Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 8, 2018

Facile generation of antibody heavy and light chain diversities for yeast surface display by Golden Gate Cloning

  • Lukas Roth , Julius Grzeschik , Steffen C. Hinz , Stefan Becker , Lars Toleikis , Michael Busch , Harald Kolmar , Simon Krah EMAIL logo and Stefan Zielonka EMAIL logo
From the journal Biological Chemistry

Abstract

Antibodies can be successfully engineered and isolated by yeast or phage display of combinatorial libraries. Still, generation of libraries comprising heavy chain as well as light chain diversities is a cumbersome process involving multiple steps. Within this study, we set out to compare the output of yeast display screening of antibody Fab libraries from immunized rodents that were generated by Golden Gate Cloning (GGC) with the conventional three-step method of individual heavy- and light-chain sub-library construction followed by chain combination via yeast mating (YM). We demonstrate that the GGC-based one-step process delivers libraries and antibodies from heavy- and light-chain diversities with similar quality to the traditional method while being significantly less complex and faster. Additionally, we show that this method can also be used to successfully screen and isolate chimeric chicken/human antibodies following avian immunization.

Acknowledgments

We are grateful to Ramona Gaa, Iris Willenbuecher, Kerstin Hallstein and Deniz Demir for experimental support.

References

Abdiche, Y.N., Harriman, R., Deng, X., Yeung, Y.A., Miles, A., Morishige, W., Boustany, L., Zhu, L., Izquierdo, S.M., and Harriman, W. (2016). Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms. MAbs 8, 264–277.10.1080/19420862.2015.1118596Search in Google Scholar PubMed PubMed Central

Barbas, C.F., Kang, A.S., Lerner, R.A., and Benkovic, S.J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.10.1073/pnas.88.18.7978Search in Google Scholar PubMed PubMed Central

Benatuil, L., Perez, J.M., Belk, J., and Hsieh, C.-M. (2010). An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng. Des. Sel. PEDS 23, 155–159.10.1093/protein/gzq002Search in Google Scholar PubMed

Boder, E.T. and Wittrup, K.D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557.10.1038/nbt0697-553Search in Google Scholar PubMed

Braunstein, G.D., Rasor, J., Danzer, H., Adler, D., and Wade, M.E. (1976). Serum human chorionic gonadotropin levels throughout normal pregnancy. Am. J. Obstet. Gynecol. 126, 678–681.10.1016/0002-9378(76)90518-4Search in Google Scholar PubMed

Carter, P.J. and Lazar, G.A. (2017). Next generation antibody drugs: pursuit of the “high-hanging fruit.” Nat. Rev. Drug Discov. 17, 197–223.10.1038/nrd.2017.227Search in Google Scholar PubMed

Cherf, G.M. and Cochran, J.R. (2015). Applications of yeast surface display for protein engineering. In Yeast Surface Display, B. Liu, ed. (New York, NY: Springer), pp. 155–175.10.1007/978-1-4939-2748-7_8Search in Google Scholar PubMed PubMed Central

Ching, K.H., Collarini, E.J., Abdiche, Y.N., Bedinger, D., Pedersen, D., Izquierdo, S., Harriman, R., Zhu, L., Etches, R.J., van de Lavoir, M.-C., et al. (2018). Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets. MAbs 10, 71–80.10.1080/19420862.2017.1386825Search in Google Scholar PubMed PubMed Central

Chung, J. (2017). Special issue on therapeutic antibodies and biopharmaceuticals. Exp. Mol. Med. 49, e304.10.1038/emm.2017.46Search in Google Scholar PubMed PubMed Central

Colby, D.W., Kellogg, B.A., Graff, C.P., Yeung, Y.A., Swers, J.S., and Wittrup, K.D. (2004). Engineering antibody affinity by yeast surface display. Methods Enzymol. 388, 348–358.10.1016/S0076-6879(04)88027-3Search in Google Scholar PubMed

Davies, E.L., Smith, J.S., Birkett, C.R., Manser, J.M., Anderson-Dear, D.V., and Young, J.R. (1995). Selection of specific phage-display antibodies using libraries derived from chicken immunoglobulin genes. J. Immunol. Methods 186, 125–135.10.1016/0022-1759(95)00143-XSearch in Google Scholar PubMed

Doerner, A., Rhiel, L., Zielonka, S., and Kolmar, H. (2014). Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett. 588, 278–287.10.1016/j.febslet.2013.11.025Search in Google Scholar PubMed

Dudásová, Z., Dudás, A., and Chovanec, M. (2004). Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 28, 581–601.10.1016/j.femsre.2004.06.001Search in Google Scholar PubMed

Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PloS One 3, e3647.10.1371/journal.pone.0003647Search in Google Scholar PubMed PubMed Central

Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M.W., Yeung, Y.A., Cochran, J.R., Heinzelman, P., Colby, D., Swers, J., et al. (2003). Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. 21, 163–170.10.1038/nbt785Search in Google Scholar PubMed

Friedensohn, S., Lindner, J.M., Cornacchione, V., Iazeolla, M., Miho, E., Zingg, A., Meng, S., Traggiai, E., and Reddy, S.T. (2018). Synthetic standards combined with error and bias correction improve the accuracy and quantitative resolution of antibody repertoire sequencing in human naïve and memory B cells. Front. Immunol. 9, 1401.10.3389/fimmu.2018.01401Search in Google Scholar PubMed PubMed Central

Grzeschik, J., Hinz, S.C., Könning, D., Pirzer, T., Becker, S., Zielonka, S., and Kolmar, H. (2017). A simplified procedure for antibody engineering by yeast surface display: Coupling display levels and target binding by ribosomal skipping. Biotechnol. J. 12, 1600454.10.1002/biot.201600454Search in Google Scholar PubMed

Grzeschik, J., Yanakieva, D., Roth, L., Krah, S., Hinz, S.C., Elter, A., Zollmann, T., Schwall, G., Zielonka, S., and Kolmar, H. (2018). Yeast surface display in combination with fluorescence-activated cell sorting enables the rapid isolation of antibody fragments derived from immunized chickens. Biotechnol J. doi: 10.1002/biot.201800466.10.1002/biot.201800466Search in Google Scholar PubMed

Kaplon, H. and Reichert, J.M. (2018). Antibodies to watch in 2018. MAbs 10, 183–203.10.1080/19420862.2018.1415671Search in Google Scholar PubMed PubMed Central

Könning, D., Rhiel, L., Empting, M., Grzeschik, J., Sellmann, C., Schröter, C., Zielonka, S., Dickgießer, S., Pirzer, T., Yanakieva, D., et al. (2017). Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Sci. Rep. 7, 9676.10.1038/s41598-017-10513-9Search in Google Scholar PubMed PubMed Central

Krah, S., Schröter, C., Eller, C., Rhiel, L., Rasche, N., Beck, J., Sellmann, C., Günther, R., Toleikis, L., Hock, B., et al. (2017). Generation of human bispecific common light chain antibodies by combining animal immunization and yeast display. Protein Eng. Des. Sel. 30, 291–301.10.1093/protein/gzw077Search in Google Scholar PubMed

Krah, S., Grzeschik, J., Rosowski, S., Gaa, R., Willenbuecher, I., Demir, D., Toleikis, L., Kolmar, H., Becker, S., and Zielonka, S. (2018). A streamlined approach for the construction of large yeast surface display Fab antibody libraries. Methods Mol. Biol. Clifton NJ 1827, 145–161.10.1007/978-1-4939-8648-4_8Search in Google Scholar PubMed

Kügler, J., Wilke, S., Meier, D., Tomszak, F., Frenzel, A., Schirrmann, T., Dübel, S., Garritsen, H., Hock, B., Toleikis, L., et al. (2015). Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol. 15, 10.10.1186/s12896-015-0125-0Search in Google Scholar PubMed PubMed Central

Lewis-Wambi, J.S., Cunliffe, H.E., Kim, H.R., Willis, A.L., and Jordan, V.C. (2008). Overexpression of CEACAM6 promotes migration and invasion of oestrogen-deprived breast cancer cells. Eur. J. Cancer 44, 1770–1779.10.1016/j.ejca.2008.05.016Search in Google Scholar PubMed PubMed Central

McMahon, C., Baier, A.S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J.X., Erlandson, S.C., Hilger, D., Rasmussen, S.G.F., Ring, A.M., et al. (2018). Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25, 289–296.10.1038/s41594-018-0028-6Search in Google Scholar PubMed PubMed Central

Nelson, R.S. and Valadon, P. (2017). A universal phage display system for the seamless construction of Fab libraries. J. Immunol. Methods 450, 41–49.10.1016/j.jim.2017.07.011Search in Google Scholar PubMed

Osborn, M.J., Ma, B., Avis, S., Binnie, A., Dilley, J., Yang, X., Lindquist, K., Ménoret, S., Iscache, A.-L., Ouisse, L.-H., et al. (2013). High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region. J. Immunol. 190, 1481–1490.10.4049/jimmunol.1203041Search in Google Scholar PubMed PubMed Central

Ouisse, L.-H., Gautreau-Rolland, L., Devilder, M.-C., Osborn, M., Moyon, M., Visentin, J., Halary, F., Bruggemann, M., Buelow, R., Anegon, I., et al. (2017). Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies. BMC Biotechnol. 17, 3.10.1186/s12896-016-0322-5Search in Google Scholar PubMed PubMed Central

Rakestraw, J.A., Sazinsky, S.L., Piatesi, A., Antipov, E., and Wittrup, K.D. (2009). Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol. Bioeng. 103, 1192–1201.10.1002/bit.22338Search in Google Scholar PubMed PubMed Central

