci. USA 2001, 98, 13844–13849. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.D.; Asim, M.; Barry, D.P.; Singh, K.; de Sablet, T.; Boucher, J.L.; Gobert, A.P.; Chaturvedi, R.; Wilson, K.T. Arginase II restricts host defense to Helicobacter pylori by attenuating inducible nitric oxide synthase translation in macrophages. J. Immunol. 2010, 184, 2572–2582. [Google Scholar] [CrossRef] [Green Version]
- Hardbower, D.M.; Asim, M.; Murray-Stewart, T.; Casero RAJr Verriere, T.; Lewis, N.D.; Chaturvedi, R.; Piazuelo, M.B.; Wilson, K.T. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids 2016, 48, 2375–2388. [Google Scholar] [CrossRef]
- Kim, S.H.; Sierra, R.A.; McGee, D.J.; Zabaleta, J. Transcriptional profiling of gastric epithelial cells infected with wild type or arginase-deficient Helicobacter pylori. BMC Microbiol. 2012, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Gobert, A.P.; Cheng, Y.; Wang, J.Y.; Boucher, J.L.; Iyer, R.K.; Cederbaum, S.D.; Casero, R.A., Jr.; Newton, J.C.; Wilson, K.T. Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J. Immunol. 2002, 168, 4692–4700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berstad, A.E.; Berstad, K.; Berstad, A. PH-activated phospholipase A2: An important mucosal barrier breaker in peptic ulcer disease. Scand. J. Gastroenterol. 2002, 37, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Lusini, P.; Figura, N.; Valassina, M.; Roviello, F.; Vindigni, C.; Trabalzini, L.; Nuti, R.; Lenzi, C.; Gonnelli, C.; Nardi, M.; et al. Increased phospholipase activity in Helicobacter pylori strains isolated from patients with gastric carcinoma. Dig. Liver Dis. 2005, 37, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Sitaraman, R.; Israel, D.A.; Romero-Gallo, J.; Peek, R.M., Jr. Cell-associated hemolysis induced by Helicobacter pylori is mediated by phospholipases with mitogen-activated protein kinase-activating properties. J. Clin. Microbiol. 2012, 50, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Stein, S.C.; Faber, E.; Bats, S.H.; Murillo, T.; Speidel, Y.; Coombs, N.; Josenhans, C. Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. PLoS Pathog. 2017, 13, e1006514. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, E.; Mcgee, D.J. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent. BMC Microbiol. 2009, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, K.A.; Logan, S.M.; Baker, P.E.; Peterson, R.A.; Monteiro, M.A.; Altman, E. Helicobacter pylori with a Truncated Lipopolysaccharide O Chain Fails To Induce Gastritis in SCID Mice Injected with Splenocytes from Wild-Type C57BL/6J Mice. Infect. Immun. 2004, 72, 3925–3931. [Google Scholar] [CrossRef] [Green Version]
- Chmiela, M. Structural modifications of Helicobacter pyloril ipopolysaccharide: An idea for how to live in peace. World J. Gastroenterol. 2014, 20, 9882. [Google Scholar] [CrossRef] [PubMed]
- Gonciarz, W.; Krupa, A.; Hinc, K.; Obuchowski, M.; Moran, A.P.; Gajewski, A.; Chmiela, M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS ONE 2019, 14, e0220636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, A.P.; Knirel, Y.A.; Senchenkova, S.N.; Widmalm, G.; Hynes, S.O.; Jansson, P.-E. Phenotypic Variation in Molecular Mimicry betweenHelicobacter pyloriLipopolysaccharides and Human Gastric Epithelial Cell Surface Glycoforms. J. Biol. Chem. 2001, 277, 5785–5795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Liao, T.; Debowski, A.W.; Tang, H.; Nilsson, H.-O.; Stubbs, K.A.; Marshall, B.J.; Benghezal, M. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori. Helicobacter 2016, 21, 445–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, J.I.; Davis, K.A.; Beaugie, C.R.; Mcgovern, J.J.; Moran, A.P. Alterations inHelicobacter pyloriouter membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions*. Innate Immun. 2008, 14, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Pfannkuch, L.; Hurwitz, R.; Traulsen, J.; Sigulla, J.; Poeschke, M.; Matzner, L.; Kosma, P.; Schmid, M.; Meyer, T.F. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J. 2019, 33, 9087–9099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, S.; Pfannkuch, L.; Al-Zeer, M.A.; Bartfeld, S.; Koch, M.; Liu, J.; Rechner, C.; Soerensen, M.; Sokolova, O.; Zamyatina, A.; et al. ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Rep. 2017, 20, 2384–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gall, A.; Gaudet, R.G.; Gray Owen, S.D.; Salama, N.R. TIFA Signaling in Gastric Epithelial Cells Initiates the cag Type 4 Secretion System-Dependent Innate Immune Response to Helicobacter pylori Infection. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Tang, H.; Debowski, A.; Stubbs, K.; Marshall, B.; Benghezal, M. Lipopolysaccharide Structural Differences between Western and Asian Helicobacter pylori Strains. Toxins 2018, 10, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, S.-I.; Amano, K.-I.; Nishitani, C.; Ariki, S.; Kuroki, Y.; Fujii, N. Implication of Antigenic Conversion of Helicobacter pylori Lipopolysaccharides That Involve Interaction with Surfactant Protein, D. Infect. Immun. 2012, 80, 2956–2962. [Google Scholar] [CrossRef] [Green Version]
- Lepper, P.M.; Triantafilou, M.; Schumann, C.; Schneider, E.M.; Triantafilou, K. Lipopolysaccharides from Helicobacter pylori can act as antagonists for Toll-like receptor 4. Cellular Microbiol. 2005, 7, 519–528. [Google Scholar] [CrossRef]
- Chavarría-Velázquez, C.O.; Torres-Martínez, A.C.; Montaño, L.F.; Rendón-Huerta, E.P. TLR2 activation induced by H. pylori LPS promotes the differential expression of claudin-4, -6, -7 and -9 via either STAT3 and ERK1/2 in AGS cells. Immunobiology 2018, 223, 38–48. [Google Scholar] [CrossRef]
- Meliț, L.E.; Mărginean, C.O.; Mărginean, C.D.; Mărginean, M.O. The Relationship between Toll-like Receptors andHelicobacter pylori-Related Gastropathies: Still a Controversial Topic. J. Immunol. Res. 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chochi, K.; Ichikura, T.; Kinoshita, M.; Majima, T.; Shinomiya, N.; Tsujimoto, H.; Kawabata, T.; Sugasawa, H.; Ono, S.; Seki, S.; et al. Helicobacter pylori Augments Growth of Gastric Cancers via the Lipopolysaccharide-Toll-like Receptor 4 Pathway whereas Its Lipopolysaccharide Attenuates Antitumor Activities of Human Mononuclear Cells. Clin. Cancer Res. 2008, 14, 2909–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, T.; Teshima, S.; Oka, A.; Sugiyama, T.; Kishi, K.; Rokutan, K. Type I Helicobacter pylori Lipopolysaccharide Stimulates Toll-Like Receptor 4 and Activates Mitogen Oxidase 1 in Gastric Pit Cells. Infect. Immun. 2001, 69, 4382–4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Xia, J.-Q.; Zhu, F.-S.; Xi, Z.; Pan, C.; Gu, L.; Tian, Y. LPS promotes the expression of PD-L1 in gastric cancer cells through NF-κB activation. J. Cell Biochem. 2018, 119, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, N.; Montemurro, P.; Piccoli, C.; Muoio, V.; Colucci, M.; Giuliani, G.; Fumarola, D.; Pece, S.; Moran, A.P. Effect of Helicobacter pylori Lipopolysaccharide (LPS) and LPS Derivatives on the Production of Tissue Factor and Plasminogen Activator Inhibitor Type 2 by Human Blood Mononuclear Cells. J. Infect. Dis. 1996, 174, 1255–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, S.-I.; Okabayashi, T.; Rehli, M.; Fujii, N.; Amano, K.-I. Helicobacter pylori Lipopolysaccharides Upregulate Toll-Like Receptor 4 Expression and Proliferation of Gastric Epithelial Cells via the MEK1/2-ERK1/2 Mitogen-Activated Protein Kinase Pathway. Infect. Immun. 2009, 78, 468–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Xu, H.; Ou, Y.; Feng, Z.; Zhang, Q.; Zhu, Q.; Cai, Z. LPS-induced CXCR7 expression promotes gastric Cancer proliferation and migration via the TLR4/MD-2 pathway. Diagn. Pathol. 2019, 14. [Google Scholar] [CrossRef]
- Slomiany, B.L.; Slomiany, A. Helicobacter pylori LPS-induced gastric mucosal spleen tyrosine kinase (Syk) recruitment to TLR4 and activation occurs with the involvement of protein kinase Cδ. Inflammopharmacology 2018, 26, 805–815. [Google Scholar] [CrossRef]
- Slomiany, B.L.; Slomiany, A. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: Modulatory effect of ghrelin. Inflammopharmacology 2017, 25, 415–429. [Google Scholar] [CrossRef]
- Hansen, P.S.; Petersen, S.B.; Varming, K.; Nielsen, H. Helicobacter pylori Additive Effects of Helicobacter pylori Lipopolysaccharide and Proteins in Monocyte Inflammatory Responses. Scand. J. Gastroenterol. 2002, 37, 765–771. [Google Scholar] [CrossRef]
- Xu, L.; Gong, C.; Li, G.; Wei, J.; Wang, T.; Meng, W.; Shi, M.; Wang, Y. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway. Mol. Med. Rep. 2018, 5, 6847–6851. [Google Scholar]
