Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 2, 2014

Age-associated (cardio)metabolic diseases and cross-talk between adipose tissue and skeleton: endocrine aspects

  • Silvia Migliaccio EMAIL logo , Emanuela A. Greco , Antonio Aversa and Andrea Lenzi

Abstract

Aged individuals continue to increase in number, and it is important to understand the pathophysiological mechanisms of age-related changes in order to develop interventions that could contribute to “successful aging”. Metabolic and hormonal factors, age-related changes in body composition, and a decline in physical activity are all involved in the tendency to lose muscle mass, to gain fat mass, and, also, to experience bone loss. Obesity, sarcopenia, and osteoporosis are important widespread health problems that lead to high prevalence of both mortality and morbidity. Indeed, during the last decades, obesity and osteoporosis have become a major health threat around the world. Aging increases the risk of developing obesity, sarcopenia, osteoporosis, and, also, cardiovascular diseases. A reduction of both bone and muscle mass with a corresponding increase of fat mass and inflammation and hormonal imbalance in the elderly lead to and may synergistically increase cardiovascular diseases. This review will focus on the relationship among these different medical situations, trying to clarify the cellular and molecular mechanisms.


Corresponding author: Dr. Silvia Migliaccio, MD, PhD, Unit of Endocrinology, Department of Movement, Human and Health Sciences, “Foro Italico” University of Rome, Largo Lauro De Bosis 15, 00195 Rome, Italy, Phone: +390636733395, Fax: +39064461450, E-mail:

References

1. Hu FB. Overweight and obesity in women: health risks and consequences. J Women Health (Larchmt) 2003; 12:163–72.10.1089/154099903321576565Search in Google Scholar

2. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000;894:1–253.Search in Google Scholar

3. Kado DM, Huang MH, Karlamangla AS, Barrett-Connor E, Greendale GA. Hyperkyphotic posture predicts mortality in older community-dwelling men and women: a prospective study. J Am Geriatr Soc 2004;52:1662–7.10.1111/j.1532-5415.2004.52458.xSearch in Google Scholar

4. Rossner S. Obesity: the disease of the twenty-first century. Int J Obes Relat Metab Disord 2002;26(Suppl 4):S2–4.10.1038/sj.ijo.0802209Search in Google Scholar

5. Ryan AS, Nicklas BJ. Age-related changes in fat deposition in mid-thigh muscle in women: relationships with metabolic cardiovascular disease risk factors. Int J Obes Relat Metab Disord 1999;23:126–32.10.1038/sj.ijo.0800777Search in Google Scholar

6. Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL. Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord 1996;20:1027–32.Search in Google Scholar

7. Reid IR. Relationships among body mass, its components, and bone. Bone 2002;31:547–55.10.1016/S8756-3282(02)00864-5Search in Google Scholar

8. Pasquali R, Casimirri F, Cantobelli S, Melchionda N, Morselli Labate AM, Fabbri R, Capelli M, Bortoluzzi L. Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism 1991;40:101–4.10.1016/0026-0495(91)90199-7Search in Google Scholar

9. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 2005;26:833–76.10.1210/er.2004-0013Search in Google Scholar PubMed

10. Greco EA, Fornari R, Rossi F, Santiemma V, Prossomariti G, Annoscia C, Aversa A, Brama M, Marini M, Donini LM, Spera G, Lenzi A, Lubrano C, Migliaccio S. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int J Clin Pract 2010;64:817–20.10.1111/j.1742-1241.2009.02301.xSearch in Google Scholar PubMed

11. Greco EA, Francomano D, Fornari R, Marocco C, Lubrano C, Papa V, Wannenes F, Di Luigi L, Donini LM, Lenzi A, Aversa A, Migliaccio S. Negative association between trunk fat, insulin resistance and skeleton in obese women. World J Diabetes 2013;4:31–9.10.4239/wjd.v4.i2.31Search in Google Scholar PubMed PubMed Central

