Physiotherapy in the Recovery of Paraplegic Dogs without Nociception Due to Thoracolumbar Intervertebral Disc Extrusion Treated Surgically
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Inclusion Criteria
2.4. Physiotherapy Protocol
2.5. Evaluation Postoperative
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rossi, G.; Stachel, A.; Lynch, A.M.; Olby, N.J. Intervertebral disc disease and aortic thromboembolism are the most common causes of acute paralysis in dogs and cats presenting to an emergency clinic. Vet. Rec. 2020, 187, e81. [Google Scholar] [CrossRef] [PubMed]
- Dewey, C.W.; Da Costa, R.C. Myelopathies: Disorders of the spinal cord. In Practical Guide to Canine and Feline Neurology, 3rd ed.; Dewey, C.W., Da Costa, R.C., Eds.; Wiley Blackwell: Ames, IA, USA, 2016; pp. 329–403. [Google Scholar]
- Mcgonagle, L.; Blythe, L.; Levine, D. History of canine physical rehabilitation. In Canine Rehabilitation and Physical Therapy, 2nd ed.; Millis, D., Levine, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–7. [Google Scholar]
- Sims, C.; Waldron, R.; Marcellin-Little, D.J. Rehabilitation and Physical Therapy for the Neurologic Veterinary Patient. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Evans, W.J.; Johnson, A.L.; Knap, K.E.; Griffon, D.J. The effect of body condition on postoperative recovery of dachshunds with intervertebral disc disease treated with postoperative physical rehabilitation. Vet. Surg. 2019, 48, 159–163. [Google Scholar] [CrossRef]
- Moore, S.A.; Early, P.J.; Hettlich, B.F. Practice patterns in the management of acute intervertebral disc herniation in dogs. J. Small Anim. Pract. 2016, 57, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Zidan, N.; Sims, C.; Fenn, J.; Williams, K.; Griffith, E.; Early, P.J.; Mariani, C.L.; Munana, K.R.; Guevar, J.; Olby, N.J. A randomized, blinded, prospective clinical trial of postoperative rehabilitation in dogs after surgical decompression of acute thoracolumbar intervertebral disc herniation. J. Vet. Intern. Med. 2018, 32, 1133–1144. [Google Scholar] [CrossRef]
- Moore, S.A.; Tipold, A.; Olby, N.J.; Stein, V.; Granger, N. Current Approaches to the Management of Acute Thoracolumbar Disc Extrusion in Dogs. Front. Vet. Sci. 2021, 7, 610. [Google Scholar] [CrossRef]
- Dewey, C.W.; Ringwood, P.B.; Pettigrew, R.W.; Kent, M.; Budsberg, S.C.; Loughin, C.A. Effect of durotomy on functional outcome of dogs with type I thoracolumbar disc extrusion and absent deep pain perception. Vet. Comp. Orthop. Traumatol. 2005, 18, 141–146. [Google Scholar] [CrossRef]
- Ito, D.; Matsunaga, S.; Jeffery, N.D.; Sasaki, N.; Nishimura, R.; Mochisuki, M.; Kasahara, M.; Fujiwara, R.; Ogawa, H. Prognostic value of magnetic resonance imaging in dogs with paraplegia caused by thoracolumbar intervertebral disk extrusion: 77 cases (2000–2003). J. Am. Vet. Med. Assoc. 2005, 227, 1454–1460. [Google Scholar] [CrossRef]
