Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered enzyme that catalyzes the hydrolysis of 3-phosphotyrosyl bonds. Such linkages form in vivo following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors provided there is a presence of genetic abnormalities related to DNA checkpoint and repair pathways. Human Tdp1 can also hydrolyze other 3-end DNA alterations including 3-phosphoglycolates and 3-abasic sites indicating it may function as a general 3-DNA phosphodiesterase and repair enzyme. The importance of Tdp1 in humans is highlighted by the observation that a recessive mutation in the human TDP1 gene is responsible for the inherited disorder, spinocerebellar ataxia with axonal neuropathy (SCAN1). This review provides a summary of the biochemical and cellular processes performed by Tdp1 as well as the rationale behind the development of Tdp1 inhibitors for anticancer therapy.
Anti-Cancer Agents in Medicinal Chemistry
Title: Tyrosyl-DNA Phosphodiesterase as a Target for Anticancer Therapy
Volume: 8 Issue: 4
Author(s): Thomas S. Dexheimer, Smitha Antony, Christophe Marchand and Yves Pommier
Affiliation:
Abstract: Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered enzyme that catalyzes the hydrolysis of 3-phosphotyrosyl bonds. Such linkages form in vivo following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors provided there is a presence of genetic abnormalities related to DNA checkpoint and repair pathways. Human Tdp1 can also hydrolyze other 3-end DNA alterations including 3-phosphoglycolates and 3-abasic sites indicating it may function as a general 3-DNA phosphodiesterase and repair enzyme. The importance of Tdp1 in humans is highlighted by the observation that a recessive mutation in the human TDP1 gene is responsible for the inherited disorder, spinocerebellar ataxia with axonal neuropathy (SCAN1). This review provides a summary of the biochemical and cellular processes performed by Tdp1 as well as the rationale behind the development of Tdp1 inhibitors for anticancer therapy.
Export Options
About this article
Cite this article as:
Dexheimer S. Thomas, Antony Smitha, Marchand Christophe and Pommier Yves, Tyrosyl-DNA Phosphodiesterase as a Target for Anticancer Therapy, Anti-Cancer Agents in Medicinal Chemistry 2008; 8 (4) . https://dx.doi.org/10.2174/187152008784220357
DOI https://dx.doi.org/10.2174/187152008784220357 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Designing Novel Molecules for Anti-Cancer Enzyme Modulation: A Mechanistic and Therapeutic Perspective
The deficiencies or hyper functions of enzymes cause a number of diseases. Enzyme inhibition is an important area of pharmaceutical research since studies in this field have already led to the discovery of wide variety of drugs useful in a number of diseases. Specific inhibitors interact with enzymes and block ...read more
Discovery of Lead compounds targeting transcriptional regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy
The thematic issue, "Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy," explores the critical role of heterocyclic compounds in advancing the frontiers of cancer treatment. Heterocycles serve as fundamental building blocks in medicinal chemistry due to their structural diversity and ability to interact with biological targets. This issue aims ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Combination of Anti-EGFR Drugs with Anti-Angiogenic or Other Signal Transduction Inhibitors as a Rational Approach to Cancer Therapy
Current Cancer Therapy Reviews Role of Adiponectin in Cervical Cancer
Current Drug Metabolism Editorial (Thematic Issue: Immune Modulation)
Current Pharmaceutical Design The p53-Estrogen Receptor Loop in Cancer
Current Molecular Medicine Protein Interaction Networks in Metallo Proteins and Docking Approaches of Metallic Compounds with TIMP and MMP in Control of MAPK Pathway
Letters in Drug Design & Discovery Protein/ Hormone Based Nanoparticles as Carriers for Drugs Targeting Protein-Protein Interactions
Current Topics in Medicinal Chemistry The Molecular Mechanisms of Glucocorticoids-Mediated Neutrophil Survival
Current Drug Targets Wet Chemistry Approaches for Synthesis of Gold Nanospheres, Nanorods and Nanostars
Current Nanoscience MiR-597 Targeting 14-3-3σ Enhances Cellular Invasion and EMT in Nasopharyngeal Carcinoma Cells
Current Molecular Pharmacology Design and Synthesis of Mannich bases as Benzimidazole Derivatives as Analgesic Agents
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry New Perspectives for Melanoma Immunotherapy: Role of IL-12
Current Molecular Medicine CYLD-Mediated Signaling and Diseases
Current Drug Targets Development Steps of Pharmacokinetics: A Perspective on Bioanalytical Methods and Bioequivalence
Current Clinical Pharmacology Nanotechnology Inspired Advanced Engineering Fundamentals for Optimizing Drug Delivery
Current Drug Targets Episomal Vectors for Gene Therapy
Current Gene Therapy Protective Effects of Incretin Against Age-Related Diseases
Current Drug Delivery PCL/PEG Copolymeric Nanoparticles: Potential Nanoplatforms for Anticancer Agent Delivery
Current Drug Targets Role of Pharmacogenomics in Antiepileptic Drug Therapy: Current Status and Future Perspectives
Current Pharmaceutical Design Structural Basis for Therapeutic Intervention of uPA/uPAR System
Current Drug Targets Targeting Human Telomerase by Antisense Oligonucleotides and Ribozymes: An Update
Medicinal Chemistry Reviews - Online (Discontinued)