12. Compston JE, Flahive J, Hosmer DV, Watts NB, Siris ES, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschifter J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Díez-Pérez A, Cooper C, Chapurlat RD, Boonen S, Anderson FA Jr, Adami S, Adachi JD, GLOW Investigators. Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res 2014:29:487–93.10.1002/jbmr.2051Search in Google Scholar PubMed PubMed Central

13. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–32.10.1038/372425a0Search in Google Scholar PubMed

14. Clemens TL, Karsenty J. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 2011;26:677–80.10.1002/jbmr.321Search in Google Scholar PubMed

15. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab 2009;20:230–6.10.1016/j.tem.2009.02.001Search in Google Scholar PubMed

16. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26:439–51.10.1210/er.2005-0005Search in Google Scholar PubMed

17. Vendrell J, Broch M, Vilarrasa N, Molina A, Gómez JM, Gutiérrez C, Simón I, Soler J, Richart C. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res 2004;12:962–71.10.1038/oby.2004.118Search in Google Scholar PubMed

18. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;34:292–5.10.1056/NEJM199602013340503Search in Google Scholar PubMed

19. Martin SS, Qasim A, Reilly MP. Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 2008;52:1201–10.10.1016/j.jacc.2008.05.060Search in Google Scholar PubMed PubMed Central

20. O’Rourke L, Gronning LM, Yeman SJ, Shepherd PR. Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J Biol Chem 2002;277:42557–62.10.1074/jbc.M202151200Search in Google Scholar PubMed

21. Wallace AM, Mc Mahon AD, Pacjard CJ, Kelly A, Shepherd J, Graw A, Sattar N. Plasma leptin and the risk of cardiovascular disease in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 2001;104:3052–6.10.1161/hc5001.101061Search in Google Scholar PubMed

22. Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res 2004;19:546–55.10.1359/JBMR.040107Search in Google Scholar PubMed

23. Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif Tissue Int 1998;63:456–8.10.1007/s002239900557Search in Google Scholar

24. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197–207.10.1016/S0092-8674(00)81558-5Search in Google Scholar

25. Thomas T. The complex effects of leptin on bone metabolism through multiple pathways. Curr Opin Pharmacol 2004;4: 295–300.10.1016/j.coph.2004.01.009Search in Google Scholar PubMed

26. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999;140:1630–8.10.1210/endo.140.4.6637Search in Google Scholar PubMed

27. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 2002;109:915–21.10.1172/JCI0214588Search in Google Scholar

28. Sainsbury A, Schwarzer C, Couzens M, Fetissov S, Furtinger S, Jenkins A, Cox HM, Sperk G, Hökfelt T, Herzog H. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc Natl Acad Sci USA 2002;99:8938–43.10.1073/pnas.132043299Search in Google Scholar PubMed PubMed Central

29. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE. Structure–function studies of the adipocytes-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 2003;278:9073–85.10.1074/jbc.M207198200Search in Google Scholar PubMed

30. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudio K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with body lipoatrophy and obesity. Nat Med 2001;7:941–6.10.1038/90984Search in Google Scholar PubMed

31. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida H, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057–63.10.1161/01.CIR.103.8.1057Search in Google Scholar

32. Tan KC, Xu A, Chow WS, Lam MC, Ai VH, Tam SG, Lam KL. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J Clin En-docrinol Metab 2004; 89:765–9.10.1210/jc.2003-031012Search in Google Scholar PubMed

33. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2002;290:1084–9.10.1006/bbrc.2001.6307Search in Google Scholar

34. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 2003;33:646–51.10.1016/S8756-3282(03)00237-0Search in Google Scholar

35. Jurimae J, Rembel K, Jurimae T, Rehand M. Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res 2005;37:297–302.10.1055/s-2005-861483Search in Google Scholar PubMed

36. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature 2001;409:307–12.10.1038/35053000Search in Google Scholar PubMed