- Basak, C.; Pathak, S.K.; Bhattacharyya, A.; Mandal, D.; Pathak, S.; Kundu, M. NF-κB- and C/EBPβ-driven Interleukin-1β Gene Expression and PAK1-mediated Caspase-1 Activation Play Essential Roles in Interleukin-1β Release fromHelicobacter pyloriLipopolysaccharide-stimulated Macrophages. J. Biol. Chem. 2004, 280, 4279–4288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.M.; Ziman, M.E.; Huff, J.L.; Moroski, N.M.; Vajdy, M.; Solnick, J.V. Helicobacter pylori lipopolysaccharide promotes a Th1 type immune response in immunized mice. Vaccine 2006, 24, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, A.; Saeki, A.; Tanimura, N.; Tsutsui, H.; Miyake, K.; Suda, Y.; Fujimoto, Y.; Fukase, K. Chemical Synthesis of Helicobacter pylori Lipopolysaccharide Partial Structures and their Selective Proinflammatory Responses. Chem. Eur. J. 2011, 17, 14464–14474. [Google Scholar] [CrossRef] [PubMed]
- Bliss, C.M.; Golenbock, D.T.; Keates, S.; Linevsky, J.K.; Kelly, C.P. Helicobacter pylori Lipopolysaccharide Binds to CD14 and Stimulates Release of Interleukin-8, Epithelial Neutrophil-Activating Peptide 78, and Monocyte Chemotactic Protein 1 by Human Monocytes. Infect. Immun. 1998, 66, 5357–5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Li, Y.; Feng, J.; Wang, X.; Hao, B.; Shi, R.; Zhang, G. A functional polymorphism T309G in MDM2 gene promoter, intensified by Helicobacter pylori lipopolysaccharide, is associated with both an increased susceptibility and poor prognosis of gastric carcinoma in Chinese patients. BMC Cancer 2013, 13, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.M.; Freeley, M.; Moynagh, P.N.; Kelleher, D.P. Differential modulation ofHelicobacter pylorilipopolysaccharide-mediated TLR2 signaling by individual Pellino proteins. Helicobacter 2016, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slomiany, B.L.; Slomiany, A. Disruption in gastric mucin synthesis by Helicobacter pylori lipopolysaccharide involves ERK and p38 mitogen-activated protein kinase participation. Biochem. Biophys. Res. Commun. 2002, 294, 220–224. [Google Scholar] [CrossRef]
- Young, G.O.; Brown, S.; Stemmet, N.; Lastovica, A.J.; Marks, I.N.; Modlin, I.M.; Kidd, M. The Pepsinogen Releasing Effect of Helicobacter pylori Lipopolysaccharide. Helicobacter 2002, 7, 30–38. [Google Scholar] [CrossRef]
- Reeves, E.P.; Ali, T.; Leonard, P.; Hearty, S.; Okennedy, R.; May, F.E.; Westley, B.R.; Josenhans, C.; Rust, M.; Suerbaum, S.; et al. Helicobacter pylori Lipopolysaccharide Interacts With TFF1 in a pH-Dependent Manner. Gastroenterology 2008, 135. [Google Scholar] [CrossRef]
- Ye, F.; Tang, C.; Shi, W.; Qian, J.; Xiao, S.; Gu, M.; Zhang, G. A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced byHelicobacter pylorilipopolysaccharide. Int. J. Cancer 2014, 136, 2120–2131. [Google Scholar] [CrossRef]
- Hassan, A.A.; Youssef, A.I.; Ghazal, A.A.; Sheta, M.I.; Diwedar, N.L.; Hafez, E.M.; Tabll, A.A.; Elbendary, E.Y. Blood group antigen-Binding Adhesion2 (BabA2) gene in gastric tissue biopsies as a diagnostic biomarker for Helicobacter pylori infection. Hum. Antib. 2019, 27, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.E.; Melian, K.; Moreno, A.; Alonso, J.; Sabatier, C.A.; Hernandez, M.; Bermudez, L.; Rodriguez, B.L. Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates. World J. Gastroenterol. 2009, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- Thorell, K.; Hosseini, S.; Gonzáles, R.V.P.P.; Chaotham, C.; Graham, D.Y.; Paszat, L.; Rabeneck, L.; Lundin, S.B.; Nookaew, I.; Sjoling, A. Identification of a Latin American-specific BabA adhesin variant through whole genome sequencing of Helicobacter pylori patient isolates from Nicaragua. BMC Evol. Biol. 2016, 16, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homan, M.; Šterbenc, A.; Kocjan, B.J.; Luzar, B.; Zidar, N.; Orel, R. Prevalence of the Helicobacter pylori babA2 gene and correlation with the degree of gastritis in infected Slovenian children. Antonie van Leeuwenhoek 2014, 106, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Rad, R.; Gerhard, M.; Lang, R.; Schöniger, M.; Rösch, T.; Schepp, W.; Becker, I.; Wagner, H.; Prinz, C. TheHelicobacter pyloriBlood Group Antigen-Binding Adhesin Facilitates Bacterial Colonization and Augments a Nonspecific Immune Response. J. Immunol. 2002, 168, 3033–3041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaoka, Y. Roles of Helicobacter pylori BabA in gastroduodenal pathogenesis. World J. Gastroenterol. 2008, 14, 4265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benktander, J.; Ångström, J.; Breimer, M.E.; Teneberg, S. Redefinition of the Carbohydrate Binding Specificity ofHelicobacter pyloriBabA Adhesin. J. Biol. Chem. 2012, 287, 31712–31724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.; Yamaoka, Y. Helicobacter pylori BabA in adaptation for gastric colonization. World J. Gastroenterol. 2017, 23, 4158. [Google Scholar] [CrossRef] [PubMed]
- Morozov, V.; Borkowski, J.; Hanisch, F.-G. The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity. Molecules 2018, 23, 1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhães, A.; Reis, C. Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz. J. Med. Biol. Res. 2010, 43, 611–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindén, S.; Nordman, H.; Hedenbro, J.; Hurtig, M.; Borén, T.; Carlstedt, I. Strain- and blood group–dependent binding of Helicobacter pylori to human gastric MUC5AC glycoforms. Gastroenterology 2002, 123, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Ishijima, N.; Suzuki, M.; Ashida, H.; Ichikawa, Y.; Kanegae, Y.; Saito, I.; Mimuro, H. BabA-mediated Adherence Is a Potentiator of theHelicobacter pyloriType IV Secretion System Activity. J. Biol. Chem. 2011, 286, 25256–25264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Ito, M.; Sumii, M.; Tanaka, S.; Yoshihara, M.; Chayama, K. Helicobacter pylori-Associated Gastritis Is Related to babA2Expression without Heterogeneity of the 3′ Region of the cagAGenotype in Gastric Biopsy Specimens. Pathobiology 2007, 74, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Saberi, S.; Schmidt, A.; Eybpoosh, S.; Esmaili, M.; Talebkhan, Y.; Mohajerani, N.; Oghalaie, A.; Hosseini, M.E.; Mohagheghi, M.A.; Bugaytova, J.; et al. Helicobacter pylori Strains from Duodenal Ulcer Patients Exhibit Mixed babA/B Genotypes with Low Levels of BabA Adhesin and Lewis b Binding. Dig. Dis. Sci. 2016, 61, 2868–2877. [Google Scholar] [CrossRef]
- Ohno, T.; Vallström, A.; Rugge, M.; Ota, H.; Graham, D.Y.; Arnqvist, A.; Yamaoka, Y. Effects of Blood Group Antigen–Binding Adhesin Expression during Helicobacter pylori Infection of Mongolian Gerbils. J. Infect. Dis. 2011, 203, 726–735. [Google Scholar] [CrossRef]
- Poursina, F.; Faghri, J.; Moghim, S.; Zarkesh-Esfahani, H.; Nasr-Esfahani, B.; Fazeli, H.; Hasanzadeh, A.; Safaei, H.G. Assessment of cagE and babA mRNA Expression During Morphological Conversion of Helicobacter pylori From Spiral to Coccoid. Curr. Microbiol. 2012, 66, 406–413. [Google Scholar] [CrossRef]
- Hennig, E.E.; Mernaugh, R.; Edl, J.; Cao, P.; Cover, T.L. Heterogeneity among Helicobacter pylori Strains in Expression of the Outer Membrane Protein BabA. Infect. Immun. 2004, 72, 3429–3435. [Google Scholar] [CrossRef] [Green Version]
- Sáenz, J.B.; Vargas, N.; Mills, J.C. Tropism for Spasmolytic Polypeptide-Expressing Metaplasia Allows Helicobacter pylori to Expand Its Intragastric Niche. Gastroenterology 2019, 156, 160–174. [Google Scholar] [CrossRef]
- Yanai, A.; Maeda, S.; Hikiba, Y.; Shibata, W.; Ohmae, T.; Hirata, Y.; Ogura, K.; Yoshida, H.; Omata, M. Clinical relevance of Helicobacter pylori sabA genotype in Japanese clinical isolates. J. Gastroenterol. Hepatol. 2007, 22, 2228–2232. [Google Scholar] [CrossRef]
- Sheu, B.-S.; Odenbreit, S.; Hung, K.-H.; Liu, C.-P.; Sheu, S.-M.; Yang, H.-B.; Wu, J.-J. Interaction Between Host Gastric Sialyl-Lewis X and H. pylori SabA Enhances, H. pylori Density in Patients Lacking Gastric Lewis B Antigen. Am. J. Gastroenterol. 2006, 101, 36–44. [Google Scholar] [CrossRef]
