Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Myogenesis
Effects of Transcription Factors and the Myogenic Kinome on Myogenesis
3. Adipogenesis and Participating Transcription Factors
4. The Role of GFs in Skeletal Muscle Growth
5. Candidate Genes Affecting Muscle Development in Cattle
6. Candidate Genes Affecting Muscle Development in Sheep
7. Candidate Genes Affecting Muscle Development in Pigs
8. Candidate Genes Affecting Muscle Development in Chickens
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bentzinger, C.F.; Wang, Y.X.; Rudnicki, M.A. Building Muscle: Molecular Regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4, a008342. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Weinsier, R.L.; Long, C.L.; Schutz, Y. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 1992, 56, 848–856. [Google Scholar] [CrossRef]
- Taguchi, M.; Ishikawa-Takata, K.; Tatsuta, W.; Katsuragi, C.; Usui, C.; Sakamoto, S.; Higuchi, M. Resting energy expenditure can be assessed by fat-free mass in female athletes regardless of body size. J. Nutr. Sci. Vitaminol. 2011, 57, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Jacot, E.; Jequier, E.; Maeder, E.; Wahren, J.; Felber, J.P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981, 30, 1000–1007. [Google Scholar] [CrossRef]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef] [Green Version]
- Parakati, R.; DiMario, J.X. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein. J. Biol. Chem. 2013, 288, 13876–13884. [Google Scholar] [CrossRef] [Green Version]
- Leatherland, J.F. Reflections on the thyroidology of fishes: From molecules to humankind. Guelph. Ichthyol. Rev. 1994, 2, 1–67. [Google Scholar]
- Rehfeldt, C.; Te Pas, M.F.W.; Wimmers, K.; Brameld, J.M.; Nissen, P.M.; Berri, C.; Valente, L.M.P.; Power, D.M.; Picard, B.; Stickland, N.C.; et al. Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. Animal 2011, 5, 703–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Garry, D.J. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006, 20, 1692–1708. [Google Scholar] [CrossRef]
- Meadows, E.; Cho, J.H.; Flynn, J.M.; Klein, W.H. Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev. Biol. 2008, 322, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.D.R.; Kothary, R. The myogenic kinome: Protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle 2011, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Huang, Y.; Du, M. Farm animals for studying muscle development and metabolism: Dual purposes for animal production and human ealth. Anim. Front. 2019, 9, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berri, C.; Godet, E.; Haj Hattab, N.; Duclos, M.J. Growth and differentiation of the chicken Pectoralis major muscle: Effect of genotype and early nutrition. Arch. Anim. Breed. 2006, 49, 31–32. [Google Scholar]
- Buckingham, M.; Mayeuf, A. Muscle. In Skeletal Muscle Development; Olson, J.A.H.N., Ed.; Academic Press: Boston, MA, USA, 2012; pp. 749–762. [Google Scholar]
- Beermann, D.H.; Cassens, R.G.; Hausman, G.J. A second look at fiber type differentiation in porcine skeletal muscle. J. Anim. Sci. 1978, 46, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Fukada, S. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J. Biochem. 2018, 163, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, M. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 2001, 11, 440–448. [Google Scholar] [CrossRef]
- Ridgeway, A.G.; Skerjanc, I.S. Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J. Biol. Chem. 2001, 276, 19033–19039. [Google Scholar] [CrossRef] [Green Version]
- Pownall, M.E.; Emerson, C.P. Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev. Biol. 1992, 151, 67–79. [Google Scholar] [CrossRef]
- Coles, C.A.; Wadeson, J.; Leyton, C.P.; Siddell, J.P.; Greenwood, P.L.; White, J.D.; McDonagh, M.B. Proliferation rates of bovine primary muscle cells relate to live weight and carcase weight in cattle. PLoS ONE 2015, 10, e0124468. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Zhang, S.; Gilbert, E.R.; Siegel, P.B.; Zhu, Q.; Wong, E.A. Expression profiles of muscle genes in postnatal skeletal muscle in lines of chickens divergently selected for high and low body weight. Poult. Sci. 2014, 93, 147–154. [Google Scholar] [CrossRef]
- Trukhachev, V.; Stavropol State Agrarian University; Skripkin, V.; Kvochko, A.; Kulichenko, A.; Kovalev, D.; Pisarenko, S.; Volynkina, A.; Selionova, M.; Aybazov, M.; et al. Correlation between gene expression profiles in muscle and live weight in Dzhalginsky Merino sheep. RCCP 2016, 29, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Ujan, J.A.; Zan, L.S.; Ujan, S.A.; Adoligbe, C.; Wang, H.B. Back fat thickness and meat tenderness are associated with a 526 T → A mutation in the exon 1 promoter region of the MyF-5 gene in Chinese Bos taurus. Genet. Mol. Res. 2011, 10, 3070–3079. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Peng, J.; Xu, D.; Zheng, R.; Li, F.; Li, J.; Zuo, B.; Lei, M.; Xiong, Y.; Deng, C.; et al. Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White × Meishan F2 pig populations. Biochem. Genet. 2008, 46, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.; Fernández, A.; Núñez, Y.; Benítez, R.; Isabel, B.; Fernández, A.I.; Rey, A.I.; González-Bulnes, A.; Medrano, J.F.; Cánovas, A.; et al. Developmental Stage, Muscle and Genetic Type Modify Muscle Transcriptome in Pigs: Effects on Gene Expression and Regulatory Factors Involved in Growth and Metabolism. PLoS ONE 2016, 11, e0167858. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.E.; Ginty, D.D.; Fan, C.M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 2005, 433, 317–322. [Google Scholar] [CrossRef]
- Skapek, S.X.; Rhee, J.; Kim, P.S.; Novitch, B.G.; Lassar, A.B. Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol. Cell. Biol. 1996, 16, 7043–7053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.; Schneider, J.W.; Condorelli, G.; Kaushal, S.; Mahdavi, V.; Nadal-Ginard, B. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 1993, 72, 309–324. [Google Scholar] [CrossRef]
- Nagata, Y.; Takahashi, N.; Davis, R.J.; Todokoro, K. Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood 1998, 92, 1859–1869. [Google Scholar] [CrossRef]
- Morooka, T.; Nishida, E. Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J. Biol. Chem. 1998, 273, 24285–24288. [Google Scholar] [CrossRef] [Green Version]
