Small Airways Dysfunction and Lung Hyperinflation in Long COVID-19 Patients as Potential Mechanisms of Persistent Dyspnoea
Abstract
:Highlights
- Long COVID-19 patients may present with small airways dysfunction and lung hyperinflation.
- Lung hyperinflation in patients with long COVID-19 may be associated with persistent dyspnoea.
- Small airways disease is prevalent in a group of patients with long COVID-19.
- Early detection of small airways disease and lung hyperinflation in these patients can lead to more targeted treatments and faster recovery rates.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Respiratory Function Assessment
2.3. Single-Breath N2 Washout Technique
2.4. Chronic Dyspnoea Assessment
2.5. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Pulmonary Function Testing Outcomes
3.3. Associations with Chronic Dyspnoea
4. Discussion
4.1. Study Limitations
4.2. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johns Hopkins University. Coronavirus Resource Centre. Available online: https://coronavirus.jhu.edu/map.html (accessed on 3 October 2023).
- Ochani, R.; Asad, A.; Yasmin, F.; Shaikh, S.; Khalid, H.; Batra, S.; Sohail, M.R.; Mahmood, S.F.; Hussham Arshad, M.; Kumar, A.; et al. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez. Med. 2021, 29, 20–36. [Google Scholar] [PubMed]
- NICE. COVID-19 Rapid Guideline: Managing the Longterm Effects of COVID-19. Available online: https://www.nice.org.uk/guidance/ng188/chapter/1-Identification (accessed on 25 October 2023).
- Zolfaghari Emameh, R.; Heshmatnia, J. Management, control, and decision making in unexpected recurrent venous thromboembolism in COVID-19: A case report. J. Med. Case Rep. 2023, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- Mouzarou, A.; Ioannou, M.; Leonidou, E.; Chaziri, I. Pulmonary Embolism in Post-CoviD-19 Patients, a Literature Review: Red Flag for Increased Awareness? SN Compr. Clin. Med. 2022, 4, 190. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Huang, L.; Gu, X.; Wang, Y.; Liu, M.; Liu, Z.; Zhang, X.; Yu, Z.; Huang, C.; et al. Lung-function trajectories in COVID-19 survivors after discharge: A two-year longitudinal cohort study. EClinicalMedicine 2022, 54, 101668. [Google Scholar] [CrossRef]
- Wang, F.; Kream, R.M.; Stefano, G.B. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e928996. [Google Scholar] [CrossRef]
- Fumagalli, A.; Misuraca, C.; Bianchi, A.; Borsa, N.; Limonta, S.; Maggiolini, S.; Bonardi, D.R.; Corsonello, A.; Di Rosa, M.; Soraci, L.; et al. Long-term changes in pulmonary function among patients surviving to COVID-19 pneumonia. Infection 2022, 50, 1019–1022. [Google Scholar] [CrossRef]
- Cortés-Telles, A.; López-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients after Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Lopes, A.J.; Litrento, P.F.; Provenzano, B.C.; Carneiro, A.S.; Monnerat, L.B.; da Cal, M.S.; Ghetti, A.T.A.; Mafort, T.T. Small airway dysfunction on impulse oscillometry and pathological signs on lung ultrasound are frequent in post-COVID-19 patients with persistent respiratory symptoms. PLoS ONE 2021, 16, e0260679. [Google Scholar] [CrossRef] [PubMed]
- Candemir, I.; Ergun, P.; Şahin, M.E.; Karamanli, H. Relationship between exercise capacity and impulse oscillometry parameters after COVID-19 infections. Wien. Klin. Wochenschr. 2023, 135, 260–265. [Google Scholar] [CrossRef]