- Yamaoka, Y. Increasing evidence of the role of Helicobacter pylori SabA in the pathogenesis of gastroduodenal disease. J. Infect. Dev. Ctries. 2008, 2, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unemo, M.; Aspholm-Hurtig, M.; Ilver, D.; Bergström, J.; Borén, T.; Danielsson, D.; Teneberg, S. The Sialic Acid Binding SabA Adhesin ofHelicobacter pyloriIs Essential for Nonopsonic Activation of Human Neutrophils. J. Biol. Chem. 2005, 280, 15390–15397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersson, C.; Forsberg, M.; Aspholm, M.; Olfat, F.O.; Forslund, T.; Borén, T.; Magnusson, K. Helicobacter pylori SabA adhesin evokes a strong inflammatory response in human neutrophils which is down-regulated by the neutrophil-activating protein. Med. Microbiol. Immunol. 2006, 195, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-L.; Huang, H.-L.; Huang, B.-S.; Chen, P.-C.; Chen, C.-S.; Wang, H.-L.; Lin, P.; Chieh, M.; Wu, J.; Yang, J.; et al. Combination of OipA, BabA, and SabA as candidate biomarkers for predicting Helicobacter pylori-related gastric cancer. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Osaki, T.; Kamiya, S.; Zhang, X.S.; Blaser, M.J. Helicobacter pylori sabA gene is associated with iron deficiency anemia in childhood and adolescence. PLoS ONE 2017, 12, e0184046. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Takeda, H.; Fukui, T.; Mabe, K.; Han, J.; Kawata, S.; Ootani, K.; Fukao, A. Genetic diversity of the Helicobacter pylori sialic acid-binding. Biosci. Trends 2010, 4, 249–253. [Google Scholar]
- Zhang, J.; Qian, J.; Zhang, X.; Zou, Q. Outer membrane inflammatory protein A, a new virulence factor involved in the pathogenesis of Helicobacter pylori. Mol. Biol. Rep. 2014, 41, 7807–7814. [Google Scholar] [CrossRef]
- Teymournejad, O.; Mobarez, A.M.; Hassan, Z.M.; Abadi, A.T.B. Binding of the Helicobacter pylori OipA causes apoptosis of host cells via modulation of Bax/Bcl-2 levels. Sci. Rep. 2017, 7, e8036. [Google Scholar] [CrossRef] [Green Version]
- Sallas, M.L.; Santos, M.P.D.; Orcini, W.A.; David, É.B.; Peruquetti, R.L.; Payão, S.L.M.; Rasmussen, L.T. Status (on/off) of oipA gene: Their associations with gastritis and gastric cancer and geographic origins. Arch. Microbiol. 2018, 201, 93–97. [Google Scholar] [CrossRef]
- Teymournejad, O.; Mobarez, A.M.; Hassan, Z.M.; Noori, S.; Moazzeni, S.M.; Khoramabadi, N. Cloning, Expression, Purification and Toxicity Evaluation of Helicobacter pylori Outer Inflammatory Protein, A. Indian J. Microbiol. 2013, 53, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Al-Maleki, A.R.; Loke, M.F.; Lui, S.Y.; Ramli, N.S.K.; Khosravi, Y.; Ng, C.G.; Venkatraman, G.; Goh, K.; Ho, B.; Vadivelu, J. Helicobacter pyloriouter inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell. Microbiol. 2017, 19, e12771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, M.; Ohno, T.; Graham, D.Y.; Yamaoka, Y. Gastric mucosal interleukin-17 and -18 mRNA expression in Helicobacter pylori-induced Mongolian gerbils. Cancer Sci. 2009, 100, 2152–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, Y.; Otani, Y.; Kameyama, K.; Hosoda, Y.; Okazaki, I.; Kubota, T.; Kumai, K.; Kitajima, M. Expression of interstitial collagenase (matrix metalloproteinase-1) in gastric cancers. Jpn. J. Cancer Res. 1997, 88, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Kwon, D.H.; Graham, D.Y. A Mr 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 2000, 97, 7533–7538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, M.; Ohno, T.; Graham, D.Y.; Yamaoka, Y. Helicobacter pylori outer membrane proteins on gastric mucosal interleukin 6 and 11 expression in Mongolian gerbils. J. Gastroenterol. Hepatol. 2011, 26, 1677–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobarez, A.; Moazzeni, S.; Eskandari, V.; Teymournejad, O.; Hassan, Z.; Yakhchali, B. In silico prediction of exposure amino acid sequences of outer inflammatory protein A of Helicobacter pylori for surface display on Eschierchia coli. Indian J. Hum. Genet. 2012, 18, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Yin, W.; Zhao, R.; Wang, Y.; Song, C.; Wang, H.; Rong, J.; Wang, F.; Xie, Y. Outer inflammatory protein of Helicobacter pylori impacts IL-8 expression, adherence, cell apoptosis and cell cycle of gastric cells independent of its copy number. Med. Microbiol. Immunol. 2020, 209, 621–630. [Google Scholar] [CrossRef]
- Franco, A.T.; Israel, D.A.; Washington, M.K.; Krishna, U.; Fox, J.G.; Rogers, A.B.; Neish, A.S.; Collier-Hyams, L.; Perez-Perez, G.I.; Hatakeyama, M.; et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc. Natl. Acad. Sci. USA 2005, 102, 10646–10651. [Google Scholar] [CrossRef] [Green Version]
- Teymournejad, O.; Mobarez, A.M.; Hassan, Z.M.; Moazzeni, S.M.; Ahmadabad, H.N. In Vitro Suppression of Dendritic Cells byHelicobacter pyloriOipA. Helicobacter 2014, 19, 136–143. [Google Scholar] [CrossRef]
- Markovska, R.; Boyanova, L.; Yordanov, D.; Gergova, G.; Mitov, I. Helicobacter pylori oipA genetic diversity and its associations with both disease and cagA, vacA s, m, and i alleles among Bulgarian patients. Diagn. Microbiol. Infect. Dis. 2011, 71, 335–340. [Google Scholar] [CrossRef]
- Horridge, D.N.; Begley, A.A.; Kim, J.; Aravindan, N.; Fan, K.; Forsyth, M.H. Outer inflammatory protein a (OipA) of Helicobacter pylori is regulated by host cell contact and mediates CagA translocation and interleukin-8 response only in the presence of a functional cag pathogenicity island type IV secretion system. Pathogens Dis. 2017, 75, ftx113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzi, N.; Yadegar, A.; Aghdaei, H.A.; Yamaoka, Y.; Zali, M.R. Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases. Infect. Genet. Evol. 2018, 60, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Li, X.-H.; Liu, F.; Li, W.-Q.; Gong, Z.-C.; Li, Y.-J. Role of the Outer Inflammatory Protein A/Cystine–Glutamate Transporter Pathway in Gastric Mucosal Injury Induced by Helicobacter pylori. Clin. Transl. Gastroenterol. 2020, 11, e00178. [Google Scholar] [CrossRef] [PubMed]
- Imagawa, S.; Ito, M.; Yoshihara, M.; Eguchi, H.; Tanaka, S.; Chayama, K. Helicobacter pylori dupA and gastric acid secretion are negatively associated with gastric cancer development. J. Med. Microbiol. 2010, 59 Pt 12, 1484–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zheng, Q.; Chen, X.; Xiao, S.; Liu, W.; Lu, H. The Helicobacter pylori duodenal ulcer promoting gene, DupA in China. BMC Gastroenterol. 2008, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Douraghi, M.; Mohammadi, M.; Oghalaie, A.; Abdirad, A.; Mohagheghi, M.A.; Hosseini, M.E.; Zeraati, H.; Ghasemi, A.; Esmaieli, M.; Mohajerani, N. dupA as a risk determinant in Helicobacter pylori infection. J. Med. Microbiol. 2008, 57, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Shiota, S.; Matsunari, O.; Watada, M.; Suzuki, R.; Nakachi, S.; Kinjo, N.; Kinjo, F.; Yamaoka, Y. Intact long-type dupA as a marker for gastroduodenal diseases in Okinawan subpopulation, Japan. Helicobacter 2013, 18, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Molina-Castro, S.; Garita-Cambronero, J.; Malespin-Bendana, W.; Une, C.; Remirez, V. Virulence factor genotyping of Helicobacter pylori isolated from Costa Rican dyspeptic patients. Microb. Pathogen. 2019, 128, 276–280. [Google Scholar] [CrossRef]
- Wang, M.-Y.; Chen, C.; Shao, C.; Wang, S.-B.; Wang, A.-C.; Yang, Y.-C.; Yuan, X.; Shao, S. Intact long-type DupA protein in Helicobacter pylori is an ATPase involved in multifunctional biological activities. Microb. Pathogen. 2015, 81, 53–59. [Google Scholar] [CrossRef]
- Hussein, N.R. The association of dupA and Helicobacter pylori-related gastroduodenal diseases. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 817–821. [Google Scholar] [CrossRef]
- Schmidt, H.M.; Andres, S.; Kaakoush, N.O.; Engstrand, L.; Eriksson, L.; Goh, K.L.; Fock, K.M.; Hilmi, I.; Dhamodaran, S.; Forman, D.; et al. The prevalence of the duodenal ulcer promoting gene (dupA) in Helicobacter pylori isolates varies by ethnic group and is not universally associated with disease development: A case-control study. Gut Pathog. 2009, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.Y.; Shao, C.; Li, J.; Yang, Y.C.; Wang, S.B.; Hao, J.L.; Wu, C.M.; Gao, X.Z.; Shao, S.H. Helicobacter pylori with the Intact dupA Cluster is more Virulent than the Strains with the Incomplete dupA Cluster. Curr. Microbiol. 2015, 71, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Abadi, A.T.B. The Helicobacter pylori dupA: A Novel Biomarker for Digestive Diseases. Front. Med. 2014, 1, 13. [Google Scholar]
- Shiota, S.; Matsunari, O.; Watada, M.; Hanada, K.; Yamaoka, Y. Systematic review and meta-analysis: The relationship between the Helicobacter pylori dupA gene and clinical outcomes. Gut Pathog. 2010, 2, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, D.M.; Rocha, G.A.; Rocha, A.M.; Moura, S.B.; Saraiva, I.E.; Gomes, L.I.; Soares, T.F.; Melo, F.F.; Cabral, M.M.; Oliveira, C.A. dupA polymorphisms and risk of Helicobacter pylori-associated diseases. Int. J. Med. Microbiol. 2011, 301, 225–228. [Google Scholar] [CrossRef]