- Laitinen, O.M.; Puerto, D.A. Surgical decompression in dogs with thoracolumbar intervertebral disc disease and loss of deep pain perception: A retrospective study of 46 cases. Acta Vet. Scand. 2005, 46, 79–85. [Google Scholar] [CrossRef]
- Ripplinger, A.; Wrzesinki, M.R.; Rauber, J.S.; Schwab, M.L.; Ferrarin, D.A.; Baumhardt, R.; Aiello, G.; Beckmann, D.V.; Mazzanti, A. Functional outcome in dogs undergoing hemilaminectomy for thoracolumbar disc extrusion but without nociception > 96 h: A prospective study. Vet. J. 2023, 292, 105951–105962. [Google Scholar] [CrossRef]
- Jeffery, N.D.; Barker, A.K.; Hu, H.Z.; Alcott, C.J.; Kraus, K.H.; Scanlin, E.M.; Granger, N.; Levine, J.M. Factors associated with recovery from paraplegia in dogs with loss of pain perception in the pelvic limbs following intervertebral disk herniation. J. Am. Vet. Med. Assoc. 2016, 248, 386–394. [Google Scholar] [CrossRef]
- Lewis, M.J.; Jeffery, N.D.; Olby, N.J. Ambulation in Dogs with Absent Pain Perception after Acute Thoracolumbar Spinal Cord Injury. Front. Vet. Sci. 2020, 7, 560. [Google Scholar] [CrossRef]
- Olby, N.J.; Levine, J.; Harris, T.; Muñana, K. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal cord: 87 cases (1996–2001). J. Am. Vet. Med. Assoc. 2003, 222, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Ruddle, T.L.; Allen, D.A.; Schertel, E.R.; Barnhart, M.D.; Wilson, E.R.; Lineberger, J.A.; Klocke, N.W.; Lehenbauer, T.W. Outcome and prognostic factors in non-ambulatory Hansen Type I intervertebral disc extrusions: 308 cases. Vet. Comp. Orthop. Traumatol. 2006, 19, 29–34. [Google Scholar]
- Wang-Leandro, A.; Siedenburg, J.S.; Hobert, M.K.; Dziallas, P.; Rohn, K.; Stein, V.M.; Tipold, A. Comparison of preoperative quantitative magnetic resonance imaging and clinical assessment of deep pain perception as prognostic tools for early recovery of motor function in paraplegic dogs with intervertebral disk herniations. J. Vet. Intern. Med. 2017, 31, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.J.; Levine, J.M.; Budke, C.M.; Kerwin, S.C.; Au, J.; Vinayak, A.; Hettlich, B.F.; Slater, M.R. Description and repeatability of a newly developed spinal cord injury scale for dogs. Prev. Vet. Med. 2009, 89, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Olby, N.J.; Moore, S.A.; Brisson, b.; Fen, J.; Flegel, T.; Kortz, G.; Lewis, M.; Tipold, A. ACVIM consensus statement on diagnosis and management of acute canine thoracolumbar intervertebral disc extrusion. J. Vet. Intern. Med. 2022, 36, 1570–1596. [Google Scholar] [CrossRef] [PubMed]
- Shores, A. Thoracolumbar Hemilaminectomy. In Current Techniques in Canine and Feline Neurosurgery; Shores, A., Brisson, B.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 179–182. [Google Scholar]
- Aikawa, T.; Fujita, H.; Shibata, M.; Takahashi, T. Recurrent Thoracolumbar Intervertebral Disc Extrusion after Hemilaminectomy and Concomitant Prophylactic Fenestration in 662 Chondrodystrophic Dogs. Vet. Surg. 2012, 41, 381–390. [Google Scholar] [CrossRef]