- Visconti, N.; Cailleaux-Cezar, M.; Capone, D.; Dos Santos, M.I.V.; Graça, N.P.; Loivos, L.P.P.; Pinto Cardoso, A.; de Queiroz Mello, F.C. Long-term respiratory outcomes after COVID-19: A Brazilian cohort study. Rev. Panam. Salud Publica Pan Am. J. Public Health 2022, 46, e187. [Google Scholar] [CrossRef] [PubMed]
- Mogami, R.; Araújo Filho, R.C.; Cobo Chantong, C.G.; Santos de Almeida, F.C.; Baptista Koifman, A.C.; Jauregui, G.F.; Mafort, T.T.; da Silva Bessa da Costa, H.; Peres Dos Santos, G.A.; Zangerolame de Carvalho, B.; et al. The Importance of Radiological Patterns and Small Airway Disease in Long-Term Follow-Up of Postacute COVID-19: A Preliminary Study. Radiol. Res. Pract. 2022, 2022, 7919033. [Google Scholar] [CrossRef]
- Lo, P.C.; Feng, J.Y.; Hsiao, Y.H.; Su, K.C.; Chou, K.T.; Chen, Y.M.; Ko, H.K.; Perng, D.W. Long COVID symptoms after 8-month recovery: Persistent static lung hyperinflation associated with small airway dysfunction. Respir. Res. 2024, 25, 209. [Google Scholar] [CrossRef]
- McNulty, W.; Usmani, O.S. Techniques of assessing small airways dysfunction. Eur. Clin. Respir. J. 2014, 1. [Google Scholar] [CrossRef] [PubMed]
- Konstantinos Katsoulis, K.; Kostikas, K.; Kontakiotis, T. Techniques for assessing small airways function: Possible applications in asthma and COPD. Respir. Med. 2016, 119, e2–e9. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.D.; Latzin, P.; Verbanck, S.; Hall, G.L.; Horsley, A.; Gappa, M.; Thamrin, C.; Arets, H.G.; Aurora, P.; Fuchs, S.I.; et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur. Respir. J. 2013, 41, 507–522. [Google Scholar] [CrossRef]
- Boeck, L.; Gensmer, A.; Nyilas, S.; Stieltjes, B.; Re, T.J.; Tamm, M.; Latzin, P.; Stolz, D. Single-Breath Washout Tests to Assess Small Airway Disease in COPD. Chest 2016, 150, 1091–1100. [Google Scholar] [CrossRef]
- Milic-Emili, J.; Torchio, R.; D’Angelo, E. Closing volume: A reappraisal (1967–2007). Eur. J. Appl. Physiol. 2007, 99, 567–583. [Google Scholar] [CrossRef]
- Patil, S.; Toshniwal, S.; Gondhali, G. Small airway disease: A new “phenotype” of obstructive airway disease. Ann. Med. Sci. Res. 2023, 2, 42–50. [Google Scholar] [CrossRef]
- D’Angelo, E.; Prandi, E.; Marazzini, L.; Milic-Emili, J. Dependence of maximal flow-volume curves on time course of preceding inspiration in patients with chronic obstruction pulmonary disease. Am. J. Respir. Crit. Care Med. 1994, 150, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- ERS. Standardized lung function testing. Official statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993, 16, 1–100. [Google Scholar]
- Macintyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef]
- Albuquerque, A.L.; Nery, L.E.; Villaça, D.S.; Machado, T.Y.; Oliveira, C.C.; Paes, A.T.; Neder, J.A. Inspiratory fraction and exercise impairment in COPD patients GOLD stages II-III. Eur. Respir. J. 2006, 28, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Buist, A.S.; Ross, B.B. Closing volume as a simple, sensitive test for the detection of peripheral airway disease. Chest 1973, 63, 29S–30S. [Google Scholar] [CrossRef]
- Mahler, D.A.; Wells, C.K. Evaluation of clinical methods for rating dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef]