- Jung, S.W.; Sugimoto, M.; Shiota, S.; Graham, D.Y.; Yamaoka, Y. The intact dupA cluster is a more reliable Helicobacter pylori virulence marker than dupA alone. Infect. Immun. 2012, 80, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Hussein, N.R.; Argent, R.H.; Marx, C.K.; Patel, S.R.; Robinson, K.; Atherton, J.C. Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. J. Infect. Dis. 2010, 202, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Abadi, A.T.B.; Taghvaei, T.; Wolfram, L.; Kusters, J.G. Infection with Helicobacter pylori strains lacking dupA is associated with an increased risk of gastric ulcer and gastric cancer development. J. Med. Microbiol. 2012, 61, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Shiota, S.; Nguyen, L.T.; Murakami, K.; Kuroda, A.; Mizukami, K.; Okimoto, T.; Kodama, M.; Fujioka, T.; Yamaoka, Y. Association of Helicobacter pylori dupA with the failure of primary eradication. J. Clin. Gastroenterol. 2012, 46, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Hussein, N.R.; Tunjel, I.; Majed, H.S.; Yousif, S.T.; Aswad, S.I.; Assafi, M.S. Duodenal ulcer promoting gene 1 (dupA1) is associated with A2147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients. New Microb. New Infect. 2015, 6, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Moura, S.B.; Costa, R.F.A.; Anacleto, C.; Rocha, G.A.; Rocha, A.M.C.; Queiroz, D.M.M. Single Nucleotide Polymorphisms of Helicobacter pylori dupA that Lead to Premature Stop Codons. Helicobacter 2012, 17, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Fatahi, G.; Talebi Bezmin Abadi, A.; Peerayeh, S.N.; Forootan, M. Carrying a 112bp-segment in Helicobacter pylori dupA may associate with increased risk of duodenal ulcer. Infect. Genet. Evol. 2019, 73, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Souod, N.; Sarshar, M.; Dabiri, H.; Momtaz, H.; Kargar, M.; Mohammadzadeh, A.; Abdi, S. The study of the oipA and dupA genes in Helicobacter pylori strains and their relationship with different gastroduodenal diseases. Gastroenterol. Hepatol. Bed Bench. 2015, 8, S47–S53. [Google Scholar] [PubMed]
- Haddadi, M.H.; Bazargani, A.; Khashei, R.; Fattahi, M.R.; Bagheri Lankarani, K.; Moini, M.; Rokni Hosseini, S.M. Different distribution of Helicobacter pylori EPIYA- cagA motifs and dupA genes in the upper gastrointestinal diseases and correlation with clinical outcomes in iranian patients. Gastroenterol. Hepatol. Bed Bench. 2015, 8, S37–S46. [Google Scholar] [PubMed]
- Idowu, A.; Mzukwa, A.; Harrison, U.; Palamides, P.; Haas, R.; Mbao, M.; Mamdoo, R.; Bolon, J.; Jolaiya, T.; Smith, S.; et al. Detection of Helicobacter pylori and its virulence factors genes (cagA, dupA, and vacA) among patients with gastroduodenal diseases in Chris Hani Baragwanath Academic Hospital, South Africa. BMC Gastroenterol. 2019, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- Odenbreit, S.; Faller, G.; Haas, R. Role of the alpAB proteins and lipopolysaccharide in adhesion of Helicobacter pylori to human gastric tissue. Int. J. Med. Microbiol. 2002, 292, 247–256. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, R.; Durrani, Z.; Rijpkema, S.G.; Kuipers, E.J.; van Vliet, A.H.M.; Kusters, J.G. Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J. Med. Microbiol. 2004, 53, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Odenbreit, S.; Till, M.; Hofreuter, D.; Faller, G.; Haas, R. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 1999, 31, 1537–1548. [Google Scholar] [CrossRef]
- Lu, H.; Wu, J.Y.; Beswick, E.J.; Ohno, T.; Odenbreit, S.; Haas, R.; Reyes, V.E.; Kita, M.; Graham, D.Y.; Yamaoka, Y. Functional and intracellular signaling differences associated with the Helicobacter pylori AlpAB adhesin from Western and East Asian strains. J. Biol. Chem. 2007, 282, 6242–6254. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Bai, Y.; Chen, Y.; Wang, J.D.; Zhang, Z.S.; Zhang, Y.L.; Zhou, D.Y. Expression of Helicobacter pylori AlpA protein and its immunogenicity. World J. Gastroenterol. 2005, 11, 2260–2263. [Google Scholar] [CrossRef]
- Yonezawa, H.; Osaki, T.; Fukutomi, T.; Hanawa, T.; Kurata, S.; Zaman, C.; Hojo, F.; Kamiya, S. Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion. J. Bacteriol. 2016, 199, e00729-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senkovich, O.A.; Yin, J.; Ekshyyan, V.; Conant, C.; Traylor, J.; Adegboyega, P.; McGee, D.J.; Rhoads, R.E.; Slepenkov, S.; Testerman, T.L. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect. Immun. 2011, 79, 3106–3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossez, Y.; Gosset, P.; Boneca, I.G.; Magalhães, A.; Ecobichon, C.; Reis, C.A.; Cieniewski-Bernard, C.; Joncquel Chevalier Curt, M.; Léonard, R.; Maes, E.; et al. The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J. Infect. Dis. 2014, 210, 1286–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mthembu, Y.H.; Jin, C.; Padra, M.; Liu, J.; Edlund, J.O.; Ma, H.; Padra, J.; Oscarson, S.; Borén, T.; Karlsson, N.G.; et al. Recombinant mucin-type proteins carrying LacdiNAc on different O-glycan core chains fail to support H. pylori binding. Mol. Omics 2020, 16, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.T.; Torres, V.J.; Algood, H.M.; McClain, M.S.; Cover, T.L. Helicobacter pylori HopQ outer membrane protein attenuates bacterial adherence to gastric epithelial cells. FEMS Microbiol. Lett. 2008, 289, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Yakoob, J.; Abbas, Z.; Mehmood, M.H.; Tariq, K.; Saleem, S.A.; Awan, S.; Malik, A.; Hamid, S.; Khan, R.; Jafri, W. Helicobacter pylori outer membrane protein Q genotypes and their susceptibility to anti-adhesive phytotherapeutic agents. J. Integr. Med. 2017, 15, 398–406. [Google Scholar] [CrossRef]
- Sicinschi, L.A.; Correa, P.; Bravo, L.E.; Peek RMJr Wilson, K.T.; Loh, J.T.; Yepez, M.C.; Gold, B.D.; Thompson, D.T.; Cover, T.L.; Schneider, B.G. Non-invasive genotyping of Helicobacter pylori cagA, vacA, and hopQ from asymptomatic children. Helicobacter 2012, 17, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Sugimoto, M.; Nagashima, A.; Ogiwara, H.; Vilaichone, R.K.; Mahachai, V.; Graham, D.Y.; Yamaoka, Y. Relationship between Helicobacter pylori hopQ genotype and clinical outcome in Asian and Western populations. J. Gastroenterol. Hepatol. 2009, 24, 462–468. [Google Scholar] [CrossRef]
- Dara, M.; Khashei, R.; Dehghani, B. High frequency of hopQ genotypes among Iranian Helicobacter pylori clinical isolates. Infez. Med. 2017, 25, 123–126. [Google Scholar]
- Yakoob, J.; Abbas, Z.; Khan, R.; Salim, S.A.; Awan, S.; Abrar, A.; Jafri, W. Helicobacter pylori outer membrane protein Q allele distribution is associated with distinct pathologies in Pakistan. Infect. Genet. Evol. 2016, 37, 57–62. [Google Scholar] [CrossRef]
- Hamway, Y.; Taxauer, K.; Moonens, K.; Neumeyer, V.; Fischer, W.; Schmitt, V.; Singer, B.B.; Remaut, H.; Gerhard, M.; Mejías-Luque, R. Cysteine Residues in Helicobacter pylori Adhesin HopQ are Required for CEACAM-HopQ Interaction and Subsequent CagA Translocation. Microorganisms 2020, 8, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javaheri, A.; Kruse, T.; Moonens, K.; Mejías-Luque, R.; Debraekeleer, A.; Asche, C.I.; Tegtmeyer, N.; Kalali, B.; Bach, N.C.; Sieber, S.A.; et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat. Microbiol. 2016, 2, 16189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, R.; Zhang, B.; Wang, X.; Jia, Q. Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells. Iran. J. Basic Med. Sci. 2019, 22, 710–715. [Google Scholar] [PubMed]
- Feige, M.H.; Sokolova, O.; Pickenhahn, A.; Maubach, G.; Naumann, M. HopQ impacts the integrin α5β1-independent NF-κB activation by Helicobacter pylori in CEACAM expressing cells. Int. J. Med. Microbiol. 2018, 308, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Moonens, K.; Hamway, Y.; Neddermann, M.; Reschke, M.; Tegtmeyer, N.; Kruse, T.; Kammerer, R.; Mejías-Luque, R.; Singer, B.B.; Backert, S.; et al. Helicobacter pyloriadhesin HopQ disrupts trans dimerization in human CEACAMs. EMBO J. 2018, 37, e98665. [Google Scholar] [CrossRef]
- Bonsor, D.A.; Zhao, Q.; Schmidinger, B.; Weiss, E.; Wang, J.; Deredge, D.; Beadenkopf, R.; Dow, B.; Fischer, W.; Beckett, D.; et al. The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein, C.a.g.A. EMBO J. 2018, 37, e98664. [Google Scholar] [CrossRef]
- Königer, V.; Holsten, L.; Harrison, U.; Busch, B.; Loell, E.; Zhao, Q.; Bonsor, D.A.; Roth, A.; Kengmo-Tchoupa, A.; Smith, S.I.; et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol. 2017, 2, 16188. [Google Scholar] [CrossRef]
- Grzeszczuk, M.J.; Bocian-Ostrzycka, K.M.; Banaś, A.M.; Roszczenko-Jasinska, P.; Malinowska, A.; Stralova, H.; Haas, R.; Meyer, T.F.; Jagusztyn-Krynicka, E.K. Thioloxidoreductase HP0231 of Helicobacter pylori impacts HopQ-dependent CagA translocation. Int. J. Med. Microbiol. 2018, 308, 977–985. [Google Scholar] [CrossRef]