- Steiss, J.E.; Levine, D. Modalidades de agentes físicos. In Canine Rehabilitation and Physical Therapy, 2nd ed.; Millis, D.L., Levine, D., Eds.; Saunders: Philadelphia, PA, USA, 2004; pp. 350–413. [Google Scholar]
- Drum, M.G. Physical rehabilitation of the canine neurologic patient. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 181–193. [Google Scholar] [CrossRef]
- Olby, N.; Halling, K.B.; Glick, T.R. Neurological rehabilitation. In Rehabilitation and Physiotherapy in Small Animal Practice; Levine, D., Millis, D.L., Marcellin-little, D.J., Taylor, R.A., Eds.; Saunders: Philadelphia, PA, USA, 2004; pp. 157–180. [Google Scholar]
- Drum, M.G.; Marcellin-little, D.J.; Davis, M.S. Principles and applications of therapeutic exercises for small animals. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 73–90. [Google Scholar] [CrossRef]
- Hamilton, S.; Millis, D.L.; Taylor, R.A.; Levine, D. Therapeutic exercises. In Canine Rehabilitation and Physical Therapy; Millis, D.L., Levine, D., Taylor, R.A., Eds.; Saunders: Philadelphia, PA, USA, 2004; pp. 244–263. [Google Scholar]
- Frank, L.R.; Roynard, P.F.P. Veterinary Neurologic Rehabilitation: The rationale for a comprehensive approach. Topic. Companion Anim. Med. 2018, 33, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Gouveia, D.; Cardoso, A.; Carvalho, C.; Coelho, T.; Silva, C.; Viegas, I.; Gamboa, O.; Ferreira, A. A Controlled Clinical Study of Intensive Neurorehabilitation in Post-Surgical Dogs with Severe Acute Intervertebral Disc Extrusion. Animals 2021, 11, 3034. [Google Scholar] [CrossRef]
- Knikou, M. Plasticity of Corticospinal Neural Control after Locomotor Training in Human Spinal Cord Injury. Neural Plast. 2012, 2012, 254948. [Google Scholar] [CrossRef] [PubMed]
- Millis, D.L.; Ciuperca, I.A. Evidence for Canine Rehabilitation and Physical Therapy. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 1–27. [Google Scholar] [CrossRef]
- Martins, Â.; Gouveia, D.; Cardoso, A.; Carvalho, C.; Silva, C.; Coelho, T.; Gamboa, Ó.; Ferreira, A. A Functional Neurorehabilitation in Dogs with an Incomplete Recovery 3 Months following Intervertebral Disc Surgery: A Case Series. Animals 2021, 11, 2442. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, C.L.; Tipping, C.J. Physiotherapy management of intensive care unit-acquired weakness. J. Physiother. 2017, 63, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Thomas, W.B.; Olby, N.; Sharon, L. Neurologic conditions and physical rehabilitation of neurologic patient. In Canine Rehabilitation and Physical Therapy, 2nd ed.; Millis, D.L., Levine, D., Eds.; Saunders: Philadelphia, PA, USA, 2004; pp. 607–627. [Google Scholar]
- Butterworth, S.J.; Denny, H.R. Follow-up study of 100 cases with thoracolumbar disc protrusions treated by lateral fenestration. J. Small Anim. Pract. 1991, 32, 443–447. [Google Scholar] [CrossRef]
- Ferreira, A.J.A.; Correia, J.H.D.; Jaggy, A. Thoracolumbar disc disease in 71 paraplegic dogs: Influence of rate and duration of clinical signs on treatment results. J. Small Anim. Pract. 2002, 43, 158–163. [Google Scholar] [CrossRef]
