Abstract
Extracellular fibrous amyloid deposits or intracellular inclusion bodies containing abnormal protein fibrils characterize many different neurodegenerative diseases, including Alzheimers disease (AD), Parkinsons disease (PD), dementia with Lewy bodies, multiple system atrophy, Huntingtons disease, and the transmissible ‘prion’; dementias. There is strong evidence from genetic, transgenic mouse and biochemical studies to support the idea that the accumulation of protein aggregates in the brain plays a seminal role in the pathogenesis of these diseases. How monomeric proteins ultimately convert to highly polymeric deposits is unknown. However, studies employing, synthetic, cell-derived and purified recombinant proteins suggest that amyloid proteins first come together to form soluble low n-oligomers. Further association of these oligomers results in higher molecular weight assemblies including so-called ‘protofibrils’ and ‘ADDLs’ and these eventually exceed solubility limits until, finally, they are deposited as amyloid fibrils. With particular reference to AD and PD, we review recent evidence that soluble oligomers are the principal pathogenic species that drive neuronal dysfunction.
Keywords: alzheimer, neurodegeneration, amyloid, synuclein, aggregation
Protein & Peptide Letters
Title: Oligomers on the Brain: the Emerging Role of Soluble Protein Aggregates in Neurodegeneration.
Volume: 11 Issue: 3
Author(s): Dominic M. Walsh and Dennis J. Selkoe
Affiliation:
Keywords: alzheimer, neurodegeneration, amyloid, synuclein, aggregation
Abstract: Extracellular fibrous amyloid deposits or intracellular inclusion bodies containing abnormal protein fibrils characterize many different neurodegenerative diseases, including Alzheimers disease (AD), Parkinsons disease (PD), dementia with Lewy bodies, multiple system atrophy, Huntingtons disease, and the transmissible ‘prion’; dementias. There is strong evidence from genetic, transgenic mouse and biochemical studies to support the idea that the accumulation of protein aggregates in the brain plays a seminal role in the pathogenesis of these diseases. How monomeric proteins ultimately convert to highly polymeric deposits is unknown. However, studies employing, synthetic, cell-derived and purified recombinant proteins suggest that amyloid proteins first come together to form soluble low n-oligomers. Further association of these oligomers results in higher molecular weight assemblies including so-called ‘protofibrils’ and ‘ADDLs’ and these eventually exceed solubility limits until, finally, they are deposited as amyloid fibrils. With particular reference to AD and PD, we review recent evidence that soluble oligomers are the principal pathogenic species that drive neuronal dysfunction.
Export Options
About this article
Cite this article as:
Walsh M. Dominic and Selkoe J. Dennis, Oligomers on the Brain: the Emerging Role of Soluble Protein Aggregates in Neurodegeneration., Protein & Peptide Letters 2004; 11 (3) . https://dx.doi.org/10.2174/0929866043407174
DOI https://dx.doi.org/10.2174/0929866043407174 |
Print ISSN 0929-8665 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5305 |
Call for Papers in Thematic Issues
Advancing the Understanding of Regulatory Mechanisms and Diseases Through Biochemistry and Structural Biology
Modern research is increasingly interested in understanding the regulatory mechanisms and diseases through various integrative approaches. Biochemistry and structural biology offer valuable atomic-level insights that help unravel the complexities of cellular regulatory mechanisms and their association with health and disease. The unique advantage of these fields is that they provide ...read more
Therapeutic Proteins and Peptides of Plant Origin
Plants are still the major repository of biologically active substances. In the last two decades, however, natural peptides and proteins of plant origin have gained increasing attention due to their pharmacological activities over a variety of human illnesses, including those mediated by infections and parasitosis and those involving different cellular ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Role of FK506 Binding Proteins in Neurodegenerative Disorders
Current Medicinal Chemistry Antibody Responses, Amyloid-β Peptide Remnants and Clinical Effects of AN-1792 Immunization in Patients with AD in an Interrupted Trial
CNS & Neurological Disorders - Drug Targets Amyloidosis and Auto-Inflammatory Syndromes
Current Drug Targets - Inflammation & Allergy Does Phosphodiesterase 11A (PDE11A) Hold Promise as a Future Therapeutic Target?
Current Pharmaceutical Design Planum Temporale Analysis Via a New Volumetric Method in Autoptic Brains of Demented and Psychotic Patients
Current Alzheimer Research Peripheral and Central Glutamate Dyshomeostasis in Neurodegenerative Disorders
Current Neuropharmacology Bioenergetics and Mitochondrial Dysfunction in Aging: Recent Insights for a Therapeutical Approach
Current Pharmaceutical Design Anorexia Nervosa and the Use of Total Parenteral Nutrition Refeeding
Current Nutrition & Food Science Symptoms, Diagnosis, and Treatment of Cow's Milk Allergy
Current Pediatric Reviews New Insights into the Roles of Endolysosomal Cathepsins in the Pathogenesis of Alzheimers Disease: Cathepsin Inhibitors as Potential Therapeutics
CNS & Neurological Disorders - Drug Targets Dorsal Stream Dysfunction in Children. A Review and an Approach to Diagnosis and Management
Current Pediatric Reviews Berberine: Pharmacological Features in Health, Disease and Aging
Current Medicinal Chemistry Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity
Current Medicinal Chemistry Immunophilin Dysfunction and Neuropathology
Current Medicinal Chemistry The Relationship Between Plasma Aβ Levels, Cognitive Function and Brain Volumetrics: Sydney Memory and Ageing Study
Current Alzheimer Research Soy and Its Isoflavones: The Truth Behind the Science in Breast Cancer
Anti-Cancer Agents in Medicinal Chemistry Current Drug Targets and Future Therapy of Pulmonary Arterial Hypertension
Current Medicinal Chemistry Cancer Stem-Cells Patents in the Context of their Therapeutic Purposes: Exploring the Latest Trends (2011-2015)
Recent Patents on Regenerative Medicine Tremor and Rigidity in Patients with Parkinson’s Disease: Emphasis on Epidemiology, Pathophysiology and Contributing Factors
CNS & Neurological Disorders - Drug Targets Pathophysiology of Erectile Dysfunction
Current Drug Targets