Rizeq, B., Zakaria, Z., and Ouhtit, A. (2018). Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 109, 33–42.10.1111/cas.13437Search in Google Scholar PubMed PubMed Central

Romão, E., Poignavent, V., Vincke, C., Ritzenthaler, C., Muyldermans, S., and Monsion, B. (2018). Construction of high-quality camel immune antibody libraries. In Phage Display, M. Hust, and T.S. Lim, eds. (New York, NY: Springer), pp. 169–187.10.1007/978-1-4939-7447-4_9Search in Google Scholar PubMed

Rosowski, S., Becker, S., Toleikis, L., Valldorf, B., Grzeschik, J., Demir, D., Willenbücher, I., Gaa, R., Kolmar, H., Zielonka, S., et al. (2018). A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microb. Cell Factories 17, 3.10.1186/s12934-017-0853-zSearch in Google Scholar PubMed PubMed Central

Schröter, C., Günther, R., Rhiel, L., Becker, S., Toleikis, L., Doerner, A., Becker, J., Schönemann, A., Nasu, D., Neuteboom, B., et al. (2015). A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display. MAbs 7, 138–151.10.4161/19420862.2014.985993Search in Google Scholar PubMed PubMed Central

Schröter, C., Beck, J., Krah, S., Zielonka, S., Doerner, A., Rhiel, L., Günther, R., Toleikis, L., Kolmar, H., Hock, B., et al. (2018). Selection of antibodies with tailored properties by application of high-throughput multiparameter fluorescence-activated cell sorting of yeast-displayed immune libraries. Mol. Biotechnol. 60, 727–735.10.1007/s12033-018-0109-0Search in Google Scholar PubMed PubMed Central

Sigismund, S., Avanzato, D., and Lanzetti, L. (2018). Emerging functions of the EGFR in cancer. Mol. Oncol. 12, 3–20.10.1002/1878-0261.12155Search in Google Scholar PubMed PubMed Central

Sivelle, C., Sierocki, R., Ferreira-Pinto, K., Simon, S., Maillere, B., and Nozach, H. (2018). Fab is the most efficient format to express functional antibodies by yeast surface display. MAbs 10, 720–729.10.1080/19420862.2018.1468952Search in Google Scholar PubMed PubMed Central

Walker, L.M., Bowley, D.R., and Burton, D.R. (2009). Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J. Mol. Biol. 389, 365–375.10.1016/j.jmb.2009.04.019Search in Google Scholar PubMed PubMed Central

Wang, B., Lee, C.-H., Johnson, E.L., Kluwe, C.A., Cunningham, J.C., Tanno, H., Crooks, R.M., Georgiou, G., and Ellington, A.D. (2016). Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial V H :V L libraries from immunized animals. MAbs 8, 1035–1044.10.1080/19420862.2016.1190059Search in Google Scholar PubMed PubMed Central

Weaver-Feldhaus, J.M., Lou, J., Coleman, J.R., Siegel, R.W., Marks, J.D., and Feldhaus, M.J. (2004). Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett. 564, 24–34.10.1016/S0014-5793(04)00309-6Search in Google Scholar PubMed

Wilson, T.E., Grawunder, U., and Lieber, M.R. (1997). Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498.10.1038/41365Search in Google Scholar PubMed

Wozniak-Knopp, G., Bartl, S., Bauer, A., Mostageer, M., Woisetschläger, M., Antes, B., Ettl, K., Kainer, M., Weberhofer, G., Wiederkum, S., et al. (2010). Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng. Des. Sel. 23, 289–297.10.1093/protein/gzq005Search in Google Scholar PubMed

Yang, Z., Du, M., Wang, W., Xin, X., Ma, P., Zhang, H., and Lerner, R.A. (2018). Affinity maturation of an TpoR targeting antibody in full-length IgG form for enhanced agonist activity. Protein Eng. Des. Sel. 31, 233–241.10.1093/protein/gzy002Search in Google Scholar PubMed

Zhang, Y., Zang, M., Li, J., Ji, J., Zhang, J., Liu, X., Qu, Y., Su, L., Li, C., Yu, Y., et al. (2014). CEACAM6 promotes tumor migration, invasion, and metastasis in gastric cancer. Acta Biochim. Biophys. Sin. 46, 283–290.10.1093/abbs/gmu001Search in Google Scholar PubMed

Zielonka, S., Weber, N., Becker, S., Doerner, A., Christmann, A., Christmann, C., Uth, C., Fritz, J., Schäfer, E., Steinmann, B., et al. (2014). Shark attack: High affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J. Biotechnol. 191, 236–245.10.1016/j.jbiotec.2014.04.023Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0347).


Received: 2018-08-15
Accepted: 2018-11-11
Published Online: 2018-12-08
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.11.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0347/html
Scroll to top button