- Cho, J.L.; Villacreses, R.; Nagpal, P.; Guo, J.; Pezzulo, A.A.; Thurman, A.L.; Hamzeh, N.Y.; Blount, R.J.; Fortis, S.; Hoffman, E.A.; et al. Quantitative Chest CT Assessment of Small Airways Disease in Post-Acute SARS-CoV-2 Infection. Radiology 2022, 304, 185–192. [Google Scholar] [CrossRef]
- Evbuomwan, O.; Endres, W.; Tebieia, T.; Engelbrecht, G. Incidence and follow-up of persistent lung perfusion abnormalities as a result of suspected air trapping or microthrombosis in non-hospitalised COVID-19 patients during the early half of the pandemic—Experience in a tertiary institution in South Afr. S. Afr. Med. J. Suid-Afr. Tydskr. Vir Geneeskd. 2022, 112, 850–854. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, J.; Zhou, J.; Shang, Y.; Lin, X.; Gong, S.; Gu, L.; Dai, H.; Li, Y. Inspiratory and Expiratory Chest High-resolution CT: Small-airway Disease Evaluation in Patients with COVID-19. Curr. Med. Imaging 2021, 17, 1299–1307. [Google Scholar] [CrossRef]
- Siora, A.; Vontetsianos, A.; Chynkiamis, N.; Anagnostopoulou, C.; Bartziokas, K.; Anagnostopoulos, N.; Rovina, N.; Bakakos, P.; Papaioannou, A.I. Small airways in asthma: From inflammation and pathophysiology to treatment response. Respir. Med. 2024, 222, 107532. [Google Scholar] [CrossRef] [PubMed]
- Bourdin, A.; Paganin, F.; Préfaut, C.; Kieseler, D.; Godard, P.; Chanez, P. Nitrogen washout slope in poorly controlled asthma. Allergy 2006, 61, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K.; Quibrera, P.M.; Carretta, E.E.; Barr, R.G.; Bleecker, E.R.; Bowler, R.P.; Cooper, C.B.; Comellas, A.; Couper, D.J.; Curtis, J.L.; et al. Frequency of exacerbations in patients with chronic obstructive pulmonary disease: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2017, 5, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Kraft, M.; Richardson, M.; Hallmark, B.; Billheimer, D.; Van den Berge, M.; Fabbri, L.M.; Van der Molen, T.; Nicolini, G.; Papi, A.; Rabe, K.F.; et al. The role of small airway dysfunction in asthma control and exacerbations: A longitudinal, observational analysis using data from the ATLANTIS study. Lancet Respir. Med. 2022, 10, 661–668. [Google Scholar] [CrossRef]
- Singh, S.J.; Baldwin, M.M.; Daynes, E.; Evans, R.A.; Greening, N.J.; Jenkins, R.G.; Lone, N.I.; McAuley, H.; Mehta, P.; Newman, J.; et al. Respiratory sequelae of COVID-19: Pulmonary and extrapulmonary origins, and approaches to clinical care and rehabilitation. Lancet Respir. Med. 2023, 11, 709–725. [Google Scholar] [CrossRef]
- Tse, G.M.; To, K.F.; Chan, P.K.; Lo, A.W.; Ng, K.C.; Wu, A.; Lee, N.; Wong, H.C.; Mak, S.M.; Chan, K.F.; et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J. Clin. Pathol. 2004, 57, 260–265. [Google Scholar] [CrossRef]
- Ortiz, M.E.; Thurman, A.; Pezzulo, A.A.; Leidinger, M.R.; Klesney-Tait, J.A.; Karp, P.H.; Tan, P.; Wohlford-Lenane, C.; McCray, P.B., Jr.; Meyerholz, D.K. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. EBioMedicine 2020, 60, 102976. [Google Scholar] [CrossRef]
- Fumagalli, A.; Misuraca, C.; Bianchi, A.; Borsa, N.; Limonta, S.; Maggiolini, S.; Bonardi, D.R.; Corsonello, A.; Di Rosa, M.; Soraci, L.; et al. Pulmonary function in patients surviving to COVID-19 pneumonia. Infection 2021, 49, 153–157. [Google Scholar] [CrossRef]