- Bhat, N.R.; Zhang, P.; Mohanty, S.B. p38 MAP kinase regulation of oligodendrocyte differentiation with CREB as a potential target. Neurochem. Res. 2007, 32, 293–302. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Ensign, W.Y.; Vogt, P.K.; Han, J. Myogenic differentiation requires signalling through both phosphatidylinositol 3-kinase and p38 MAP kinase. Cell Signal. 2000, 12, 751–757. [Google Scholar] [CrossRef]
- Sarker, K.P.; Lee, K.Y. L6 myoblast differentiation is modulated by Cdk5 via the PI3K-AKT-p70S6K signaling pathway. Oncogene 2004, 23, 6064–6070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabane, C.; Coldefy, A.S.; Yeow, K.; Dérijard, B. The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell Signal. 2004, 16, 1405–1415. [Google Scholar] [CrossRef]
- Lai, K.M.V.; Gonzalez, M.; Poueymirou, W.T.; Kline, W.O.; Na, E.; Zlotchenko, E.; Stitt, T.N.; Economides, A.N.; Yancopoulos, G.D.; Glass, D.J. Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol. Cell. Biol. 2004, 24, 9295–9304. [Google Scholar] [CrossRef] [Green Version]
- Héron-Milhavet, L.; Franckhauser, C.; Rana, V.; Berthenet, C.; Fisher, D.; Hemmings, B.A. Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol. Cell. Biol. 2006, 26, 8267–8280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Héron-Milhavet, L.; Mamaeva, D.; Rochat, A.; Lamb, N.J.C.; Fernandez, A. Akt2 is implicated in skeletal muscle differentiation and specifically binds Prohibitin2/REA. J. Cell Physiol. 2008, 214, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Rochat, A.; Fernandez, A.; Vandromme, M.; Molès, J.P.; Bouschet, T.; Carnac, G.; Lamb, N.J.C. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol. Biol. Cell 2004, 15, 4544–4555. [Google Scholar] [CrossRef] [PubMed]
- Van der Velden, J.L.J.; Langen, R.C.J.; Kelders, M.C.J.M.; Wouters, E.F.M.; Janssen-Heininger, Y.M.W.; Schols, A.M.W.J. Inhibition of glycogen synthase kinase-3β activity is sufficient to stimulate myogenic differentiation. Am. J. Physiol. Cell Physiol. 2006, 290, C453–C462. [Google Scholar] [CrossRef] [PubMed]
- Pansters, N.A.M.; van der Velden, J.L.J.; Kelders, M.C.J.M.; Laeremans, H.; Schols, A.M.W.J.; Langen, R.C.J. Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β. Cell. Mol. Life Sci. 2011, 68, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Pallafacchina, G.; Calabria, E.; Serrano, A.L.; Kalhovde, J.M.; Schiaffino, S. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. USA 2002, 99, 9213–9218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, L.; Houghton, P.J. The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Mol. Cell. Biol. 2009, 29, 4691–4700. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Wu, A.L.; Warnes, C.; Liu, J.; Zhang, C.; Kawasome, H.; Terada, N.; Boppart, M.D.; Schoenherr, C.J.; Chen, J. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am. J. Physiol. Cell Physiol. 2009, 297, C1434–C1444. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ge, Y.; Drnevich, J.; Zhao, Y.; Band, M.; Chen, J. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol. 2010, 189, 1157–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joe, A.W.B.; Yi, L.; Natarajan, A.; Grand, F.L.; So, L.; Wang, J.; Rudnicki, M.A.; Rossi, F.M.V. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 2010, 12, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Uezumi, A.; Fukada, S.; Yamamoto, N.; Takeda, S.; Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 2010, 12, 143–152. [Google Scholar] [CrossRef]
- Muoio, D.M.; Way, J.M.; Tanner, C.J.; Winegar, D.A.; Kliewer, S.A.; Houmard, J.A.; Kraus, W.E.; Dohm, G.L. Peroxisome proliferator-activated receptor-a regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 2002, 51, 901–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, E.H.; Kim, M.; Park, J.; Kim, H.S.; Youn, J.; Park, H.; Youn, J.H.; Lee, K. Peroxisome proliferator-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats: Comparison with PPAR-gamma activation. Diabetes 2003, 52, 2331–2337. [Google Scholar] [CrossRef] [Green Version]
- Oberkofler, H.; Esterbauer, H.; Linnemayr, V.; Strosberg, A.D.; Krempler, F.; Patsch, W. Peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 recruitment regulates PPAR subtype specificity. J. Biol. Chem. 2002, 277, 16750–16757. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.H.; Liu, B.H.; Mersmann, H.J.; Ding, S.T. Porcine peroxisome proliferator-activated receptor gamma induces transdifferentiation of myocytes into adipocytes. J. Anim. Sci. 2006, 84, 2655–2665. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lee, C.; Tiep, S.; Yu, R.T.; Ham, J.; Kang, H.; Evans, R.M. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003, 113, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Holst, D.; Luquet, S.; Nogueira, V.; Kristiansen, K.; Leverve, X.; Grimaldi, P.A. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle. Biochim. Biophys. Acta 2003, 1633, 43–50. [Google Scholar] [CrossRef]
- Wu, Z.; Rosen, E.D.; Brun, R.; Hauser, S.; Adelmant, G.; Troy, A.E.; McKeon, C.; Darlington, G.J.; Spiegelman, B.M. Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 1999, 3, 151–158. [Google Scholar] [CrossRef]
- Xue, P.; Hou, Y.; Zuo, Z.; Wang, Z.; Ren, S.; Dong, J.; Fu, J.; Wang, H.; Andersen, M.E.; Zhang, Q.; et al. Long isoforms of NRF1 negatively regulate adipogenesis via suppression of PPARγ expression. Redox Biol. 2020, 30, 101414. [Google Scholar] [CrossRef] [PubMed]
- Cassar-Malek, I.; Bonnet, M.; Chilliard, Y.; Picard, B. Cross-talk between myoblasts, adipocytes and fibroblasts during bovine myogenesis. COST Action 925—The importance of prenatal events for postnatal muscle growth in relation to the quality of muscle based foods. In Proceedings of the 3rd Work Group Meeting, Antalya, Turkey, 21–22 September 2006. [Google Scholar]
- Bonnet, M.; Cassar-Malek, I.; Chilliard, Y.; Picard, B. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal 2010, 4, 1093–1109. [Google Scholar] [CrossRef] [Green Version]
- Bandow, K.; Ohnishi, T.; Tamura, M.; Semba, I.; Daikuhara, Y. Hepatocyte growth factor/scatter factor stimulates migration of muscle precursors in developing mouse tongue. J. Cell Physiol. 2004, 201, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Lapin, M.R.; Gonzalez, J.M.; Johnson, S.E. Substrate elasticity affects bovine satellite cell activation kinetics in vitro. J. Anim. Sci. 2013, 91, 2083–2090. [Google Scholar] [CrossRef] [Green Version]
- Velleman, S.G. Muscle development in the embryo and hatchling. Poult. Sci. 2007, 86, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, A.; Goldfine, I.D. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J. Biol. Chem. 1990, 265, 5960–5963. [Google Scholar] [CrossRef]
- Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Dayton, W.R. Role of insulin-like growth factor binding protein (IGFBP)-3 in TGF β-and GDF 8 (myostatin)-induced suppression of proliferation in porcine embryonic myogenic cell cultures. J. Cell Physiol. 2003, 197, 225–231. [Google Scholar] [CrossRef]
- Shahjahan, M.D. Skeletal muscle development in vertebrate animals. Asian J. Med. Biol. Res. 2015, 1, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Siegel, P.B.; Gilbert, E.R.; Yang, N.; Wong, E.A. Expression profiles of somatotropic axis genes in lines of chickens divergently selected for 56-day body weight. Anim. Biotechnol. 2011, 22, 100–110. [Google Scholar] [CrossRef]
- Theil, P.K.; Sørensen, I.L.; Nissen, P.M.; Oksbjerg, N. Temporal expression of growth factor genes of primary porcine satellite cells during myogenesis. Anim. Sci. J. 2006, 77, 330–337. [Google Scholar] [CrossRef]
- Fahey, A.J.; Brameld, J.M.; Parr, T.; Buttery, P.J. Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus. J. Anim. Sci. 2005, 83, 2330–2338. [Google Scholar] [CrossRef] [PubMed]
- Gerrard, D.E.; Grant, A.L. Insulin-like growth factor-II expression in developing skeletal muscle of double muscled and normal cattle. Domest. Anim. Endocrinol. 1994, 11, 339–347. [Google Scholar] [CrossRef]
- Setoguchi, K.; Furuta, M.; Hirano, T.; Nagao, T.; Watanabe, T.; Sugimoto, Y.; Takasuga, A. Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet. 2009, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Clure, M.C.; Morsci, N.S.; Schnabel, R.D.; Kim, J.W.; Yao, P.; Rolf, M.M.; McKay, S.D.; Gregg, S.J.; Chapple, R.H.; Northcutt, S.L.; et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 2010, 41, 597–607. [Google Scholar] [CrossRef]
- Nishimura, S.; Watanabe, T.; Mizoshita, K.; Tatsuda, K.; Fujita, T.; Watanabe, N.; Sugimoto, Y.; Takasuga, A. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet. 2012, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Takasuga, A.; Watanabe, T.; Mizoguchi, Y.; Hirano, T.; Ihara, N.; Takano, A.; Yokouchi, K.; Fujikawa, A.; Chiba, K.; Kobayashi, N.; et al. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm. Genome 2017, 18, 125–136. [Google Scholar] [CrossRef]
- Bordbar, F.; Jensen, J.; Zhu, B.; Wang, Z.; Xu, L.; Chang, T.; Xu, L.; Du, M.; Zhang, L.; Gao, H.; et al. Identification of muscle-specific candidate genes in Simmental beef cattle using imputed next generation sequencing. PLoS ONE 2019, 14, e0223671. [Google Scholar] [CrossRef] [Green Version]
- McDaneld, T.G.; Hancock, D.L.; Moody, D.E. Altered mRNA abundance of ASB15 and four other genes in skeletal muscle following administration of β-adrenergic receptor agonists. Physiol. Genomics 2004, 16, 275–283. [Google Scholar] [CrossRef] [Green Version]
- McDaneld, T.G.; Spurlock, D.M. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt1. J. Anim. Sci. 2008, 86, 2897–2902. [Google Scholar] [CrossRef] [PubMed]
- Ackrell, B.A.; Maguire, J.J.; Dallman, P.R.; Kearney, E.B. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria. J. Biol. Chem. 1984, 259, 10053–10059. [Google Scholar] [CrossRef]
- Seong, J.; Yoon, H.; Kong, H.S. Identification of microRNA and target gene associated with marbling score in Korean cattle (Hanwoo). Genes Genomics 2016, 38, 529–538. [Google Scholar] [CrossRef]
- Li, K.; Ma, Y.; Zhang, Z.; Tian, Y.; Xu, X.; He, Y.; Xu, L.; Gao, Y.; Pan, W.; Song, W.; et al. Upregulated IQUB promotes cell proliferation and migration via activating Akt/GSK3β/β-catenin signaling pathway in breast cancer. Cancer Med. 2018, 7, 3875–3888. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.L.; Chung, H.J.; Sang, B.C.; Park, C.S.; Lee, J.H.; Yoon, D.H.; Lee, S.H.; Choi, K.D. Identification of differentially expressed genes in distinct skeletal muscles in cattle using cDNA microarray. Anim. Biotechnol. 2007, 18, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.S.; Khandekar, A.; Bhavana, R.; Kiesel, P.; Pigino, G.; Sonawane, M. Microridges are apical projections formed of branched F-actin networks that organize the glycan layer. Biorxiv 2018. [Google Scholar] [CrossRef]
- Bordbar, F.; Jensen, J.; Du, M.; Abied, A.; Guo, W.; Xu, L.; Gao, H.; Zhang, L.; Li, J. Identification and validation of a novel candidate gene regulating net meat weight in Simmental beef cattle based on imputed next-generation sequencing. Cell Prolif. 2020, 53, e12870. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y. Molecular characterization, expression patterns and subcellular localization of Myotrophin (MTPN) gene in porcine skeletal muscle. Mol. Biol. Rep. 2012, 39, 2733–2738. [Google Scholar] [CrossRef]
- Hayashi, T.; Ogawa, T.; Sato, M.; Tsuchida, N.; Fotovati, A.; Iwamoto, H.; Ikeuchi, Y.; Cassens, R.G.; Ito, T. S-myotrophin promotes the hypertrophy of myotube as insulin-like growth factor-I does. Int. J. Biochem. Cell Biol. 2001, 33, 831–838. [Google Scholar] [CrossRef]
- Kim, Y.; Ryu, J.; Woo, J.; Kim, J.B.; Kim, C.Y.; Lee, C. Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Anim. Genet. 2011, 42, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Pizzuti, A.; Amati, F.; Calabrese, G.; Mari, A.; Colosimo, A.; Silani, V.; Giardino, L.; Ratti, A.; Penso, D.; Calzà, L.; et al. cDNA characterization and chromosomal mapping of two human homologues of the Drosophila dishevelled polarity gene. Hum. Mol. Genet. 1996, 5, 953–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.G.; Wang, Q.; Zhou, J.Z.; Wang, J.; Luo, Z.; Liu, M.; He, X.; Wynshaw-Boris, A.; Xiong, W.C.; Lu, B.; et al. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 2002, 35, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Duan, X.; Chen, S.; He, H.; Liu, X. NCAPG is differentially expressed during longissimus muscle development and is associated with growth traits in Chinese Qinchuan beef cattle. Genet. Mol. Biol. 2015, 38, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Lindholm-Perry, A.K.; Kuehn, L.A.; Oliver, W.T.; Sexten, A.K.; Miles, J.R.; Rempel, L.A.; Cushman, R.A.; Freetly, H.C. Adipose and muscle tissue gene expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain. PLoS ONE 2013, 8, e80882. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Xu, L.; Yang, J.; Gao, H.; Zhang, L.; Gao, X.; Li, J.; Zhu, B. Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle. Genes 2020, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- Marques, D.B.D.; Bastiaansen, J.W.M.; Broekhuijse, M.L.W.J.; Lopes, M.S.; Knol, E.F.; Harlizius, B.; Guimarães, S.E.F.; Silva, F.F.; Lopes, P.S. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet. Sel. Evol. 2018, 50, 40. [Google Scholar] [CrossRef] [Green Version]
