Abstract
Both genetic and epigenetic changes contribute to development of human cancer. Oncogenomics has primarily focused on understanding the genetic basis of neoplasia, with less emphasis being placed on the role of epigenetics in tumourigenesis. Genomic alterations in cancer vary between the different types and stages, tissues and individuals. Moreover, genomic change ranges from single nucleotide mutations to gross chromosomal aneuploidy; which may or may not be associated with underlying genomic instability. Collectively, genomic alterations result in widespread deregulation of gene expression profiles and the disruption of signalling networks that control proliferation and cellular functions. In addition to changes in DNA and chromosomes, it has become evident that oncogenomic processes can be profoundly influenced by epigenetic mechanisms. DNA methylation is one of the key epigenetic factors involved in regulation of gene expression and genomic stability, and is biologically necessary for the maintenance of many cellular functions. While there has been considerable progress in understanding the impact of genetic and epigenetic mechanisms in tumourigenesis, there has been little consideration of the importance of the interplay between these two processes. In this review we summarize current understanding of the role of genetic and epigenetic alterations in human cancer. In addition we consider the associated interactions of genetic and epigenetic processes in tumour onset and progression. Furthermore, we provide a model of tumourigenesis that addresses the combined impact of both epigenetic and genetic alterations in cancer cells.
Keywords: Genetics, epigenetics, DNA methylation, genomic instability, cancer, tumour evolution
Current Genomics
Title: Cause and Consequences of Genetic and Epigenetic Alterations in Human Cancer
Volume: 9 Issue: 6
Author(s): B. Sadikovic, K. Al-Romaih, J. A. Squire and M. Zielenska
Affiliation:
Keywords: Genetics, epigenetics, DNA methylation, genomic instability, cancer, tumour evolution
Abstract: Both genetic and epigenetic changes contribute to development of human cancer. Oncogenomics has primarily focused on understanding the genetic basis of neoplasia, with less emphasis being placed on the role of epigenetics in tumourigenesis. Genomic alterations in cancer vary between the different types and stages, tissues and individuals. Moreover, genomic change ranges from single nucleotide mutations to gross chromosomal aneuploidy; which may or may not be associated with underlying genomic instability. Collectively, genomic alterations result in widespread deregulation of gene expression profiles and the disruption of signalling networks that control proliferation and cellular functions. In addition to changes in DNA and chromosomes, it has become evident that oncogenomic processes can be profoundly influenced by epigenetic mechanisms. DNA methylation is one of the key epigenetic factors involved in regulation of gene expression and genomic stability, and is biologically necessary for the maintenance of many cellular functions. While there has been considerable progress in understanding the impact of genetic and epigenetic mechanisms in tumourigenesis, there has been little consideration of the importance of the interplay between these two processes. In this review we summarize current understanding of the role of genetic and epigenetic alterations in human cancer. In addition we consider the associated interactions of genetic and epigenetic processes in tumour onset and progression. Furthermore, we provide a model of tumourigenesis that addresses the combined impact of both epigenetic and genetic alterations in cancer cells.
Export Options
About this article
Cite this article as:
Sadikovic B., Al-Romaih K., Squire A. J. and Zielenska M., Cause and Consequences of Genetic and Epigenetic Alterations in Human Cancer, Current Genomics 2008; 9 (6) . https://dx.doi.org/10.2174/138920208785699580
DOI https://dx.doi.org/10.2174/138920208785699580 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Advanced AI Techniques in Big Genomic Data Analysis
The thematic issue on "Advanced AI Techniques in Big Genomic Data Analysis" aims to explore the cutting-edge methodologies and applications of artificial intelligence (AI) in the realm of genomic research, where vast amounts of data pose both challenges and opportunities. This issue will cover a broad spectrum of AI-driven strategies, ...read more
Genomic Insights into Oncology: Harnessing Machine Learning for Breakthroughs in Cancer Genomics.
This special issue aims to explore the cutting-edge intersection of genomics and oncology, with a strong emphasis on original data and experimental validation. While maintaining the focus on how machine learning and advanced data analysis techniques are revolutionizing our understanding and treatment of cancer, this issue will prioritize contributions that ...read more
Integrating Artificial Intelligence and Omics Approaches in Complex Diseases
Recent advancements in AI and omics methodologies have revolutionized the landscape of biomedical research, enabling us to extract valuable information from vast amounts of complex data. By combining AI algorithms with omics technologies such as genomics, proteomics, metabolomics, and transcriptomics, researchers can obtain a more comprehensive and multi-dimensional analysis of ...read more
Integrating Machine Learning with Genome Science: Pioneering Developments and Future Directions
Integrating machine learning (ML) with genome science is driving transformative advancements in fields such as genomics, personalized medicine, and drug discovery. Genomic data is vast and complex, making traditional analysis methods inadequate for uncovering deep insights. Machine learning, particularly deep learning models like convolutional neural networks (CNNs) and recurrent neural ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Yin and Yang of microRNA Assay Methods
MicroRNA Current Understanding of the Potential of Proteomics and Metabolomics Approaches in Cancer Chemoresistance: A Focus on Multiple Myeloma
Current Topics in Medicinal Chemistry Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents
Current Medicinal Chemistry Beta Caryophyllene and Caryophyllene Oxide, Isolated from Aegle Marmelos, as the Potent Anti-inflammatory Agents against Lymphoma and Neuroblastoma Cells
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Phytotherapeutic Agents for Benign Prostatic Hyperplasia: An Overview
Mini-Reviews in Medicinal Chemistry Druggability of Mortalin for Cancer and Neuro-Degenerative Disorders
Current Pharmaceutical Design The Histone Deacetylase Inhibitor, MS-275 (Entinostat), Downregulates c-FLIP, Sensitizes Osteosarcoma Cells to FasL, and Induces the Regression of Osteosarcoma Lung Metastases
Current Cancer Drug Targets ATRA Entrapped in DSPC Liposome Enhances Anti-metastasis Effect on Lung and Liver During B16F10 Cell Line Metastasis in C57BL6 Mice
Anti-Cancer Agents in Medicinal Chemistry Role of Phase II Drug Metabolizing Enzymes in Cancer Chemoprevention
Current Drug Metabolism Fusogenic Oncolytic Herpes Simplex Viruses as a Potent and Personalized Cancer Vaccine
Current Pharmaceutical Biotechnology Antioxidant Properties of Melatonin and its Potential Action in Diseases
Current Topics in Medicinal Chemistry Patent Selections
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Discussion on the Structural Modification and Anti-tumor Activity of Flavonoids
Current Topics in Medicinal Chemistry Cholinergic Targets in Lung Cancer
Current Pharmaceutical Design Lipoxygenase Inhibitors for Cancer Prevention: Promises and Risks
Current Pharmaceutical Design β3-Adrenergic Receptors: Really Relevant Targets for Anti-Obesity Drugs?
Current Medicinal Chemistry - Central Nervous System Agents Genitourinary Tumors: Update on Molecular Biomarkers for Diagnosis, Prognosis and Prediction of Response to Therapy
Current Drug Metabolism TiO<sub>2</sub> Nanoparticles in Cancer Therapy as Nanocarriers in Paclitaxel’s Delivery and Nanosensitizers in Phototherapies and/or Sonodynamic Therapy
Current Pharmaceutical Biotechnology Botulinum Toxin a in Prostate Disease: A Venom from Bench to Bed-Side
Current Drug Delivery Hydatid Disease: Current Status of Chemotherapy and Drug Delivery Systems
Current Drug Therapy