37. Ukkola O. Resistin – a mediator of obesity-associated insulin resistance or an innocent bystander? Eur J Endocrinol 2002;147:571–4.10.1530/eje.0.1470571Search in Google Scholar PubMed

38. Calabro P, Samudio I, Willerson JT, Yeh ET. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 2004;110:3335–40.10.1161/01.CIR.0000147825.97879.E7Search in Google Scholar PubMed

39. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, Manabe I, Utsonomiya K, Nagai R. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun 2004;314:415–9.10.1016/j.bbrc.2003.12.104Search in Google Scholar PubMed

40. Meilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005;111:932–9.10.1161/01.CIR.0000155620.10387.43Search in Google Scholar PubMed

41. Windham BG, Griswold ME, Farasat SM, Ling SM, Carlson O, Egan JM, Ferrucci L, Najjar SS. Influence of leptin, adiponectin, and resistin on the association between abdominal adiposity and arterial stiffness. Am J Hypertens 2010;23:501–7.10.1038/ajh.2010.8Search in Google Scholar PubMed PubMed Central

42. McManus DD, Lyass A, Ingelsson E, Massaro JM, Meigs JB, Aragam J, Benjamin EJ, Vasan RS. Relations of circulating resistin and adiponectin and cardiac structure and function: the Framingham Offspring Study. Obesity (Silver Spring) 2012;20:1882–6.10.1038/oby.2011.32Search in Google Scholar PubMed PubMed Central

43. Weikert C, Westphal S, Berger K, Dierkes J, Möhlig M, Spranger J, Rimm EB, Willich SN, Boeing H, Pischon T. Plasma resistin levels and risk of myocardial infarction and ischemic stroke. J Clin Endocrinol Metab 2008;93:2647–53.10.1210/jc.2007-2735Search in Google Scholar

44. Thommesen L, Stunes AK, Monjo M, Grøsvik K, Tamburstuen MV, Kjøbli E, Lyngstadaas SP, Reseland JE, Syversen U. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 2006;99:824–34.10.1002/jcb.20915Search in Google Scholar

45. Fasshauer M, Klein J, Krahlisch S, Lossner U, Klier M, Bluher M, Paschke R. GH is a positive regulator of tumor necrosis factor-alpha-induced adipose related protein in 3T3-L1 adipocytes. J Endocrinol 2003;178:523–31.10.1677/joe.0.1780523Search in Google Scholar

46. Hotamisligil G, Arner P, Caro J, Atkinson R, Spiegelman B. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409–15.10.1172/JCI117936Search in Google Scholar

47. Yudkin JS, Eringa E, Stehouwer CD. ‘Vasocrine’ signaling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 2005;365:1817–20.10.1016/S0140-6736(05)66585-3Search in Google Scholar

48. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115–26.10.1056/NEJM199901143400207Search in Google Scholar

49. Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289:1504–8.10.1126/science.289.5484.1504Search in Google Scholar

50. Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, McCracken R, Avioli LV. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci USA 1991;88:5134–8.10.1073/pnas.88.12.5134Search in Google Scholar

51. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–19.10.1016/S0092-8674(00)80209-3Search in Google Scholar

52. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390:175–9.10.1038/36593Search in Google Scholar PubMed

53. Wei S, Kitaura H, Zhou P, Patrick R, Teitelbaum SL. IL-1 mediates TNF-induce osteoclastogenesis. J Clin Invest 2005;115:282–90.10.1172/JCI200523394Search in Google Scholar

54. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-5. J Clin Invest 2000;106:1229–37.10.1172/JCI11066Search in Google Scholar

55. Mohamed-Ali V, Pinkney JK. Adipose tissue as an andocrine and paracrine organ. Int J Obes Relat Metab Disord 1998;22:1145–58.10.1038/sj.ijo.0800770Search in Google Scholar

56. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating IL-6 in relation to adiposity, insulin action and insulin secretion. Obes Res 2001;9:414–7.10.1038/oby.2001.54Search in Google Scholar

57. Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia 2003;46:1594–603.10.1007/s00125-003-1228-zSearch in Google Scholar

58. Bastard JP, Jardel C, Bruckett E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin-6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000;85:3338–42.Search in Google Scholar

59. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 1999;148:209–14.10.1016/S0021-9150(99)00463-3Search in Google Scholar

60. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimowitz H, Cohen HJ, Wallace R. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999;106:506–12.10.1016/S0002-9343(99)00066-2Search in Google Scholar

61. Dodds RA, Merry K, Littlewood A, Gowen M. Expression of mRNA for IL1 beta, IL6 and TGF beta 1 in developing human bone and cartilage. J Histochem Cytochem 1994;42:733–44.10.1177/42.6.8189035Search in Google Scholar PubMed

62. Taguchi Y, Yamamoto M, Yamate T, Int Lin SC, Mocharla H, DeTogni P, Nakayama N, Boyce BF, Abe E, Manolagas SC. Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians 1998;110:559–74.Search in Google Scholar

63. Sims NA, Jenkins BJ, Quinn JM, Nakamura A, Glatt M, Gillespie MT, Ernst M, Martin TJ. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest 2004;113:379–89.10.1172/JCI19872Search in Google Scholar PubMed PubMed Central

64. Van Harmelen V, Elizalde M, Ariapart P, Bergstedt-Lindqvist S, Reynisdottir S, Hoffstedt J, Lundkvist I, Bringman S, Arner P. The association of human adipose angiotensinogen gene expression with abdominal fat distribution in obesity. Int J Obes Relat Metab Disord 2000;24:673–8.10.1038/sj.ijo.0801217Search in Google Scholar PubMed

65. Umemura S, Nyui N, Tamura K, Hibi K, Yamaguchi S, Nakamuru M, Ishigami T, Yabana M, Kihara M, Inoue S, Ishii M. Plasma angiotensinogen concentrations in obese patients. Am J Hypertens 1997;10:629–33.10.1016/S0895-7061(97)00053-8Search in Google Scholar

66. Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Insulin resistance atherosclerosis study. Elevated levels of acute-phase proteins and plasminogen activator inhibior-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002;51:1131–7.10.2337/diabetes.51.4.1131Search in Google Scholar PubMed

67. Mao L, Kawao N, Tamuea Y, Okumoto K, Okada K, Yano M, Matsu O, Kaji H. Plasminogen activator Inhibitor-1 is involved in impaired bone repair associated with diabetes in female mice. PLoS One 2014:9:e92686.10.1371/journal.pone.0092686Search in Google Scholar PubMed PubMed Central

68. Rundle CH, Wang X, Werdegal JE, Mohan S, Lau KH. Fracture healing in mice deficient in plasminogen activator inhibitor-1. Calcif Tissue Int 2008;83:276–84.10.1007/s00223-008-9169-7Search in Google Scholar PubMed

69. Van der Lely AJ, Tschop M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 2004;25:426–57.10.1210/er.2002-0029Search in Google Scholar PubMed

70. Soeki T, Kishimoto I, Schwenke DO, Tokudome T, Horio T, Yoshida M, Hosoda H, Kangawa K. Ghrelin suppresses cardiac sympathetic activity and prevents early left ventricular remodeling in rats with myocardial infarction. Am J Physiol Heart Circ Physiol 2007;294:H426–32.10.1152/ajpheart.00643.2007Search in Google Scholar PubMed

71. Tesauro M, Schinzari F, Iantorno M, Rizza S, Melina D, Lauro D, Cardillo C. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 2005;112: 2986–92.10.1161/CIRCULATIONAHA.105.553883Search in Google Scholar PubMed