- Behrens, I.-K.; Busch, B.; Ishikawa-Ankerhold, H.; Palamides, P.; Shively, J.E.; Stanners, C.; Chan, C.; Leung, N.; Gray-Owen, S.; Haas, R. The HopQ-CEACAM Interaction Controls CagA Translocation, Phosphorylation, and Phagocytosis of Helicobacter pylori in Neutrophils. mBio 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Gur, C.; Maalouf, N.; Gerhard, M.; Singer, B.B.; Emgård, J.; Temper, V.; Neuman, T.; Mandelboim, O.; Bachrach, G. The Helicobacter pylori HopQ outermembrane protein inhibits immune cell activities. Oncoimmunology 2019, 8, e1553487. [Google Scholar] [CrossRef]
- Belogolova, E.; Bauer, B.; Pompaiah, M.; Asakura, H.; Brinkman, V.; Ertl, C.; Bartfeld, S.; Nechitaylo, T.Y.; Haas, R.; Machuy, N.; et al. Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell. Microbiol. 2013, 15, 1896–1912. [Google Scholar] [PubMed] [Green Version]
- Peck, B.; Ortkamp, M.; Diehl, K.D.; Hundt, E.; Knapp, B. Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res. 1999, 27, 3325–3333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennemann, L.; Brenneke, B.; Andres, S.; Engstrand, L.; Meyer, T.F.; Aebischer, T.; Josenhans, C.; Suerbaum, S. In vivo sequence variation in HopZ, a phase-variable outer membrane protein of Helicobacter pylori. Infect. Immun. 2012, 80, 4364–4373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Doorn, L.J.; Figueiredo, C.; Sanna, R.; Plaisier, A.; Schneeberger, P.; de Boer, W.; Quint, W. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology 1988, 115, 58–66. [Google Scholar] [CrossRef]
- Boyanova, L.; Yordanov, D.; Gergova, G.; Markovska, R.; Mitov, I. Association of iceA and babA genotypes in Helicobacter pylori strains with patient and strain characteristics. Antonie Van Leeuwenhoek 2010, 98, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Shiota, S.; Watada, M.; Matsunari, O.; Iwatani, S.; Suzuki, R.; Yamaoka, Y. Helicobacter pylori iceA, clinical outcomes, and correlation with cagA: A meta-analysis. PLoS ONE 2012, 7, e30354. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Kodama, T.; Gutierrez, O.; Kim, J.G.; Kashima, K.; Graham, D.Y. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: Studies in four different countries. J. Clin. Microbiol. 1999, 37, 2274–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, G.C.; Chen, J.; Liu, A.Y.; Zhang, M.; Liu, X.J.; Liu, D.; Xu, J.; Liu, B.R.; Ling, H.; Wu, H.X.; et al. Prevalence of Helicobacter pylori vacA, cagA and iceA genotypes and correlation with clinical outcome. Exp. Ther. Med. 2012, 4, 1039–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladeira, M.S.; Rodrigues, M.A.; Salvadori, D.M.; Neto, P.P.; Achilles, P.; Lerco, M.M.; Rodrigues, P.A.; Gonçalves IJr Queiroz, D.M.; Freire-Maia, D.V. Relationships between cagA, vacA, and iceA genotypes of Helicobacter pylori and DNA damage in the gastric mucosa. Environ. Mol. Mutagen. 2004, 44, 91–98. [Google Scholar] [CrossRef]
- Ladeira, M.S.; Bueno, R.C.; Dos Santos, B.F.; Pinto, C.L.; Prado, R.P.; Silveira, M.G.; Rodrigues, M.A.; Bartchewsky WJr Pedrazzoli JJr Ribeiro, M.L.; Salvadori, D.M. Relationship among oxidative DNA damage, gastric mucosal density and the relevance of cagA, vacA and iceA genotypes of Helicobacter pylori. Dig. Dis. Sci. 2008, 53, 248–255. [Google Scholar] [CrossRef]
- Feliciano, O.; Gutierrez, O.; Valdés, L.; Fragoso, T.; Calderin, A.M.; Valdes, A.E.; Llanes, R. Prevalence of Helicobacter pylori vacA, cagA, and iceA Genotypes in Cuban Patients with Upper Gastrointestinal Diseases. BioMed Res. Int. 2015, 2015, 753710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.J.; Duan, G.C.; Zhang, R.G.; Fan, Q.T.; Zhang, W.D. Mutation of iceA in Helicobacter pylori compromised IL-8 induction from human gastric epithelial cells. J. Basic Microbiol. 2010, 50, S83–S88. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Blaser, M.J. Promoters of the CATG-specific methyltransferase gene hpyIM differ between iceA1 and iceA2 Helicobacter pylori strains. J. Bacteriol. 2001, 183, 3875–3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiurillo, M.A.; Moran, Y.; Canas, M.; Valderrama, E.; Alvarez, A.; Armanie, E. Combination of Helicobacter pylori-iceA2 and proinflammatory interleukin-1polymorphisms is associated with the severity of histological changes in Venezuelan chronić gastritis patients. FEMS Immunol. Med. Microbiol. 2010, 59, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiya, D.; Shimoyama, T.; Fukuda, S.; Yoshimura, T.; Tanaka, M.; Munakata, A. Evaluation of the clinical relevance of the iceA1 gene in patients with Helicobacter pylori infection in Japan. Scand. J. Gastroenterol. 2000, 35, 36–39. [Google Scholar]
- Hoshino, H.; Tsuchida, A.; Kametani, K.; Mori, M.; Nishizawa, T.; Suzuki, T.; Nakamura, H.; Lee, H.; Ito, Y.; Kobayashi, M.; et al. Membrane-associated activation of cholesterol α-glucosyltransferase, an enzyme responsible for biosynthesis of cholesteryl-α-D-glucopyranoside in Helicobacter pylori critical for its survival. J. Histochem. Cytochem. 2011, 59, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Morey, P.; Meyer, T.F. The Sweeping Role of Cholesterol Depletion in the Persistence of Helicobacter pylori Infections. Curr. Top. Microbiol. Immunol. 2019, 421, 209–227. [Google Scholar]
- Wunder, C.; Churin, Y.; Winau, F.; Warnecke, D.; Vieth, M.; Lindner, B.; Zähringer, U.; Mollenkopf, H.J.; Heinz, E.; Meyer, T.F. Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat. Med. 2006, 12, 1030–1038. [Google Scholar] [CrossRef]
- Beigier-Bompadre, M.; Moos, V.; Belogolova, E.; Allers, K.; Schneider, T.; Churin, Y.; Ignatius, R.; Meyer, T.F.; Aebischer, T. Modulation of the CD4+ T-cell response by Helicobacter pylori depends on known virulence factors and bacterial cholesterol and cholesterol α-glucoside content. J. Infect. Dis. 2011, 204, 1339–1348. [Google Scholar] [CrossRef]
- Morey, P.; Pfannkuch, L.; Pang, E.; Boccellato, F.; Sigal, M.; Imai-Matsushima, A.; Dyer, V.; Koch, M.; Mollenkopf, H.J.; Schlaermann, P.; et al. Helicobacter pylori Depletes Cholesterol in Gastric Glands to Prevent Interferon Gamma Signaling and Escape the Inflammatory Response. Gastroenterology 2018, 154, 1391–1404. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Cheng, W.C.; Cheng, H.H.; Lai, C.H.; Wang, W.C. Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Mol. Microbiol. 2012, 83, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Vela, J.L.; Matsumura, F.; Hoshino, H.; Tyznik, A.; Lee, H.; Girardi, E.; Zajonc, D.M.; Liddington, R.; Kobayashi, M.; et al. Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS ONE 2013, 8, e78191. [Google Scholar] [CrossRef] [PubMed]
- Kawakubo, M.; Horiuchi, K.; Matsumoto, T.; Nakayama, J.; Akamatsu, T.; Katsuyama, T.; Ota, H.; Sagara, J. Cholesterol-α-glucosyltransferase gene is present in most Helicobacter species including gastric non-Helicobacter pylori helicobacters obtained from Japanese patients. Helicobacter 2018, 23, e12449. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kobayashi, M.; Wang, P.; Nakayama, J.; Seeberger, P.H.; Fukuda, M. Expression cloning of cholesterol alpha-glucosyltransferase, a unique enzyme that can be inhibited by natural antibiotic gastric mucin O-glycans, from Helicobacter pylori. Biochem. Biophys. Res. Commun. 2006, 349, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Huang, J.C.; Cheng, H.H.; Wu, M.C.; Huang, M.Z.; Hsu, H.Y.; Chen, Y.A.; Hsu, C.Y.; Pan, Y.J.; Chu, Y.T.; et al. Helicobacter pylori cholesterol glucosylation modulates autophagy for increasing intracellular survival in macrophages. Cell. Microbiol. 2018, 20, e12947. [Google Scholar] [CrossRef] [PubMed]
- Du, S.Y.; Wang, H.J.; Cheng, H.H.; Chen, S.D.; Wang, L.H.; Wang, W.C. Cholesterol glucosylation by Helicobacter pylori delays internalization and arrests phagosome maturation in macrophages. J. Microbiol. Immunol. Infect. 2016, 49, 636–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaria, M.A.; Kumar, N.; Hussain, A.; Qumar, S.; Doddam, S.N.; Sepe, L.P.; Ahmed, N. Roles of Cholesteryl-α-Glucoside Transferase and Cholesteryl Glucosides in Maintenance of Helicobacter pylori Morphology, Cell Wall Integrity, and Resistance to Antibiotics. mBio 2018, 9, e01523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, S.S.; Khoo, L.H.; Hwang, L.A.; Yeoh, K.G.; Ho, B. Instrumental Role of Helicobacter pylori γ-Glutamyl Transpeptidase in VacA-Dependent Vacuolation in Gastric Epithelial Cells. PLoS ONE 2015, 10, e0131460. [Google Scholar] [CrossRef] [Green Version]