- Olby, N.J.; Da Costa, R.C.; Levine, J.M.; Stein, V.M. Prognostic Factors in Canine Acute Intervertebral Disc Disease. Front. Vet. Sci. 2020, 7, 596059. [Google Scholar] [CrossRef]
- Scott, H.W. Hemilaminectomy for the treatment of thoracolumbar disc disease in the dog: A follow-up study of 40 cases. J. Small Anim. Pract. 1997, 38, 188–494. [Google Scholar] [CrossRef]
- Han, H.J.; Yoon, H.Y.; Kim, J.Y.; Jang, H.Y.; Lee, B.; Choi, S.H.; Jeong, S.W. Clinical effect of additional electroacupuncture on thoracolumbar intervertebral disc herniation in 80 paraplegic dogs. Am. J. Chin. Med. 2010, 38, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, A.; Dragone, L.; Menchetti, M.; Gagliardo, T.; Pietra, M.; Cardinali, M.; Gandini, G. Acquisition of Involuntary Spinal Locomotion (Spinal Walking) in Dogs with Irreversible Thoracolumbar Spinal Cord Lesion: 81 dogs. J. Vet. Intern. Med. 2017, 31, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Henea, M.E.; Sindilar, E.V.; Burtan, L.C.; Mihai, J.; Grecu, M.; Anton, A.; Solcan, G. Recovery of spinal walking in paraplegic dogs using physiotherapy and supportive devices to maintain the standing position. Animals 2023, 13, 1398. [Google Scholar] [CrossRef]
- Bennaim, M.; Porato, M.; Jarleton, A.; Hamon, M.; Carroli, J.D.; Gommeren, K.; Balligand, M. Preliminary evaluation of the effects of photobiomodulation therapy and physical rehabilitation on early postoperative recovery of dogs undergoing hemilaminectomy for treatment of thoracolumbar intervertebral disk disease. J. Vet. Res. 2017, 78, 195–206. [Google Scholar] [CrossRef]
- Jeong, I.S.; Piao, Z.; Rahman, M.; Kim, S.; Kim, N.S. Canine thoracolumbar intervertebral disk herniation and rehabilitation therapy after surgical decompression: A retrospective study. J. Adv. Vet. Anim. Res. 2021, 6, 394–402. [Google Scholar] [CrossRef]
- Battistuzzo, C.R.; Callister, R.J.; Callister, R.; Galea, M.P. A systematic review of exercise training to promote locomotor recovery in animal models of spinal cord injury. J. Neurotrauma 2012, 29, 1600–1613. [Google Scholar] [CrossRef]
- Rossignol, S.; Martinez, M.; Escalona, M.; Kundu, A.; Delivet-Mongrain, H.; Alluin, O.; Gossard, J.P. The beneficial effects of locomotor training after various types of spinal lesions in cats and rats. Prog. Brain Res. 2015, 218, 173–198. [Google Scholar] [CrossRef] [PubMed]
- Aravind, N.; Harvey, L.A.; Glinsky, J.V. Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: A systematic review. Spinal Cord 2019, 57, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.Y.; Tsai, J.L.; Li, G.S.; Lien, A.S.Y.; Chang, Y.J. Effects of robot-assisted gait training in individuals with spinal cord injury: A meta-analysis. BioMed Res. Int. 2020, 21, 22102–27850. [Google Scholar] [CrossRef]
- Morgan, D.W.; Stevens, S.L. Use of water- and land-based gait training to improve walking capacity in adults with complete spinal cord injury: A pilot study. J. Spinal Cord Med. 2022, 47, 404–411. [Google Scholar] [CrossRef]