- Harten, S.K.; Oey, H.; Bourke, L.M.; Bharti, V.; Isbel, L.; Daxinger, L.; Faou, P.; Robertson, N.; Matthews, J.M.; Whitelaw, E. The recently identified modifier of murine metastable epialleles, Rearranged L-Myc Fusion, is involved in maintaining epigenetic marks at CpG island shores and enhancers. BMC Biol. 2015, 13, 21. [Google Scholar] [CrossRef] [Green Version]
- Wegner, J.; Albrecht, E.; Ender, K. Morphological aspects of growth in subcutaneous and intramuscular adipocytes in cattle. Arch. Tierz. 1998, 41, 313–320. [Google Scholar]
- Jurie, C.; Cassar-Malek, I.; Bonnet, M.; Leroux, C.; Bauchart, D.; Boulesteix, P.; Pethick, D.W.; Hocquette, J.F. Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 2007, 85, 2660–2669. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Huang, Y.; Das, A.K.; Yang, Q.; Duarte, M.S.; Dodson, M.V.; Zhu, M. Meat Science and Muscle Biology Symposium: Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J. Anim. Sci. 2013, 91, 1419–1427. [Google Scholar] [CrossRef]
- Hudson, N.J.; Reverter, A.; Greenwood, P.L.; Guo, B.; Cafe, L.M.; Dalrymple, B.P. Longitudinal muscle gene expression patterns associated with differential intramuscular fat in cattle. Animal 2015, 9, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehnert, S.A.; Reverter, A.; Byrne, K.A.; Wang, Y.; Nattrass, G.S.; Hudson, N.J.; Greenwood, P.L. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev. Biol. 2007, 7, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstrom, D.A.; Penn, B.H.; Strand, A.; Perry, R.L.S.; Rudnicki, M.A.; Tapscott, S.J. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell 2002, 9, 587–600. [Google Scholar] [CrossRef]
- Grigoletto, L.; Brito, L.F.; Mattos, E.C.; Eler, J.P.; Bussiman, F.O.; Silva, B.D.C.A.; Silva, R.P.; Carvalho, F.E.; Berton, M.P.; Baldi, F.; et al. Genome-wide associations and detection of candidate genes for direct and maternal genetic effects influencing growth traits in the Montana Tropical® Composite population. Livest. Sci. 2019, 229, 64–76. [Google Scholar] [CrossRef]
- Zhang, R.; Miao, J.; Song, Y.; Zhang, W.; Xu, L.; Chen, Y.; Zhang, L.; Gao, H.; Zhu, B.; Li, J.; et al. Genome-wide association study identifies the PLAG1-OXR1 region on BTA14 for carcass meat yield in cattle. Physiol. Genomics 2019, 51, 137–144. [Google Scholar] [CrossRef]
- Cali-Daylan, A.E.; Dincer, P. Gene co-expression network analysis of dysferlinopathy: Altered cellular processes and functional prediction of TOR1AIP1, a novel muscular dystrophy gene. Neuromuscul. Disord. 2017, 27, 269–277. [Google Scholar] [CrossRef]
- Crispim, A.C.; Kelly, M.J.; Guimarães, S.E.F.; Silva, F.F.E.; Fortes, M.R.S.; Wenceslau, R.R.; Moore, S. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle. PLoS ONE 2015, 10, e0139906. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Qi, Y.; Zhang, P.; Gu, W.; Yan, Z.; Shen, B.R.; Yao, Q.; Kong, H.; Chien, S.; Jiang, Z. Involvement of Rab28 in NF-κB Nuclear Transport in Endothelial Cells. PLoS ONE 2013, 8, e56076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodier, A.; Rochard, P.; Berthet, C.; Rouault, J.P.; Casas, F.; Daury, L.; Busson, M.; Magaud, J.P.; Wrutniak-Cabello, C.; Cabello, G. Identification of functional domains involved in BTG1 cell localization. Oncogene 2001, 20, 2691–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busson, M.; Carazo, A.; Seyer, P.; Grandemange, S.; Casas, F.; Pessemesse, L.; Rouault, J.; Wrutniak-Cabello, C.; Cabello, G. Coactivation of nuclear receptors and myogenic factors induces the major BTG1 influence on muscle differentiation. Oncogene 2005, 24, 1698–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifuentes-Diaz, C.; Frugier, T.; Tiziano, F.D.; Lacène, E.; Roblot, N.; Joshi, V.; Moreau, M.H.; Melki, J. Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J. Cell Biol. 2001, 152, 1107–1114. [Google Scholar] [CrossRef]
- White, J.D.; Vuocolo, T.; McDonagh, M.; Grounds, M.D.; Harper, G.S.; Cockett, N.E.; Tellam, R. Analysis of the callipyge phenotype through skeletal muscle development; association of Dlk1 with muscle precursor cells. Differentiation 2008, 76, 283–298. [Google Scholar] [CrossRef]
- Smit, M.A. Long-Range Transcriptional Regulation at the Ovine Callipyge Imprinted Gene Cluster. Ph.D. Dissertation, Utah State University, Logan, UT, USA, 2004. Available online: https://search.proquest.com/openview/7176b2e794d3ef1503cff1b51cb77c41/1?pqorigsite=gscholar&cbl=18750&diss=y (accessed on 15 December 2020).
- Kobayashi, S.; Wagatsuma, H.; Ono, R.; Ichikawa, H.; Yamazaki, M.; Tashiro, H.; Aisaka, K.; Miyoshi, N.; Kohda, T.; Ogura, A.; et al. Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: Mouse Meg3/Gtl2 and human MEG3. Genes Cells 2000, 5, 1029–1037. [Google Scholar] [CrossRef]
- Charlier, C.; Segers, K.; Wagenaar, D.; Karim, L.; Berghmans, S.; Jaillon, O.; Shay, T.; Weissenbach, J.; Cockett, N.; Gyapay, G.; et al. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) gene and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res. 2001, 11, 850–862. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.; Fiering, S.; Martinez, E.; Galton, V.A.; Germain, D.S. The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology 2002, 143, 4483–4486. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, N.; Wagatsuma, H.; Wakana, S.; Shiroishi, T.; Nomura, M.; Aisaka, K.; Kohda, T.; Surani, M.A.; Kaneko-Ishino, T.; Ishino, F. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 2000, 5, 211–220. [Google Scholar] [CrossRef]
- Seitz, H.; Youngson, N.; Lin, S.P.; Dalbert, S.; Paulsen, M.; Bachellerie, J.P.; Ferguson-Smith, A.C.; Cavaillé, J. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat. Genet. 2003, 34, 261–262. [Google Scholar] [CrossRef]
- Nicoll, G.B.; Burkin, H.R.; Broad, T.E.; Jopson, N.B.; Greer, G.J.; Bain, W.E.; Wright, C.S.; Dodds, K.G.; Fennessy, P.; McEwan, J.C. Genetic linkage of microsatellite markers to the Carwell locus for rib-eye muscling in sheep. In Proceedings of the 6th World Congress of Genetics Applied to Livestock, Armidale, Australia, 11–16 January 1998; Volume 26, pp. 529–532. [Google Scholar] [CrossRef]
- McEwan, J.C.; Broad, T.E.; Jopson, N.B.; Robertson, T.M.; Glass, B.C.; Burkin, H.B. Rib-eye muscling (REM) locus in sheep: Phenotypic effects and comparative genome localization. In Proceedings of the 27th Conference of the International Society of Animal Genetics, Minneapolis, MN, USA, 22–26 July 2000; Volume 7. [Google Scholar] [CrossRef]