- Balbi, M.; Conti, C.; Imeri, G.; Caroli, A.; Surace, A.; Corsi, A.; Mercanzin, E.; Arrigoni, A.; Villa, G.; Di Marco, F.; et al. Post-discharge chest CT findings and pulmonary function tests in severe COVID-19 patients. Eur. J. Radiol. 2021, 138, 109676. [Google Scholar] [CrossRef]
- Usmani, O.S.; Dhand, R.; Lavorini, F.; Price, D. Why We Should Target Small Airways Disease in Our Management of Chronic Obstructive Pulmonary Disease. Mayo Clin. Proc. 2021, 96, 2448–2463. [Google Scholar] [CrossRef] [PubMed]
- Kooner, H.K.; McIntosh, M.J.; Matheson, A.M.; Abdelrazek, M.; Albert, M.S.; Dhaliwal, I.; Kirby, M.; Ouriadov, A.; Santyr, G.E.; Venegas, C.; et al. Postacute COVID-19 Syndrome: 129Xe MRI Ventilation Defects and Respiratory Outcomes 1 Year Later. Radiology 2023, 307, e222557. [Google Scholar] [CrossRef]
All | RV/TLC < 40% | RV/TLC ≥ 40% | p Value | |
---|---|---|---|---|
Gender (m/f) | 14/19 | 10/8 | 4/11 | 0.223 |
Age (years) | 53.4 ± 11.4 | 51.1 ± 12.2 | 56.1 ± 10.1 | 0.219 |
Height (cm) | 166 ± 12 | 166 ± 12 | 165 ± 13 | 0.755 |
Weight (kg) | 78 ± 18 | 81.2 ± 20.0 | 73.8 ± 15.6 | 0.247 |
BMI (kg·m2) | 28.1 ± 5.4 | 29.0 ± 5.0 | 27.0 ± 6.0 | 0.292 |
Time from discharge (days) | 149 ± 70 | 148 ± 93 | 149 ± 92 | 0.962 |
mMRC score | 2.2 ± 1.0 | 1.9 ± 1.1 | 2.6 ± 0.8 | 0.045 |
FEV1 (%pred) | 100 ± 19 | 100 ± 19 | 100 ± 20 | 0.914 |
FVC (%pred) | 99 ± 20 | 97 ± 18 | 101 ± 22 | 0.604 |
FEV1/FVC (%) | 84 ± 6 | 85 ± 5 | 83 ± 7 | 0.508 |
TLC (%pred) | 94 ± 27 | 83 ± 14 | 108 ± 31 | 0.004 |
RV/TLC (%) | 40 ± 12 | 31 ± 6 | 51 ± 8 | 0.001 |
FRC (%pred) | 98 ± 44 | 77 ± 23 | 123 ± 49 | 0.001 |
DLco (%pred) | 78 ± 23 | 78 ± 19 | 77 ± 27 | 0.904 |
All | RV/TLC < 40% | RV/TLC ≥ 40% | p Value | |
---|---|---|---|---|
FEF25–75 (%pred) | 95 ± 33 | 93 ± 27 | 96 ± 39 | 0.823 |
RV (%pred) | 113 ± 66 | 76 ± 25 | 158 ± 72 | 0.001 |
CV (%pred) | 64 ± 28 | 68 ± 27 | 58 ± 30 | 0.314 |
CC (%pred) | 115 ± 28 | 99 ± 20 | 135 ± 23 | 0.001 |
V_III volume (%pred) | 95 ± 17 | 91 ± 10 | 101 ± 23 | 0.086 |
N2-slope (%N2/L) | 1.00 ± 0.68 | 1.06 ± 0.60 | 0.93 ± 0.78 | 0.580 |
N2-slope (%pred) | 71 ± 52 | 76 ± 43 | 65 ± 63 | 0.567 |
OC (%pred) | 90 ± 19 | 102 ± 14 | 76 ± 14 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vontetsianos, A.; Chynkiamis, N.; Anagnostopoulou, C.; Lekka, C.; Zaneli, S.; Anagnostopoulos, N.; Rovina, N.; Kampolis, C.F.; Papaioannou, A.I.; Kaltsakas, G.; et al. Small Airways Dysfunction and Lung Hyperinflation in Long COVID-19 Patients as Potential Mechanisms of Persistent Dyspnoea. Adv. Respir. Med. 2024, 92, 329-337. https://doi.org/10.3390/arm92050031
Vontetsianos A, Chynkiamis N, Anagnostopoulou C, Lekka C, Zaneli S, Anagnostopoulos N, Rovina N, Kampolis CF, Papaioannou AI, Kaltsakas G, et al. Small Airways Dysfunction and Lung Hyperinflation in Long COVID-19 Patients as Potential Mechanisms of Persistent Dyspnoea. Advances in Respiratory Medicine. 2024; 92(5):329-337. https://doi.org/10.3390/arm92050031
Chicago/Turabian StyleVontetsianos, Angelos, Nikolaos Chynkiamis, Christina Anagnostopoulou, Christiana Lekka, Stavrina Zaneli, Nektarios Anagnostopoulos, Nikoleta Rovina, Christos F. Kampolis, Andriana I. Papaioannou, Georgios Kaltsakas, and et al. 2024. "Small Airways Dysfunction and Lung Hyperinflation in Long COVID-19 Patients as Potential Mechanisms of Persistent Dyspnoea" Advances in Respiratory Medicine 92, no. 5: 329-337. https://doi.org/10.3390/arm92050031