- Bruno, E.; Canal, S.; Antonucci, M.; Bernardini, M.; Balducci, F.; Musella, V.; Mussoni, M.; Spinella, G. Perilesional photobiomodulation therapy and physical rehabilitation in post-operative recovery of dogs surgically treated for thoracolumbar disk extrusion. BMC Vet. Res. 2020, 16, 120. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, J.T.; Huang, Y.; Osmani, B.Z.; Sharma, S.K.; Naeser, M.A.; Hamblin, M.R. Role of Low-Level Laser Therapy in Neurorehabilitation. Pm&R 2010, 2, S292–S305. [Google Scholar] [CrossRef]
- Draper, W.E.; Schubert, T.A.; Clemmons, R.M.; Miles, S.A. Low-level laser therapy reduces time to ambulation in dogs after hemilaminectomy: A preliminary study. J. Small Anim. Pract. 2012, 53, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Zidan, N.; Fenn, J.; Griffith, E.; Early, P.J.; Mariani, C.L.; Muñana, K.R.; Guevar, J.; Olby, N.J. The Effect of Electromagnetic Fields on Post-Operative Pain and Locomotor Recovery in Dogs with Acute, Severe Thoracolumbar Intervertebral Disc Extrusion: A randomized placebo-controlled, prospective clinical trial. J. Neurotrauma 2018, 35, 1726–1736. [Google Scholar] [CrossRef] [PubMed]
- Borgens, R.B.; Toombs, J.P.; Blight, A.R.; McGinnis, M.E.; Bauer, M.S.; Widmer, W.R.; Cook Junior, J.R. Effects of applied electric fields on clinical cases of complete paraplegia in dogs. Restor. Neurol. Neurosci. 1993, 5, 305–322. [Google Scholar] [CrossRef]
- Borgens, R.B.; Toombs, J.P.; Breur, G.; Widmer, W.R.; Waters, D.; Harbath, A.M.; March, P.; Adams, L.G. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J. Neurotrauma 1999, 16, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, J.G.; Luna, S.P.; Brondani, J.T.; Torelli, S.R.; Rahal, S.C.; de Paula Freitas, F. Comparison of decompressive surgery, electroacupuncture, and decompressive surgery followed by electroacupuncture for the treatment of dogs with intervertebral disk disease with long-standing severe neurologic deficits. J. Am. Vet. Med. Assoc. 2010, 236, 1225–1229. [Google Scholar] [CrossRef]
- Hayashi, A.M.; Matera, J.M.; Pinto, A.C.B.D.C.F. Evaluation of electroacupuncture treatment for thoracolumbar intervertebral disk disease in dogs. J. Am. Vet. Med. Assoc. 2007, 231, 913–918. [Google Scholar] [CrossRef]
- Laim, A.; Jaggy, A.; Forterre, F.; Doherr, M.G.; Aeschbacher, G.; Glardon, O. Effects of adjunct electroacupuncture on severity of postoperative pain in dogs undergoing hemilaminectomy because of acute thoracolumbar intervertebral disk disease. J. Am. Vet. Med. Assoc. 2009, 234, 1141–1146. [Google Scholar] [CrossRef]
- Prado, C.; Fratini, P.; Matias, G.S.S.; Bocabello, R.Z.; Monteiro, J.; Santos Junior, C.J.; Joaquim, J.G.J.; Giglio, R.F.; Possebon, F.S.; Sakata, S.H.; et al. Combination of stem cells from deciduous teeth and electroacupuncture for therapy in dogs with chronic spinal cord injury: A pilot study. Res. Vet. Sci. 2019, 123, 247–251. [Google Scholar] [CrossRef]
PG | CG | Total | |