- Ricci, V.; Giannouli, M.; Romano, M.; Zarrilli, R. Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World J. Gastroenterol. 2014, 20, 630–638. [Google Scholar] [CrossRef]
- Flahou, B.; Haesebrouck, F.; Chiers, K.; Deun, K.V.; Smet, L.D.; Devreese, B. Gastric epithelial cell death caused by Helicobacter suis and Helicobacter pylori g-glutamyl transpeptidase is mainly glutathione degradation-dependent. Cell. Microbiol. 2011, 13, 1933–1955. [Google Scholar] [CrossRef]
- Busiello, I.; Acquaviva, R.; Popolo, A.D.; Blanchard, T.G.; Ricci, V.; Romano, M.; Zarrilli, R. Helicobacter pylori g-glutamyltranspeptidase upregulates COX-2 and EGF-related peptide expression in human gastric cells. Cell. Microbiol. 2004, 6, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, K.; Wachino, J.; Arakawa, Y.; Saidijam, M.; Rutherford, N.G.; Henderson, P.J. Metabolism of glutamine and glutathione via gamma-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: Possible significance in the pathophysiology of the organism. Mol. Microbiol. 2007, 64, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Lee, S.G.; Park, M.G.; Song, J.Y.; Kang, H.L.; Leww, W.K.; Cho, M.J.; Rhee, K.; Youn, H.; Baik, S. c-Glutamyltranspeptidase of Helicobacter pylori induces mitochondria-mediated apoptosis in AGS cells. Biochem. Biophys. Res. Commun. 2007, 355, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Park, E.H.; Kim, J.M.; Kim, K.M.; Kang, D.; Cho, Y.A.; Choi, J.Y.; Song, J.Y.; Kang, H.L.; Lee, W.K.; Cho, M.J.; et al. Helicobacter pylori γ-glutamyl transpeptidase-induced Ca(2+) release via PLC-IP3 receptors in AGS cells. Can. J. Microbiol. 2014, 60, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Schmees, C.; Prinz, C.; Treptau, T.; Rad, R.; Hengst, L.; Voland, P.; Bauer, S.; Brenner, L.; Schmid, R.M.; Gerhard, M. Inhibition of T-cell proliferation by Helicobacter pylori gamma-glutamyl transpeptidase. Gastroenterology 2007, 132, 1820–1833. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Lee, S.G.; Kim, J.M.; Kim, D.S.; Song, J.Y.; Kang, H.L.; Lee, W.K.; Cho, M.J.; Rhee, K.H.; Youn, H.S.; et al. Helicobacter pylori gamma-glutamyltranspeptidase induces cell cycle arrest at the G1-S phase transition. J. Microbiol. 2010, 48, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Boonyanugomol, W.; Chomvarin, C.; Song, J.; Kim, K.; Kim, J.; Cho, M.; Lee, W.; Kang, H.; Rhee, K.; Sripa, B.; et al. Effects of Helicobacter pylori γ-Glutamyltranspeptidase on Apoptosis and Inflammation in Human Biliary Cells. Dig. Dis. Sci. 2012, 57, 2615–2624. [Google Scholar] [CrossRef] [PubMed]
- Oertli, M.; Noben, M.; Engler, D.B.; Semper, R.P.; Reuter, S.; Maxeiner, J.; Gerhard, M.; Taube, C.; Müller, A. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc. Natl. Acad. Sci. USA 2013, 110, 3047–3052. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Bolz, C.; Revez, J.; Javed, S.; El-Najjar, N.; Anderl, F.; Hyytiäinen, H.; Vuorela, P.; Gerhard, M.; Hänninen, M.L. Evidence for conserved function of γ-glutamyltranspeptidase in Helicobacter genus. PLoS ONE 2012, 7, e30543. [Google Scholar] [CrossRef] [Green Version]
- Wüstner, S.; Anderl, F.; Wanisch, A.; Sachs, C.; Steiger, K.; Nerlich, A.; Vieth, M.; Mejías-Luque, R.; Gerhard, M. Helicobacter pylori γ-glutamyl transferase contributes to colonization and differential recruitment of T cells during persistence. Sci. Rep. 2017, 7, 13636. [Google Scholar] [CrossRef]
- Käbisch, R.; Semper, R.P.; Wüstner, S.; Gerhard, M.; Mejías-Luque, R. Helicobacter pylori γ-Glutamyltranspeptidase Induces Tolerogenic Human Dendritic Cells by Activation of Glutamate Receptors. J. Immunol. 2016, 196, 4246–4252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wüstner, S.; Mejías-Luque, R.; Koch, M.F.; Rath, E.; Vieth, M.; Sieber, S.A.; Haller, D.; Gerhard, M. Helicobacter pylori γ-glutamyltranspeptidase impairs T-lymphocyte function by compromising metabolic adaption through inhibition of cMyc and IRF4 expression. Cell. Microbiol. 2015, 17, 51–61. [Google Scholar]
- Chevalier, C.; Thiberge, J.M.; Ferrero, R.L.; Labigne, A. Essential role of Helicobacter pylori g-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol. Microbiol. 1999, 31, 1359–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGovern, K.J.; Blanchard, T.G.; Gutierrez, J.A.; Czinn, S.J.; Krakowka, S.; Youngman, P. gamma-Glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization. Infect. Immun. 2001, 69, 4168–4173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, M.; Ho, B. Prominent role of gamma-glutamyl-transpeptidase on the growth of Helicobacter pylori. World J. Gastroenterol. 2004, 10, 2994–2996. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.S.; Yeoh, K.G.; Ho, B. Helicobacter pylori γ-glutamyl transpeptidase: A formidable virulence factor. World J. Gastroenterol. 2013, 19, 8203–8210. [Google Scholar] [CrossRef]
- Valenzuela, M.; Bravo, D.; Canales, J.; Sanhueza, C.; Díaz, N.; Almarza, O.; Toledo, H.; Quest, A.F. Helicobacter pylori-induced loss of survivin and gastric cell viability is attributable to secreted bacterial gamma-glutamyl transpeptidase activity. J. Infect. Dis. 2013, 208, 1131–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, M.; Ling, S.S.; Lui, S.Y.; Yeoh, K.G.; Ho, B. Helicobacter pylori gamma-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastroenterology 2010, 139, 564–573. [Google Scholar] [CrossRef]
- Nishioka, H.; Baesso, I.; Semenzato, G.; Trentin, L.; Rappuoli, R.; Del Giudice, G.; Montecucco, C. The neutrophil-activating protein of Helicobacter pylori (HP-NAP) activates the MAPK pathway in human neutrophils. Eur. J. Immunol. 2003, 33, 840–849. [Google Scholar] [CrossRef]
- Yokoyama, H.; Fujii, S. Structures and metal-binding properties of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center. Biomolecules 2014, 4, 600–615. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, H.; Tsuruta, O.; Akao, N.; Fujii, S. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form. Biochem. Biophys. Res. Commun. 2012, 422, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, P.; Barbuti, G.; Dundon, W.G.; Del Giudice, G.; Rappuoli, R.; Colucci, M.; De Rinaldis, P.; Montecucco, C.; Semeraro, N.; Papini, E. Helicobacter pylori neutrophil-activating protein stimulates tissue factor and plasminogen activator inhibitor-2 production by human blood mononuclear cells. J. Infect. Dis. 2001, 183, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polenghi, A.; Bossi, F.; Fischetti, F.; Durigutto, P.; Cabrelle, A.; Tamassia, N.; Cassatella, M.A.; Montecucco, C.; Tedesco, F.; de Bernard, M. The neutrophil-activating protein of Helicobacter pylori crosses endothelia to promote neutrophil adhesion in vivo. J. Immunol. 2007, 178, 1312–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.W. Helicobacter pylori neutrophil-activating protein: From molecular pathogenesis to clinical applications. World J. Gastroenterol. 2014, 20, 5294–5301. [Google Scholar] [CrossRef] [PubMed]
- Cappon, A.; Babolin, C.; Segat, D.; Cancian, L.; Amedei, A.; Calzetti, F.; Cassatella, M.A.; D’Elios, M.M.; de Bernard, M. Helicobacter pylori-derived neutrophil-activating protein increases the lifespan of monocytes and neutrophils. Cell. Microbiol. 2010, 12, 754–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Elios, M.M.; Amedei, A.; Cappon, A.; Del Prete, G.; de Bernard, M. The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol. Med. Microbiol. 2007, 50, 157–164. [Google Scholar] [CrossRef] [Green Version]
- De Bernard, M.; D’Elios, M.M. The immune modulating activity of the Helicobacter pylori HP-NAP: Friend or foe? Toxicon 2010, 56, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Codolo, G.; Fassan, M.; Munari, F.; Volpe, A.; Bassi, P.; Rugge, M.; Pagano, F.; D’Elios, M.M.; de Bernard, M. HP-NAP inhibits the growth of bladder cancer in mice by activating a cytotoxic Th1 response. Cancer Immunol. Immunother. 2012, 61, 31–40. [Google Scholar] [CrossRef]
- Amedei, A.; Cappon, A.; Codolo, G.; Cabrelle, A.; Polenghi, A.; Benagiano, M.; Tasca, E.; Azzurri, A.; D’Elios, M.M.; Del Prete, G.; et al. The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. J. Clin. Investig. 2006, 116, 1092–1101. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, P.; Nishioka, H.; Dundon, W.G.; de Bernard, M.; Del Giudice, G.; Rappuoli, R.; Montecucco, C. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a potent stimulant of mast cells. Eur J. Immunol. 2002, 32, 671–676. [Google Scholar] [CrossRef]