- Knapik, J.; Ropka-Molik, K.; Pieszka, M. Genetic and Nutritional Factors Determining the Production and Quality of Sheep Meat—A Review. Ann. Anim. Sci. 2017, 17, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Clop, A.; Marcq, F.; Takeda, H.; Pirottin, D.; Tordoir, X.; Bibé, B.; Bouix, J.; Caiment, F.; Elsen, J.; Eychenne, F.; et al. A mutation creating a potential illegitimate microRNA target sites in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38, 813–818. [Google Scholar] [CrossRef]
- Kijas, J.W.; McCullloch, R.; Hocking Edwards, J.E.; Hutton Oddy, V.; Lee, S.H.; Van der Werf, J. Evidence for multiple alleles effecting muscling and fatness at the ovine GDF8 locus. BMC Genet. 2007, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Gan, S.Q.; Du, Z.; Liu, S.R.; Yang, Y.L.; Shen, M.; Wang, X.H.; Yin, J.L.; Hu, X.X.; Fei, J.; Fan, J.J.; et al. Association of SNP haplotypes at the myostatin gene with muscular hypertrophy in sheep. AJAS 2008, 21, 928–935. [Google Scholar] [CrossRef]
- Bagatoli, A.; Gasparino, E.; Soares, M.A.M.; Amaral, R.M.; Macedo, F.A.F.; Voltolini, D.M.; Vesco, A.P.D. Expression of calpastatin and myostatin genes associated with lamb meat quality. Genet. Mol. Res. 2013, 12, 6168–6175. [Google Scholar] [CrossRef] [PubMed]
- Koohmaraie, M.; Kent, M.P.; Shackelford, S.D.; Veiseth, E.; Wheeler, T.L. Meat tenderness and muscle growth: Is there any relationship? Meat Sci. 2002, 62, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Goll, E.G.; Thompson, V.Y.F.; Li, H.; Wei, W.; Cong, J. The calpain system. Physiol. Rev. 2003, 83, 731–801. [Google Scholar] [CrossRef] [PubMed]
- Wendt, A.; Thompson, V.F.; Goll, D.E. Interaction of calpastatin with calpain: A review. Biol. Chem. 2004, 385, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Nikmard, M.; Vahid Molaee, V.; Eskandarinasab, M.P.; Djadid, N.D.; Vajhi, A.R. Calpastatin polymorphism in Afshari sheep and its possible correlation with growth and carcass traits. J. Appl. Anim. Res. 2012, 40, 346–350. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Cao, J.; Wu, M.; Ma, X.; Liu, Z.; Liu, R.; Zhao, F.; Wei, C.; Du, L. Genome-wide specific selection in three domestic sheep breeds. PLoS ONE 2015, 10, e0128688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kominakis, A.; Hager-Theodorides, A.L.; Zoidis, E.; Saridaki, A.; Antonakos, G.; Tsiamis, G. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet. Sel. Evol. 2017, 49, 41. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Zhao, F.; Ren, H.; Xu, L.; Lu, J.; Zhang, S.; Zhang, X.; Wei, C.; Lu, G.; et al. Genome-wide association studies for growth and meat production traits in sheep. PLoS ONE 2013, 8, e66569. [Google Scholar] [CrossRef] [Green Version]
- Fogarty, N.M. A review of the effects of the Booroola gene (FecB) on sheep production. Small Rumin. Res. 2009, 85, 75–84. [Google Scholar] [CrossRef]
- Arora, R.; Kumar, S.N.; Sudarshan, S.; Fairoze, M.N.; Kaur, M.; Sharma, A.; Girdhar, Y.; Sreesujatha, R.M.; Devatkal, S.K.; Ahlawat, S.; et al. Transcriptome profiling of longissimus thoracis muscles identifies highly connected differentially expressed genes in meat type sheep of India. PLoS ONE 2019, 14, e0217461. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Cardoso, T.F.; Manunza, A.; Martínez, A.; Cánovas, A.; Pons, A.; Bermejo, L.A.; Landi, V.; Sànchez, A.; Jordana, J.; et al. Expression patterns and genetic variation of the ovine skeletal muscle transcriptome of sheep from five Spanish meat breeds. Sci. Rep. 2018, 8, 10486. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liang, Y.; Deng, K.; Zhang, Z.; Zhang, G.; Zhang, Y.; Wang, F. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genomics 2020, 21, 327. [Google Scholar] [CrossRef]
- Guðmundsdóttir, Ó.Ó. Genome-Wide Association Study of Muscle Traits in Icelandic Sheep. Master’s Thesis, Agricultural University of Iceland, Hvanneyri, Iceland, 2015. Available online: http://hdl.handle.net/1946/20392 (accessed on 18 December 2020).
- Flicek, P.; Amode, M.R.; Barrell, D.; Beal, K.; Billis, K.; Brent, S.; Carvalho-Silva, D.; Clapham, P.; Coates, G.; Fitzgerald, S.; et al. Ensembl 2014. Nucleic Acids Res 2014, 42, D749–D755. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Jin, H.; Ma, H.; Zhao, Z. Comparative analysis on genome-wide DNA methylation in longissimus dorsi muscle between Small Tailed Han and Dorper × Small Tailed Han crossbred sheep. Asian-Australas. J. Anim. Sci. 2017, 30, 1529–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, D.; Palin, M.F.; Castonguay, F.; Gariépy, C.; Pothier, F. Detection of polymorphisms in the ovine leptin (LEP) gene: Association of a single nucleotide polymorphism with muscle growth and meat quality traits. Can. J. Anim. Sci. 2006, 86, 31–35. [Google Scholar] [CrossRef]
- Sadeghi, S.; Hajihosseinlo, A.; Bohlouli, M. Haplotype association of ovine leptin gene on breeding value of body measurements in Makooei sheep breed. Biotechnol. Anim. Husb. 2014, 30, 233–242. [Google Scholar] [CrossRef]
- Xu, Q.L.; Tang, G.W.; Zhang, Q.L.; Huang, Y.K.; Liu, Y.X.; Quan, K.; Zhu, K.Y.; Zhang, C.X. The FABP4 gene polymorphism is associated with meat tenderness in three Chinese native sheep breeds. Czech J. Anim. Sci. 2011, 56, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Mo, D.; Li, A.; Gong, W.; Xiao, S.; Zhang, Y.; Qin, L.; Niu, Y.; Guo, Y.; Liu, X.; et al. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS ONE 2011, 6, e19774. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, J.; Liu, H.; Xi, Y.; Xue, M.; Liu, W.; Zhuang, Z.; Lei, M. Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs. BMC Genomics 2015, 16, 377. [Google Scholar] [CrossRef] [Green Version]
- Ayuso, M.; Fernández, A.; Núñez, Y.; Benítez, R.; Isabel, B.; Barragán, C.; Fernández, A.I.; Rey, A.I.; Medrano, J.F.; Cánovas, Á.; et al. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS ONE 2015, 10, e0145162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovilo, C.; Benítez, R.; Fernández, A.; Núñez, Y.; Ayuso, M.; Fernández, A.I.; Rodríguez, C.; Isabel, B.; Rey, A.I.; López-Bote, C.; et al. Longissimus dorsi transcriptome analysis of purebred and crossbred Iberian pigs differing in muscle characteristics. BMC Genomics 2014, 15, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizugishi, K.; Hatayama, M.; Tohmonda, T.; Ogawa, M.; Inoue, T.; Mikoshiba, K.; Aruga, J. Myogenic repressor I-mfa interferes with the function of Zic family proteins. Biochem. Biophys Res. Commun. 2004, 320, 233–240. [Google Scholar] [CrossRef]