---|---|---|---|
Dogs | 30 (58.8%) | 21 (41.2%) | 51 (100%) |
Breed n (%) | Dachshund 19 (63.3%) SRD 8 (26.7%) Poodle 1 (3.3%) Yorkshire 1 (3.3%) Pekingese 1 (3.3%) | Dachshund 15 (71.4%) SRD 2 (9.5%) Poodle 1 (4.7%) Pug 1 (4.7%) Cocker 1 (4.7%) | Dachshund 34 (66.6%) SRD 10 (19.6%) Poodle 2 (3.9%) Yorshire 1 (1.9%) Pekingese 1 (1.9%) Pug 1 (1.9%) Cocker 1 (1.9%) |
Age (years) | Min 2 | Min 3 | Min 2 |
Max 9 | Max 10 | Max 10 | |
Mean 5.18 ± 1.83 | Mean 5.69 ± 1.52 | Mean 5.56 ± 2.05 | |
Sex | Female 15 (50%) | Female 11 (52.4%) | Female 26 (50.9%) |
Male 15 (50%) | Male 10 (47.6%) | Male 25 (49.1%) | |
Compression site | T11–T12 = 1 (3.3%) | T11–T12 = 3 (14.3%) | T11–T12 = 4 (7.8%) |
T12–T13 = 10 (33.3%) | T12–T13 = 2 (9.5%) | T12–T13 = 12 (23.5%) | |
T13–L1 = 15 (50%) | T13–L1 = 10 (47.6%) | T13–L1 = 25 (49.1%) | |
L1–L2 = 1 (3.3%) | L1–L2 = 4 (19.1%) | L1–L2 = 5 (9.8%) | |
L2–L3 = 3 (10%) | L2–L3 = 2 (6.5%) | L2–L3 = 5 (9.8%) | |
Duration nociception loss (hours) | <24 n = 10 (33.3%) | <24 n = 3 (14.4%) | <24 n = 13 (25.5%) |
25–48 n = 12 (40%) | 24–48 n = 12 (57.2%) | 24–48 n = 24 (47.1%) | |
49–7 n = 6 (20%) | 49–72 n = 6 (28.6%) | 49–72 n = 12 (23.5%) | |
73–96 n = 2 (6.7%) | 73–96 n = 1 (4.8%) | 73–96 n = 3 (8.9%) | |
Functional recovery | Satisfactory: n = 13 (43.3%) | Satisfactory: n = 13 (61.9%) | Satisfactory: n = 26 (51%) |
Unsatisfactory: n = 17 (56.7%) | Unsatisfactory: n = 8 (38.1%) | Unsatisfactory: n = 25 (49%) | |
Total: n = 30 | Total: n = 21 | Total: n = 51 | |
Time functional recovery (days) | <21: n = 3 (23.1%) | <21: n = 4 (31%) | <21: n = 7 (13.7%) |
>21: n = 10 (76.9%) | >21: n = 9 (69%) | >21: n = 19 (37.2%) | |
Total: n = 13 | Total: n = 13 | Total: n = 26 |
CG | Breed, Sex, Age (Years) | DDPP (Hours) | SC | FR | TRF (Days) | SW | OSW (Months) |
---|---|---|---|---|---|---|---|
1 | SRD, M, 5 | 24 | L2–L3 | S | <21 | ||
2 | Dachshund, M, 5 | 24 | L1–L2 | S | <21 | ||
3 | Dachshund, M, 5 | 24 | T13–L1 | S | <21 | ||
4 | Cocker, F, 5 | 51 | T11–T12 | S | >21 | ||
5 | Dachshund, F, 7 | 48 | T11–T12 | S | >21 | ||
6 | Dachshund, F, 6 | 96 | T13–L1 | S | >21 | ||
7 | Dachshund, F, 7 | 57 | L2–L3 | S | >21 | ||
8 | Poodle, F, 4 | 56 | T13–L1 | S | >21 | ||
9 | SRD, M, 5 | 64 | T11–T12 | S | >21 | ||
10 | Dachshund, M, 7 | 48 | T13–L1 | S | >21 | ||
11 | Pug, F, 8 | 67 | T13–L1 | S | >21 | ||
12 | Dachshund, M, 5 | 72 | T13–L1 | I | - | Y | 3 |
13 | Dachshund, F, 5 | 12 | L1–L2 | I | - | ||
14 | Dachshund, M, 7 | 12 | T13–L1 | I | - | ||
15 | Dachshund, F, 3 | 12 | L1–L2 | I | - | ||
16 | Dachshund, M, 5 | 48 | L1–L2 | S | <21 | ||
17 | Dachshund, M, 5 | 48 | T13–L1 | S | >21 | ||
18 | Dachshund, M, 10 | 48 | T12–T13 | I | - | ||
19 | Dachshund, F, 7 | 35 | T12–T13 | I | - | Y | 5 |
20 | Dachshund, M, 4 | 48 | T12–T13 | I | Y | 3 | |
21 | Dachshund, F, 6 | 48 | T12–T13 | I | - |
PG | Breed, Sex, Age (Years) | DDPP (Hours) | SC | PP | NPS | FR | TFR (Days) | SW | OSW (Months) |
---|---|---|---|---|---|---|---|---|---|