- Ramachandran, M.; Jin, C.; Yu, D.; Eriksson, F.; Essand, M. Vector-encoded Helicobacter pylori neutrophil-activating protein promotes maturation of dendritic cells with Th1 polarization and improved migration. J. Immunol. 2014, 193, 2287–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonello, F.; Dundon, W.G.; Satin, B.; Molinari, M.; Tognon, G.; Grandi, G.; Del Giudice, G.; Rappuoli, R.; Montecucco, C. The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol. Microbiol. 1999, 34, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Dundon, W.G.; Polenghi, A.; Guidice, D.; Rappuoli, R.; Montecucco, C. Neutrophil-activating protein (HP-NAP) versus ferritin (Pfr): Comparison of synthesis in Helicobacter pylori. FEMS Microbiol. Lett. 2001, 199, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Ceci, P.; Mangiarotti, L.; Rivetti, C.; Chiancone, E. The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dps to bind and condense DNA. Nucleic Acids Res. 2007, 35, 2247–2256. [Google Scholar] [CrossRef] [PubMed]
- Hoy, B.; Löwer, M.; Weydig, C.; Carra, G.; Tegtmeyer, N.; Geppert, T.; Schröder, P.; Sewald, N.; Backert, S.; Schneider, G.; et al. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep. 2010, 11, 798–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoy, B.; Geppert, T.; Boehm, M.; Reisen, F.; Plattner, P.; Gadermaier, G.; Sewald, N.; Ferreira, F.; Briza, P.; Schneider, G.; et al. Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin. J. Biol. Chem. 2012, 287, 10115–10120. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.P.; Perna, A.M.; Fugmann, T.; Böhm, M.; Jan Hiss Haller, S.; Götz, C.; Tegtmeyer, N.; Hoy, B.; Rau, T.T.; Neri, D.; et al. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Sci. Rep. 2016, 6, 23264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huang, Q.; Tao, X.; Song, G.; Zheng, P.; Li, H.; Sun, H.; Xia, W. The unique trimeric assembly of the virulence factor HtrA from Helicobacter pylori occurs via N-terminal domain swapping. J. Biol. Chem. 2019, 294, 7990–8000. [Google Scholar] [CrossRef]
- Löwer, M.; Geppert, T.; Schneider, P.; Hoy, B.; Wessler, S.; Schneider, G. Inhibitors of Helicobacter pylori protease HtrA found by ‘virtual ligand’ screening combat bacterial invasion of epithelia. PLoS ONE 2011, 6, e17986. [Google Scholar] [CrossRef] [Green Version]
- Waskito, L.A.; Salama, N.R.; Yamaoka, Y. Pathogenesis of Helicobacter pylori infection. Helicobacter 2018, 23, e12516. [Google Scholar] [CrossRef] [Green Version]
- Harrer, A.; Boehm, M.; Backert, S.; Tegtmeyer, N. Overexpression of serine protease HtrA enhances disruption of adherens junctions, paracellular transmigration and type IV secretion of CagA by Helicobacter pylori. Gut Pathog. 2017, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Zawilak-Pawlik, A.; Zarzecka, U.; Żyła-Uklejewicz, D.; Lach, J.; Strapagiel, D.; Tegtmeyer, N.; Bohm, M.; Backert, S.; Skorko-Glonek, J. Establishment of serine protease htrA mutants in Helicobacter pylori is associated with secA mutations. Sci. Rep. 2019, 9, 11794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tegtmeyer, N.; Moodley, Y.; Yamaoka, Y.; Pernitzsch, S.R.; Schmidt, V.; Traverso, F.R.; Schmidt, T.P.; Rad, R.; Yeoh, K.G.; Bow, H.; et al. Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA. Mol. Microbiol. 2016, 99, 925–944. [Google Scholar] [CrossRef] [PubMed]
- Bernegger, S.; Brunner, C.; Vizovišek, M.; Fonovic, M.; Cuciniello, G.; Giordano, F.; Stanojlovic, V.; Jarzab, M.; Simister, P.; Feller, S.M.; et al. A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Sci. Rep. 2020, 10, 10563. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.P.; Goetz, C.; Huemer, M.; Schneider, G.; Wessler, S. Calcium binding protects E-cadherin from cleavage by Helicobacter pylori HtrA. Gut Pathog. 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Zarzecka, U.; Modrak-Wójcik, A.; Figaj, D.; Apanowicz, M.; Lesner, A.; Bzowska, A.; Lipinska, B.; Zawilak-Pawlik, A.; Backert, S.; Skorko-Glonek, J. Properties of the HtrA Protease from Bacterium Helicobacter pylori Whose Activity Is Indispensable for Growth Under Stress Conditions. Front. Microbiol. 2019, 10, 961. [Google Scholar] [CrossRef]
- Zarzecka, U.; Harrer, A.; Zawilak-Pawlik, A.; Skorko-Glonek, J.; Backert, S. Chaperone activity of serine protease HtrA of Helicobacter pylori as a crucial survival factor under stress conditions. Cell Commun. Signal. 2019, 17, 161. [Google Scholar] [CrossRef] [Green Version]
- Buommino, E.; Donnarumma, G.; Manente, L.; De Filippis, A.; Silvestri, F.; Iaquinto, S.; Tufano, M.A.; De Luca, A. The Helicobacter pylori protein HspB interferes with Nrf2/Keap1 pathway altering the antioxidant response of Ags cells. Helicobacter 2012, 17, 417–425. [Google Scholar] [CrossRef]
- Du, R.J.; Ho, B.T.D. Surface localized Heat Shock Protein 20 (HslV) of Helicobacter pylori. Helicobacter 2003, 8, 257–267. [Google Scholar] [CrossRef]
- Cun, S.; Li, H.; Ge, R.; Lin, M.C.; Sun, H. A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: Implication for nickel homeostasis and bismuth susceptibility. J. Biol. Chem. 2008, 283, 15142–15151. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, R.; Yokota, K.; Ayada, K.; Mizuno, M.; Zhao, Y.; Fujinami, Y.; Lin, S.N.; Toyokawa, T.; Okada, H.; Shiratori, Y.; et al. Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology 2004, 150, 3913–3922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.N.; Ayada, K.; Zhao, Y.; Yokota, K.; Takenaka, R.; Okada, H.; Kan, R.; Hayashi, S.; Mizuno, M.; Hirai, Y.; et al. Helicobacter pylori heat-shock protein 60 induces production of the pro-inflammatory cytokine IL8 in monocytic cells. J. Med. Microbiol. 2005, 54, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Yokota, K.; Ayada, K.; Yamamoto, Y.; Okada, T.; Shen, L.; Oguma, K. Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR)2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. J. Med. Microbiol. 2007, 56, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, K.W.; Lin, C.S.; Chen, W.L.; Yang, C.T.; Lin, C.M.; Hsu, W.T.; Lin, Y.Y.; Chiu, Y.H.; Huang, K.C.; Wu, H.Y.; et al. Antibodies against Helicobacter pylori heat shock protein 60 aggravate HSP60-mediated proinflammatory responses. Cytokine 2011, 55, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Gobert, A.P.; Bambou, J.C.; Werts, C.; Balloy, V.; Chignard, M.; Moran, A.P.; Ferrero, R.L. Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-independent mechanism. J. Biol. Chem. 2004, 279, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.T.; Ho, S.Y.; Jian, T.Y.; Huang, H.N.; Lin, Y.L.; Chen, C.H.; Lin, T.H.; Wu, M.S.; Wu, C.J.; Chan, Y.L.; et al. Helicobacter pylori-derived heat shock protein 60 increases the induction of regulatory T-cells associated with persistent infection. Microb. Pathog. 2018, 119, 152–161. [Google Scholar] [CrossRef]
- Schauer, K.; Muller, C.; Carrière, M.; Labigne, A.; Cavazza, C.; De Reuse, H. The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J. Bacteriol. 2010, 192, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Roncarati, D.; Danielli, A.; Spohn, G.; Delany, I.; Scarlato, V. Transcriptional regulation of stress response and motility functions in Helicobacter pylori is mediated by HspR and HrcA. J. Bacteriol. 2007, 189, 7234–7243. [Google Scholar] [CrossRef] [Green Version]
- Eamranond, P.P.; Torres, J.; Muñoz, O.; Pérez-Pérez, G.I. Age-specific immune response to HspA in Helicobacter pylori-positive persons in Mexico. Clin. Diagn. Lab. Immunol. 2004, 11, 983–985. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; He, P.J.; Hsu, W.T.; Wu, M.S.; Wu, C.J.; Shen, H.W.; Hwang, C.H.; Lai, Y.K.; Tsai, N.M.; Liao, K.W. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway. Biochem. Biophys. Res. Commun. 2010, 397, 283–289. [Google Scholar] [CrossRef]
- Takenaka, R.; Yokota, K.; Mizuno, M.; Okada, H.; Toyokawa, T.; Yamasaki, R.; Yoshino, T.; Sugiyama, T.; Asaka, M.; Shiratori, Y.; et al. Serum antibodies to Helicobacter pylori and its heat-shock protein 60 correlate with the response of gastric mucosa-associated lymphoid tissue lymphoma to eradication of H. pylori. Helicobacter 2004, 9, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, E.; Yokota, K.; Sugiyama, T.; Fujinaga, Y.; Ayada, K.; Hokari, I.; Hayashi, S.; Hirai, Y.; Asaka, M.; Oguma, K. Immunoglobulin G1 antibody response to Helicobacter pylori heat shock protein 60 is closely associated with low-grade gastric mucosa-associated lymphoid tissue lymphoma. Clin. Diagn. Lab. Immunol. 2001, 8, 1056–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunoki, N.; Yokota, K.; Mizuno, M.; Kawahara, Y.; Adachi, M.; Okada, H.; Hayashi, S.; Hirai, Y.; Oguma, K.; Tsuji, T. Antibody to heat shock protein can be used for early serological monitoring of Helicobacter pylori eradication treatment. Clin. Diagn. Lab. Immunol. 2000, 7, 574–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Chen, Y.; Lu, G.; Sun, L.; Si, J. Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by H. pylori. BMC Gastroenterol. 2011, 11, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targosz, A.; Brzozowski, T.; Pierzchalski, P.; Szczyrk, U.; Ptak-Belowska, A.; Konturek, S.J.; Pawlik, W. Helicobacter pylori promotes apoptosis, activates cyclooxygenase (COX)-2 and inhibits heat shock protein HSP70 in gastric cancer epithelial cells. Inflamm. Res. 2012, 61, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.H.; Yoo, D.Y.; Kim, Y.J.; Choi, S.M.; Kang, K.K.; Kim, H.; Kim, N.; Kim, J.S.; Kim, J.M. A mechanism for the action of the compound DA-6034 on NF-κB pathway activation in Helicobacter pylori-infected gastric epithelial cells. Scand. J. Immunol. 2011, 74, 253–263. [Google Scholar] [CrossRef]