- Pan, H.; Gustafsson, M.K.; Aruga, J.; Tiedken, J.J.; Chen, J.C.; Emerson, C.P. A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis. Dev. Biol. 2011, 351, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Leong, D.; Smith, L.R.; Barton, E.R. Matrix metalloproteinase 13 is a new contributor to skeletal muscle regeneration and critical for myoblast migration. Am. J. Physiol. Cell Physiol. 2013, 305, C529–C538. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Koltes, J.E.; Park, C.A.; Chen, D.; Reecy, J.M. Gene Co-Expression Network Analysis Provides Novel Insights into Myostatin Regulation at Three Different Mouse Developmental Timepoints. PLoS ONE 2015, 10, e0117607. [Google Scholar] [CrossRef] [Green Version]
- Nesvadbova, M.; Borilova, G. Molecular regulation of skeletal muscle tissue formation and development. Vet. Med. 2018, 63, 489–499. [Google Scholar] [CrossRef]
- Liu, H.; Xi, Y.; Liu, G.; Zhao, Y.; Li, J.; Lei, M. Comparative transcriptomic analysis of skeletal muscle tissue during prenatal stages in Tongcheng and Yorkshire pig using RNA-seq. Funct. Integr. Genomics 2018, 18, 195–209. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Y.; Huang, Z.; Jia, G.; Liu, G.; Zhao, H. Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways. Sci. Rep. 2017, 7, 45156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, E.P.D.; Paixao, D.M.; Brustolini, O.J.; Silva, F.F.; Silva, W.; Araujo, F.M.; Matos Salim, A.C.; Oliveira, G.; Guimarães, S.E.F. Expression of myogenes in longissimus dorsi muscle during prenatal development in commercial and local Piau pigs. Genet. Mol. Biol. 2016, 39, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Xu, J.; Wu, Z.; Zhang, Z.; Li, J.; Wang, C.; Long, Q. Notch1-mediated signaling regulates proliferation of porcine satellite cells (PSCs). Cell Signal. 2013, 25, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, H.; Luo, Z.; Xia, Y.; Guan, J.; Wang, T.; Gu, Y.; Chen, L.; Zhang, K.; Ma, J.; et al. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat. Commun. 2012, 3, 850. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, P.; Zheng, H.; Smith, R.G. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 4679–4684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.L.; Hwang, J.H.; Kwon, S.G.; Park, D.H.; Kim, T.W.; Kang, D.G.; Yu, G.E.; Kim, I.S.; Ha, J.G.; Kim, C.W. Association between a non-synonymous HSD17B4 single nucleotide polymorphism and meat-quality traits in Berkshire pigs. Genet. Mol. Res. 2016, 15, gmr15048970. [Google Scholar] [CrossRef]
- Rehfelt, C.; Fiedler, I.; Stickland, N.C. Muscle development of livestock animals—Physiology, genetics and meat quality. In Number and Size of Muscle Fibres in Relation to Meat Production; Pas, M.F.W., Everts, M.E., Haagsman, H.P., Eds.; CABI Publishing: Cambridge, UK, 2004; pp. 1–30. [Google Scholar]
- Gordon, E.S.; Gordish Dressman, H.A.; Hoffman, E.P. The genetics of muscle atrophy and growth: The impact and implications of polymorphisms in animals and humans. Int. J. Biochem. Cell Biol. 2005, 37, 2064–2074. [Google Scholar] [CrossRef]
- Muñoz, M.; García-Casco, J.M.; Caraballo, C.; Fernández-Barroso, M.Á.; Sánchez-Esquiliche, F.; Gómez, F.; Rodríguez, M.D.C.; Silió, L. Identification of Candidate Genes and Regulatory Factors Underlying Intramuscular Fat Content Through Longissimus Dorsi Transcriptome Analyses in Heavy Iberian Pigs. Front. Genet. 2018, 9, 608. [Google Scholar] [CrossRef]
- Lobjois, V.; Liaubet, L.; SanCristobal, M.; Glénisson, J.; Fève, K.; Rallières, J.; Roy, P.L.; Milan, D.; Cherel, P.; Hatey, F. A muscle transcriptome analysis identifies positional candidate genes for a complex trait in pig. Anim. Genet. 2008, 39, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, M.; Gao, P.; Cao, G.; Zhang, W.; Liu, M.; Wang, H.; Qin, B.; Liu, J.; Wang, L.; et al. Identification of candidate genes of growth traits in pigs using RNA-sequencing. Ital. J. Anim. Sci. 2019, 18, 279–286. [Google Scholar] [CrossRef]
- Levin, J.M.; Andalousi, R.A.; Dainat, J.; Reyne, Y.; Bacou, F. SFRP2 expression in rabbit myogenic progenitor cells and in adult skeletal muscles. J. Muscle Res. Cell Motil. 2001, 22, 361–369. [Google Scholar] [CrossRef]
- Descamps, S.; Arzouk, H.; Bacou, F.; Bernardi, H.; Fedon, Y.; Gay, S.; Reyne, Y.; Rossano, B.; Levin, J. Inhibition of myoblast differentiation by Sfrp1 and Sfrp2. Cell Tissue Res. 2008, 332, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, C.; Jin, E.; Gu, Y.; Li, S.; Li, Q. Identification of differentially expressed genes in longissimus dorsi muscle between Wei and Yorkshire pigs using RNA sequencing. Genes Genomics 2018, 40, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.R.; Watt, K.I.; Parker, B.L.; Chaudhuri, R.; Ryall, J.G.; Cunningham, L.; Qian, H.; Sartorelli, V.; Sandri, M.; Chamberlain, J.; et al. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass. JCI Insight 2016, 1, e85477. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lei, M.; Xiong, Y. Molecular characterization and different expression patterns of the muscle ankyrin repeat protein (MARP) family during porcine skeletal muscle development in vitro and in vivo. Anim. Biotechnol. 2011, 22, 87–99. [Google Scholar] [CrossRef]
- Ropka-Molik, K.; Pawlina-Tyszko, K.; Żukowski, K.; Piórkowska, K.; Żak, G.; Gurgul, A.; Derebecka, N.; Wesoły, J. Examining the Genetic Background of Porcine Muscle Growth and Development Based on Transcriptome and miRNAome Data. Int. J. Mol. Sci. 2018, 19, 1208. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Tao, Y.; Lin, X.; Dai, Y.; Yang, T.; Yue, X.; Jiang, X.; Li, X.; Jiang, D.; Andrade, K.C.; et al. Histone methyltransferase Setd2 is critical for the proliferation and differentiation of myoblasts. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 697–707. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Byrum, S.D.; Tackett, A.J.; Davie, J.K. TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells. Int. J. Cancer 2014, 135, 785–797. [Google Scholar] [CrossRef] [Green Version]
- Buzala, M.; Janicki, B. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult. Sci. 2016, 95, 2151–2159. [Google Scholar] [CrossRef]
- Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003, 82, 1509–1518. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Chen, Y.; Yang, N.; Wang, X.; Zhu, D. Systematic identification of genes involved in divergent skeletal muscle growth rates of broiler and layer chickens. BMC Genomics 2009, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Ecarnot-Laubriet, A.; Luca, K.D.; Vandroux, D.; Moisant, M.; Bernard, C.; Assem, M.; Rochette, L.; Teyssier, J.R. Downregulation and nuclear relocation of MLP during the progression of right ventricular hypertrophy induced by chronic pressure overload. J. Mol. Cell Cardiol. 2000, 32, 2385–2395. [Google Scholar] [CrossRef]
- Martin, B.; Schneider, R.; Janetzky, S.; Waibler, Z.; Pandur, P.; Kühl, M.; Behrens, J.; von der Mark, K.; Starzinski-Powitz, A.; Wixler, V. The LIM-only protein FHL2 interacts with beta-catenin and promotes differentiation of mouse myoblasts. J. Cell Biol. 2002, 159, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kostek, M.C.; Chen, Y.; Cuthbertson, D.J.; Shi, R.; Fedele, M.J.; Esser, K.A.; Rennie, M.J. Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: Major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol. Genomics 2007, 31, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Abarzua, F.; Sakaguchi, M.; Takaishi, M.; Nasu, Y.; Kurose, K.; Ebara, S.; Miyazaki, M.; Namba, M.; Kumon, H.; Huh, N. Adenovirus-mediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Res. 2005, 65, 9617–9622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppen, A.; Ait-Aissa, R.; Koster, J.; Øra, I.; Bras, J.; Sluis, P.G.; Caron, H.; Versteeg, R.; Valentijn, L.J. Dickkopf-3 expression is a marker for neuroblastic tumor maturation and is down-regulated by MYCN. Int. J. Cancer 2008, 122, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Sun, Q.; Dacic, S.; Landreneau, R.J.; Siegfried, J.M.; Yu, J.; Zhang, L. Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer. Carcinogenesis 2008, 29, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Piórkowska, K.; Żukowski, K.; Połtowicz, K.; Nowak, J.; Ropka-Molik, K.; Derebecka, N.; Wesoły, J.; Wojtysiak, D. Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genomics 2020, 21, 509. [Google Scholar] [CrossRef] [PubMed]
- Nihashi, Y.; Umezawa, K.; Shinji, S.; Hamaguchi, Y.; Kobayashi, H.; Kono, T.; Ono, T.; Kagami, H.; Takaya, T. Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens. Sci. Rep. 2019, 9, 16527. [Google Scholar] [CrossRef] [PubMed]
- Waldemer-Streyer, R.J.; Reyes-Ordoñez, A.; Kim, D.; Zhang, R.; Singh, N.; Chen, J. Cxcl14 depletion accelerates skeletal myogenesis by promoting cell cycle withdrawal. NPJ Regen. Med. 2017, 2, 16017. [Google Scholar] [CrossRef] [Green Version]
- Arber, S.; Halder, G.; Caroni, P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 1994, 79, 221–231. [Google Scholar] [CrossRef]
- Chang, D.F.; Belaguli, N.S.; Iyer, D.; Roberts, W.B.; Wu, S.; Dong, X.; Marx, J.G.; Moore, M.S.; Beckerle, M.C.; Majesky, M.W.; et al. Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors. Dev. Cell 2003, 4, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Al-Musawi, S.L.; Stickland, N.C.; Bayol, S.A. In ovo temperature manipulation differentially influences limb musculoskeletal development in two lines of chick embryos selected for divergent growth rates. J. Exp. Biol. 2012, 215 Pt 9, 1594–1604. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Zhang, G.; Li, T.; Ling, J.; Zhang, X.; Wang, J. Transcriptomic profile of leg muscle during early growth in chicken. PLoS ONE 2017, 12, e0173824. [Google Scholar] [CrossRef] [PubMed]
- Wiper-Bergeron, N.; Salem, H.A.; Tomlinson, J.J.; Wu, D.; Haché, R.J.G. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc. Natl. Acad. Sci. USA 2007, 104, 2703–2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchildon, F.; Lala, N.; Li, G.; St-Louis, C.; Lamothe, D.; Keller, C.; Wiper-Bergeron, N. CCAAT/enhancer binding protein beta is expressed in satellite cells and controls myogenesis. Stem Cells 2012, 30, 2619–2630. [Google Scholar] [CrossRef]
- Cui, T.X.; Lin, G.; Lapensee, C.R.; Calinescu, A.A.; Rathore, M.; Streeter, C.; Piwien-Pilipuk, G.; Lanning, N.; Jin, H.; Carter-Su, C.; et al. C/EBPβ mediates growth hormone-regulated expression of multiple target genes. Mol. Endocrinol. 2011, 25, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Nicolae, D.L.; Gamazon, E.; Zhang, W.; Duan, S.; Dolan, M.E.; Cox, N.J. Trait-associated SNPs are more likely to be eQTLs: Annotation to enhance discovery from GWAS. PLoS Genet. 2010, 6, e1000888. [Google Scholar] [CrossRef]
- Xie, L.; Luo, C.; Zhang, C.; Zhang, R.; Tang, J.; Nie, Q.; Ma, L.; Hu, X.; Li, N.; Da, Y.; et al. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS ONE 2012, 7, e30910. [Google Scholar] [CrossRef] [Green Version]
- Kamei, Y.; Miura, S.; Suzuki, M.; Kai, Y.; Mizukami, J.; Taniguchi, T.; Mochida, K.; Hata, T.; Matsuda, J.; Aburatani, H.; et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 2004, 279, 41114–41123. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, T.; Kitamura, Y.I.; Funahashi, Y.; Shawber, C.J.; Castrillon, D.H.; Kollipara, R.; DePinho, R.A.; Kitajewski, J.; Accili, D. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Investig. 2007, 117, 2477–2485. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Shi, X.E.; Liu, Y.G.; Yang, G.S. FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation. Mol. Cell Biochem. 2011, 348, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Feng, C.; Ma, L.; Song, C.; Wang, Y.; Da, Y.; Li, H.; Chen, C.; Ye, S.; Ge, C.; et al. Genome-wide association study of body weight in chicken F2 resource population. PLoS ONE 2011, 6, e21872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Sun, Y.; Zhao, G.; Wang, H.; Zheng, M.; Li, P.; Liu, L.; Wen, J. Identification of loci and genes for growth related traits from a genome-wide association study in a slow- × fast-growing broiler chicken cross. Genes Genomics 2015, 37, 829–836. [Google Scholar] [CrossRef]
- Liu, R.; Sun, Y.; Zhao, G.; Wang, F.; Wu, D.; Zheng, M.; Chen, J.; Zhang, L.; Hu, Y.; Wen, J. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS ONE 2013, 8, e61172. [Google Scholar] [CrossRef]
- Lei, M.; Peng, X.; Zhou, M.; Luo, C.; Nie, Q.; Zhang, X. Polymorphisms of the IGF1R gene and their genetic effects on chicken early growth and carcass traits. BMC Genet. 2008, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.M.; Nie, Q.H.; Peng, X.; Zhang, D.X.; Zhang, X.Q. Single nucleotide polymorphisms of the chicken insulin-like factor binding protein 2 gene associated with chicken growth and carcass traits. Poult. Sci. 2005, 84, 1191–1198. [Google Scholar] [CrossRef]