1 | Dachshund, M, 5 | <24 | T12–T13 | P1 + P2 | 24 | I | - | ||
2 | Dachshund, F, 5 | <24 | T12–T13 | P1 + P2 | 24 | I | - | ||
3 | Dachshund, M, 5 | <24 | T13–L1 | P1 + P2 + P3 | 22 | S | >21 | ||
4 | Pekingese, M, 4 | 72 | L2–L3 | P1 + P2 + P3 | 60 | S | >21 | ||
5 | Dachshund, M, 8 | 72 | T11–T12 | P1 + P2 + P3 | 14 | S | >21 | ||
6 | SRD, M, 5 | 48 | T13–L1 | P1 + P2 | 22 | I | - | Y | 4 |
7 | Dachshund, M, 3 | <24 | T12–T13 | P1 + P2 + P3 | 21 | I | - | ||
8 | Dachshund, F, 6 | <24 | T12–T13 | P1 | 10 | I | - | ||
9 | SRD, F, 4 | 72 | T12–T13 | P1 + P2 | 18 | I | - | Y | 3 |
10 | Dachshund, M, 5 | 72 | T13–L1 | P1 + P2 | 22 | I | - | ||
11 | Dachshund, M, 6 | <24 | T13–L1 | P1 + P2 + P3 | 18 | S | >21 | ||
12 | Dachshund, M, 6 | 24 | T12–T13 | P1 | 10 | I | - | Y | 4 |
13 | Dachshund, F, 4 | 24 | T13–L1 | P1 | 26 | I | - | ||
14 | Poodle, M, 6 | 96 | T13–L1 | P1 | 10 | I | - | ||
15 | Dachshund, F, 9 | 24 | T3–L3 | P1 + P2 + P3 | 12 | S | >21 | ||
16 | SRD, F, 2 | <24 | T13–L1 | P1 + P2 + P3 | 9 | S | >21 | ||
17 | SRD, M, 9 | <24 | T13–L1 | P1 + P2 + P3 | 7 | S | <21 | ||
18 | SRD, F, 5 | <24 | T12–T13 | P1 + P2 + P3 | 6 | S | <21 | ||
19 | SRD, M, 6 | 96 | T12–T13 | P1 + P2 | 17 | I | - | Y | 3 |
20 | SRD, F, 7 | <24 | T13–L1 | P1 + P2 + P3 | 24 | S | >21 | ||
21 | Dachshund, F, 4 | 24 | L2–L3 | P1 + P2 + P3 | 10 | S | >21 | ||
22 | SRD, F, 8 | 72 | T11–T12 | P1 + P2 | 22 | I | - | Y | 3 |
23 | Dachshund, F, 3 | 24 | T11–T12 | P1 + P2 + P3 | 10 | S | >21 | ||
24 | Dachshund, F, 4 | 48 | T13–L1 | P1 | 18 | I | - | Y | 2 |
25 | Dachshund, M, 10 | 48 | T13–L1 | P1 + P2 | 22 | I | - | ||
26 | Dachshund, M, 11 | 72 | L1–L2 | P1 + P2 | 20 | I | - | Y | 3 |
27 | Dachshund, F, 4 | 24 | T12–T13 | P1 | 19 | I | - | ||
28 | Dachshund, M, 6 | 48 | L2–L3 | P1 + P2 + P3 | 22 | I | - | ||
29 | Yorkshire, F, 4 | 24 | T13–L1 | P1 + P2 + P3 | 24 | S | >21 | ||
30 | Dachshund, F, 4 | 48 | T13–L1 | P1 + P2 + P3 | 6 | S | <21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauber, J.d.S.; Chaves, J.N.F.; Wrzesinski, M.R.; Sekita, A.M.T.; Soares, T.d.S.; Beckmann, D.V.; Mazzanti, A. Physiotherapy in the Recovery of Paraplegic Dogs without Nociception Due to Thoracolumbar Intervertebral Disc Extrusion Treated Surgically. Animals 2024, 14, 2648. https://doi.org/10.3390/ani14182648
Rauber JdS, Chaves JNF, Wrzesinski MR, Sekita AMT, Soares TdS, Beckmann DV, Mazzanti A. Physiotherapy in the Recovery of Paraplegic Dogs without Nociception Due to Thoracolumbar Intervertebral Disc Extrusion Treated Surgically. Animals. 2024; 14(18):2648. https://doi.org/10.3390/ani14182648
Chicago/Turabian StyleRauber, Júlia da Silva, Julya Nathalya Felix Chaves, Mathias Reginatto Wrzesinski, Amanda Miwa Takamori Sekita, Thais da Silva Soares, Diego Vilibaldo Beckmann, and Alexandre Mazzanti. 2024. "Physiotherapy in the Recovery of Paraplegic Dogs without Nociception Due to Thoracolumbar Intervertebral Disc Extrusion Treated Surgically" Animals 14, no. 18: 2648. https://doi.org/10.3390/ani14182648