Journal of Clinical Biochemistry and Nutrition
Online ISSN : 1880-5086
Print ISSN : 0912-0009
ISSN-L : 0912-0009
Original Articles
The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury
Tetsuo AdachiTomoyuki KaminagaHiroyuki YasudaTetsuro KamiyaHirokazu Hara
Author information
JOURNAL FREE ACCESS

2014 Volume 54 Issue 2 Pages 129-135

Details
Abstract

Secondary bile acids produced by enteric bacteria accumulate to high levels in the enterohepatic circulation and may contribute to the pathogenesis of hepatocellular injury. Relative hydrophobicity has been suggested to be an important determinant of the biological properties of these compounds, although the mechanism by which bile acids induce pathogenesis is not fully understood. On the other hand, endoplasmic reticulum stress has been shown to be involved in the induction and development of various pathogenic conditions. In this report, we demonstrated that the intensities of cytotoxicity and endoplasmic reticulum stress in HepG2 cells triggered by the bile acids tested were largely dependent on their hydrophobicity. The activation of caspase-3 and DNA fragmentation by treatment with chenodeoxycholic acid showed the contribution of apoptosis to cytotoxicity. Increases in intracellular calcium levels and the generation of reactive oxygen species stimulated by treatment with chenodeoxycholic acid contributed to endoplasmic reticulum stress. Bile acids also induced transforming growth factor-β, a potent profibrogenic factor, which is known to induce hepatocyte apoptosis and ultimately liver fibrosis. In conclusion, our study demonstrated that bile acids induced endoplasmic reticulum stress, which in turn stimulated apoptosis in HepG2 cells, in a hydrophobicity-dependent manner.

Content from these authors
© 2014 JCBN
Previous article
feedback
Top