- Sato, S.; Ohtake, T.; Uemoto, Y.; Okumura, Y.; Kobayashi, E. Polymorphism of insulin-like growth factor 1 gene is associated with breast muscle yields in chickens. Anim. Sci. J. 2012, 83, 1–6. [Google Scholar] [CrossRef]
- Ouyang, J.H.; Xie, L.; Nie, Q.; Luo, C.; Liang, Y.; Zeng, H.; Zhang, X. Single nucleotide polymorphism (SNP) at the GHR gene and its associations with chicken growth and fat deposition traits. Br. Poult. Sci. 2008, 49, 87–95. [Google Scholar] [CrossRef]
- Nie, Q.; Fang, M.; Xie, L.; Zhou, M.; Liang, Z.; Luo, Z.; Wang, G.; Bi, W.; Liang, C.; Zhang, W.; et al. The PIT1 gene polymorphisms were associated with chicken growth traits. BMC Genet. 2008, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.; Nie, Q.; Luo, C.; Zhang, D.; Zhang, X. Associations of GHSR gene polymorphisms with chicken growth and carcass traits. Mol. Biol. Rep. 2010, 37, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Nie, Q.; Luo, C.; Zhang, D.; Zhang, X. An 8bp indel in exon 1 of Ghrelin gene associated with chicken growth. Domest. Anim. Endocrinol. 2007, 32, 216–225. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhao, X.H.; Wang, J.Y.; Ding, F.X.; Zhang, L. Effect of an exon 1 mutation in the myostatin gene on the growth traits of the Bian chicken. Anim. Genet. 2012, 43, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Jiang, X.; Du, H.; Li, X.; Zhu, Q. Polymorphism of chicken myocyte-specific enhancer-binding factor 2A gene and its association with chicken carcass traits. Mol. Biol. Rep. 2010, 37, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhang, Z.; Lan, X.; Zhao, X.; Wang, Y.; Zhu, Q. Association of MyF5, MyF6 and MyoG gene polymorphisms with carcass traits in Chinese Meat Type Quality chicken populations. J. Anim. Vet. Adv. 2011, 10, 704–708. [Google Scholar] [CrossRef]
- Zhang, S.; Han, R.L.; Gao, Z.Y.; Zhu, S.K.; Tian, Y.D.; Sun, G.R.; Kang, X.T. A novel 31-bp indel in the paired box 7 (PAX7) gene is associated with chicken performance traits. Br. Poult. Sci. 2014, 55, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Moazeni, S.M.; Mohammadabadi, M.; Sadeghi, M.; Moradi Shahrbabak, H.; Esmailizadeh Koshkoieh, A.; Bordbar, F. Association between UCP Gene Polymorphisms and Growth, Breeding Value of Growth and Reproductive Traits in Mazandaran Indigenous Chicken. Open J. Anim. Sci. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rudofsky, G.; Schroedter, A.; Schlotterer, A.; Voron’ko, O.E.; Schlimme, M.; Tafel, J.; Isermann, B.H.; Humpert, P.M.; Morcos, M.; Bierhaus, A.; et al. Functional Polymorphisms of UCP 2 and UCP 3 Are Associated with a Reduced Prevalence of Diabetic Neuropathy in Patients with Type 1 Diabetes. Diabetes Care 2006, 29, 89–94. [Google Scholar] [CrossRef]
- Chen, B.; Xu, J.; He, X.; Xu, H.; Li, G.; Du, H.; Nie, Q.; Zhang, X. A genome wide mRNA screen and functional analysis reveal FOXO3 as a candidate gene for chicken growth. PLoS ONE 2015, 10, e0137087. [Google Scholar] [CrossRef]
- Luo, W.; Lin, S.; Li, G.; Nie, Q.; Zhang, X. Integrative analyses of miRNA-mRNA interactions reveal let-7b, miR-128 and MAPK pathway involvement in muscle mass loss in sex-linked dwarf chickens. Int. J. Mol. Sci. 2016, 17, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Li, H.; Mu, H.; Luo, W.; Li, Y.; Jia, X.; Wang, S.; Jia, X.; Nie, Q.; Li, Y.; et al. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens. BMC Genomics 2012, 13, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Lin, H.; Abdalla, B.A.; Nie, Q. Characterization of miR-206 promoter and its association with birthweight in chicken. Int. J. Mol. Sci. 2016, 17, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Wu, H.; Ye, Y.; Li, Z.; Hao, S.; Kong, L.; Zheng, X.; Lin, S.; Nie, Q.; Zhang, X. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis. 2014, 5, e1347. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Li, G.; Yi, Z.; Nie, Q.; Zhang, X. E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation. Sci. Rep. 2016, 6, 27904. [Google Scholar] [CrossRef] [PubMed] [Green Version]





Gene Name | Symbol | Fold Change * | ||||
---|---|---|---|---|---|---|
1D | 2W | 4W | 6W | 8W | ||
Slow-type myofiber protein genes | ||||||
Troponin I type 1 (skeletal, slow) | TNNI1 | −1.99 | 1.05 | −6.47 | −1.05 | 1.14 |
Myoglobin | MB | 1.04 | −1.81 | −10.04 | −6.8 | 1.17 |
Myosin, light chain 3, alkali; ventricular, skeletal, slow | MYL3 | −1.96 | −1.04 | −19.79 | −1.41 | −1.02 |
Myosin, heavy chain 7B, cardiac muscle, beta | MYH7B | −3.07 | −1.01 | −11.31 | 1.1 | 1.36 |
Similar to myosin L2B regulatory light chain, cardiac muscle – chicken | LOC417506 | −1.27 | 1.04 | −58.02 | −5.54 | 1.34 |
Myelin basic protein | MBP | 1.16 | −1.81 | −1.83 | −3.67 | −1.68 |
Similar to dynein light chain-2 | LOC417663 | −1.25 | −2.13 | −1.77 | −1.28 | −1.73 |
Satellite cell proliferation and muscle hypertrophy | ||||||
Cysteine and glycine-rich protein 3 (cardiac LIM protein) | CSRP3 | −2.17 | 1.01 | −9.44 | −16.72 | −1.04 |
Four and a half LIM domains 2 | FHL2 | −1.38 | −8.19 | −10.95 | −7.65 | −9.84 |
Similar to actin binding LIM protein family member 2 | LOC422866 | −1.08 | −2.06 | −1.78 | −2.24 | −2.56 |
Fibroblast growth factor receptor 2 | FGFR2 | −1.31 | −2.28 | −1.05 | −1.6 | −1.87 |
Fibroblast growth factor 1 (acidic) | FGF1 | −1.11 | −2.45 | −2.07 | −2.75 | 1.61 |
Heparan sulfate 6-O-sulfotransferase 2 | HS6ST2 | −3.07 | −4.09 | −1.51 | −2.13 | −3.1 |
Musculoskeletal, embryonic nuclear protein 1 | MUSTN1 | −1.01 | 2.94 | 2.17 | 2.45 | 1.51 |
Fibroblast growth factor 16 | FGF16 | −1.06 | 2.86 | 2.45 | 8.16 | 2.77 |
Inner centromere protein antigens 135/155 kDa | INCENP | 2.02 | 1.59 | 2.15 | 1.39 | 1.3 |
NudE nuclear distribution gene E homolog 1 (A. nidulans) | NDE1 | 1.49 | 2.48 | 2.68 | 1.91 | 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadabadi, M.; Bordbar, F.; Jensen, J.; Du, M.; Guo, W. Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals 2021, 11, 835. https://doi.org/10.3390/ani11030835
Mohammadabadi M, Bordbar F, Jensen J, Du M, Guo W. Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals. 2021; 11(3):835. https://doi.org/10.3390/ani11030835
Chicago/Turabian StyleMohammadabadi, Mohammadreza, Farhad Bordbar, Just Jensen, Min Du, and Wei Guo. 2021. "Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals" Animals 11, no. 3: 835. https://doi.org/10.3390/ani11030835
APA StyleMohammadabadi, M., Bordbar, F., Jensen, J., Du, M., & Guo, W. (2021). Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals, 11(3), 835. https://doi.org/10.3390/ani11030835