- Barton, S.G.; Rampton, D.S.; Winrow, V.R.; Domizio, P.; Feakins, R.M. Expression of heat shock protein 32 (hemoxygenase-1) in the normal and inflamed human stomach and colon: An immunohistochemical study. Cell Stress Chaperones. 2003, 8, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Ye, J.; Huang, Q.; Chen, W.; Wang, L.; Lin, W.; Lin, J.; Lin, X. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clin. Chem. Lab. Med. 2010, 48, 263–269. [Google Scholar] [CrossRef] [Green Version]
Virulence Factor | Function |
---|---|
Urease | Protects from the gastric acidity Facilitates bacterial colonization Stimulates bacterial nutrition Generates the proton motive force Modulates the host immune responses (facilitated apoptosis, chemotaxis of neutrophils and monocytes, altered opsonization, enhanced release of the pro-inflammatory cytokines) Stimulates platelet activation Stimulates angiogenesis |
Flagellum | Enhances bacterial motility Stimulates chemotaxis Takes part in the biofilm formation Facilitates inflammation and immune evasion |
Cytotoxin-associated gene A | Stimulates inflammatory responses Induces the release of IL-8 and IL-12 Enhances bacterial motility Activates RUNX3, ASPP2, CDX1, and fibroblasts Induces EMT Stimulates host cell growth and proliferation Reduces the activity of PDCD4, GSK-3, microRNA-134, Afadin protein, heat shock proteins Stimulates the induction of cancer stem cell-like properties |
Vacuolating cytotoxin A | Involved in the formation of pores Promotes the autophagy pathways Forms the intracellular vacuoles and impaired autophagosomes Induces apoptosis and necrosis Inhibits the activity and proliferation of T and B cells Inhibits the IFN-β signaling inducing macrophage apoptosis Induces the release of IL-8 Differentiation of the regulatory T cells into effector T cells Prevents cellular elongation by inhibiting the Erk1/2 kinase pathways |
Catalase | Induces mutagenesis Facilitates inflammation Protects H. pylori from complement-mediated killing Maintains bacterial survival at the cell surface of the phagocytes and in the macrophage phagosomes Protects H. pylori from phagocytosis |
Superoxidase dismutase | Facilitates bacterial colonization Protects from ROS Inhibits the production of pro-inflammatory cytokines Stimulates the activation of the macrophages |
Lewis antigens | Protects H. pylori from the host defense mechanisms Enhances bacterial survival Enhances the adhesive properties and further internalization |
Arginase | Stimulates apoptosis Prevents bacterial killing Provides acid resistance in the gastric microenvironment Inhibits the proliferation of T cells Inhibits the production of NO Impairs the host immune responses Induces the apoptosis of macrophages Impairs Th1/Th17 differentiation |
Phospholipases | Degradation of various lipids Damage the mucus layer Stimulate chronic inflammation Facilitate bacterial colonization and survival Activate the ERK1/2 signaling pathway |
Lipopolysaccharide | Induces the host inflammatory responses by molecular mimicry Protects the bacterium from potentially toxic compounds Activates the TLR4, TLR2, PD-1, MMP-9, PLC/PKC/PI3K, JAK/STAT pathway, TNF-α, IFN-γ, IL-10, IL-12, IL-18, EPA-78, MCP-1, IL-8, IL-1β, and -4, -6, -7, -9 claudins Facilitates Th1 immune responses Activates neutrophils promoting oxidative stress reactions Induces monocyte inflammatory responses and monocyte transendothelial migration Disrupts the mucus secretion |
Blood group antigen-binding adhesin | Enables bacterial adherence to gastric epithelial cells Stimulates the delivery of toxins (due to the increased T4SS activity) Stimulates the inflammatory responses (excessive IL-8 release, granulocyte infiltration) |
Sialic acid-binding adhesin | Stimulates neutrophil activation and infiltration Facilitates bacterial colonization Induces the oxidative damage |
Outer inflammatory protein A | Activates the apoptotic cascade Promotes the secretion of the pro-inflammatory cytokines such as IL-1, IL-6, IL-8, IL-11 IL-17, matrix metalloproteinase 1 (MMP-1), TNF-α, RANTES Regulates β-catenin levels Inhibits the maturation of the dendritic cells Takes part in CagA delivery into the host cells Increases microRNA-30b levels |
Duodenal ulcer promoting gene A | Involved in the formation of T4SS Stimulates the infiltration of the inflammatory cells Facilitates urease and IL-8 secretion and IL-12 release from the monocytes Activates the mitochondria-mediated apoptotic pathways Facilitates bacterial tolerance in the acidic microenvironment |
Adherence-associated lipoprotein A and B | Enables bacterial adherence to gastric epithelial cells Stimulates bacterial colonization Takes part in the formation of the biofilm Induces the release of pro-inflammatory factors (IL-6 and IL-8) |
LacdiNAc-specific adhesin | Facilitates adherence to gastric epithelial cells |
Helicobacter pylori outer membrane protein Q | Facilitates adherence to gastric epithelial cells Enables bacterial survival in the acidic gastric microenvironment Stimulates the infiltration of pro-inflammatory factors Facilitates T4SS activity Enables the survival of neutrophils Inhibits natural killer and T cells functions |
Helicobacter pylori outer membrane protein Z | Facilitates the adherence to gastric epithelial cells Disturbs gastric acid secretion |
Induced by contact with epithelium gene A | Induces oxidative DNA damage Stimulates the release of pro-inflammatory factors (IL-8, IL-1) Facilitates granulocytic and lymphocytic infiltrations |
Cholesteryl α-glucosyltransferase | Prevents H. pylori from the phagocytosis and immune responses Regulates the responses from the CD4+ T-cells, IL-4, and IFN-γ pathways Stimulates the secretion of IL-8 Crucial for proper bacterial growth, survival, and antibiotic resistance Interrupts the autophagosome-lysosome fusion |
γ-glutamyl-transpeptidase | Induces the release of ROS Inhibits cellular proliferation Facilitates apoptosis and necrosis Incudes the release of IL-8, IL-10, COX-2, inducible iNOS, caspase-3 and -9 Inhibits CD4+ T cell proliferation and stimulates CD8+ T cells infiltration Prevents the differentiation of the dendritic cells Stimulates DNA damage Reduces cell viability |
Neutrophil-activating protein | Facilitates neutrophil adherence to gastric epithelial cells Produces ROS and myeloperoxidase Activates neutrophils and mast cells and the migration of the monocytes Stimulates the infiltration of monocytes and polymorphonuclear granulocytes Stimulates the release of IL-8, MIP-1α, MIP-1β, TNF-α, IL-6, β-hexosaminidase Impairs the epithelial tight junctions and basal membranes Facilitates H. pylori growth |
High temperature requirement A | Impairs the functions of the epithelial barrier by disrupting adherens junctions, tight junctions, and extracellular matrix proteins Facilitates H. pylori migration properties Promotes CagA injection into the host cells Prevents H. pylori from stress conditions |
Heat shock proteins | Maintains the proper structural and functional properties of the cellular proteins Protects from the oxidative stress Regulates apoptosis and autophagy Crucial for proper urease activation Induces the release of COX-2, IL-8, TNF-α, MMP3, and MMP7 Facilitates adherence to gastric epithelial cells Facilitates tumor cell migrations Enhances angiogenesis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2021, 10, 27. https://doi.org/10.3390/cells10010027
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells. 2021; 10(1):27. https://doi.org/10.3390/cells10010027
Chicago/Turabian StyleBaj, Jacek, Alicja Forma, Monika Sitarz, Piero Portincasa, Gabriella Garruti, Danuta Krasowska, and Ryszard Maciejewski. 2021. "Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment" Cells 10, no. 1: 27. https://doi.org/10.3390/cells10010027