72. Vestergaard ET, Andersen NH, Hansen TK, Rasmussen LM, Moller N, Sorensen KE, Sloth E, Jorgensen JO. Cardiovascular effects of intravenous ghrelin infusion in healthy young men. Am J Physiol Heart Circ Physiol 2007;293:H3020–6.10.1152/ajpheart.00496.2007Search in Google Scholar PubMed

73. Van der Velde M, Van der Eerden BC, Sun Y, Almring JM, Van der Ley AJ, Delhhanty PJ, Smith RG, Van Leeuwen JP. An age;dependent interaction with leptin unmasks ghrelin’s bone protective effects. Endocrinology 2013;154:3951.Search in Google Scholar

74. Anagnostis P, Karagiannis A, Kakafika AI, Tziomalos K, Athyros VG, Mikhailidis DP. Atherosclerosis and osteoporosis: age-dependent degenerative processes or related entities? Osteoporos Int 2009;20:197–207.10.1007/s00198-008-0648-5Search in Google Scholar PubMed

75. Rubin MR, Silverberg SJ. Vascular calcification and osteoporosis-the nature of the nexus. J Clin Endocrinol Metab 2004;89:4243–5.10.1210/jc.2004-1324Search in Google Scholar PubMed

76. Osako MK, Nakagami H, Koibuchi N, Shimizu H, Nakagami F, Koriyama H, Shimamura M, Miyake T, Rakugi H, Morishita R. Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res 2010;107:466–75.10.1161/CIRCRESAHA.110.216846Search in Google Scholar PubMed

77. Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 2005;5:618–25.10.1016/j.coph.2005.06.005Search in Google Scholar PubMed

78. Price PA, June HH, Buckley JR, Williamson MK. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterioscler Thromb Vasc Biol 2001;21:1610–6.10.1161/hq1001.097102Search in Google Scholar PubMed

79. Sivas F, Alemdaroğlu E, Elverici E, Kuluğ T, Ozoran K. Serum lipid profile: its relationship with osteoporotic vertebrae fractures and bone mineral density in Turkish postmenopausal women. Rheumatol Int 2009;29:885–90.10.1007/s00296-008-0784-4Search in Google Scholar PubMed

80. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 2006;116:1186–94.10.1172/JCI28550Search in Google Scholar PubMed PubMed Central

81. Napoli N, Vattikuti S, Yarramaneni J, Giri TK, Nekkalapu S, Qualls C, Armamento-Villareal RC. Increased 2-hydroxylation of estrogen is associated with lower body fat and increased lean body mass in postmenopausal women. Maturitas 2012;72:66–71.10.1016/j.maturitas.2012.02.002Search in Google Scholar PubMed PubMed Central

82. Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernández-Luna JL, González-Macías J. Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res 1995;10:439–46.10.1002/jbmr.5650100315Search in Google Scholar PubMed

83. Jeong IK, Cho SW, Kim SW, Choi HJ, Park KS, Kim SY, Lee HK, Cho SH, Oh BH, Shin CS. Lipid profiles and bone mineral density in pre- and post-menopausal women in Korea. Calcif Tissue Int 2010;87:507–12.10.1007/s00223-010-9427-3Search in Google Scholar PubMed

84. Vogt MT, Cauley JA, Kuller LH, Nevitt MC. Bone mineral density and blood flow to the lower extremities: the study of osteoporotic fractures. J Bone Miner Res 1997;12:283–9.10.1359/jbmr.1997.12.2.283Search in Google Scholar PubMed

85. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130:456–69.10.1016/j.cell.2007.05.047Search in Google Scholar PubMed PubMed Central

86. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matriz Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989;69:990–1047.10.1152/physrev.1989.69.3.990Search in Google Scholar PubMed

87. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and dipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008;105:5266–70.10.1073/pnas.0711119105Search in Google Scholar PubMed PubMed Central

88. Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG Jr, Chua SC Jr, Kim JK, Kaestner KH, Karsenty G. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol 2008;183:1235–42.10.1083/jcb.200809113Search in Google Scholar PubMed PubMed Central

89. Covey SD, Wideman RD, McDonald C, Unniappan S, Huynh F, Asadi A, Speck M, Webber T, Chua SC, Kieffer TJ. The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab 2006;4:291–302.10.1016/j.cmet.2006.09.005Search in Google Scholar PubMed

90. Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 2007;27:2302–9.10.1161/ATVBAHA.107.144824Search in Google Scholar PubMed

91. Kiefer FW, Zeyda M, Todoric J, Huber J, Geyeregger R, Weichhart T, Huber J, Geyeregger R, Weichhart T, Aszmann O, Ludvik B, Silberhumer GR, Prager G, Stulnig TM. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology 2008;149:1350–7.10.1210/en.2007-1312Search in Google Scholar PubMed

92. Sarac F, Basoglu OK, Gunduz C, Bayrak H, Biray Avci C, Akcicek F. Association of osteopontin and tumor necrosis factor-alpha levels with insulin resistance in obese patients with obstructive sleep apnea syndrome. J Endocrinol Invest 2011;34:528–33.Search in Google Scholar

93. You JS, Ji HI, Chang KJ, Yoo MC, Yang HI, Jeong IK. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Mol Med Rep 2013;8:579–84.10.3892/mmr.2013.1522Search in Google Scholar PubMed

94. Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, Kiefer FW, Keck M, Aszmann O, Prager G, Zlabinger GJ, Petzelbauer P, Stulnig TM. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology 2011;152:2219–27.10.1210/en.2010-1328Search in Google Scholar PubMed

95. Nakamachi T, Nomiyama T, Gizard F, Heywood EB, Jones KL, Zhao Y, Heywood EB, Jones KL, Zhao Y, Fuentes L, Takebayashi K, Aso Y, Staels B, Inukai T, Bruemmer D. PPARalpha agonists suppress osteopontin expression in macrophages and decrease plasma levels in patients with type 2 diabetes. Diabetes 2007;56:1662–70.10.2337/db06-1177Search in Google Scholar PubMed

96. Ahmad R, Al-Mass A, Al-Ghawas D, Shareif N, Zghoul N, Melhem M, Shareif N, Zghoul N, Melhem M, Hasan A, Al-Ghimlas F, Dermime S, Behbehani K. Interaction of osteopontin with il-18 in obese individuals: implications for insulin resistance. PLoS One 2013;8:639–44.10.1371/journal.pone.0063944Search in Google Scholar PubMed PubMed Central

97. Regitz-Zagrosek V, Lehmkuhl E, Weickert MO. Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol 2006;95:136–47.10.1007/s00392-006-0351-5Search in Google Scholar

98. Goff DC Jr, Bertoni AG, Kramer H, Bonds D, Blumenthal RS, Tsai MY, Psaty BM. Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation 2006;113:647–56.10.1161/CIRCULATIONAHA.105.552737Search in Google Scholar

99. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404–11.10.1210/jc.2003-030242Search in Google Scholar

100. Zirilli L, Rochira V, Diazzi C, Caffagni G, Carani C. Human models of aromatase deficiency. J Steroid Biochem Mol Biol 2008;109:212–8.10.1016/j.jsbmb.2008.03.026Search in Google Scholar

101. Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M, Clyne CD, Davis S, Simpson ER, Carani C. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 2004;89:61–70.10.1210/jc.2003-030313Search in Google Scholar

102. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763–70.10.1038/27376Search in Google Scholar

103. Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG, Wen X, Wu GD, Lazar MA. A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci USA 2001;98:502–6.10.1073/pnas.98.2.502Search in Google Scholar

104. Dong JY, Wang P, He K, Qin LQ. Effect of soy isoflavones on circulating C-reactive protein in postmenopausal women: meta-analysis of randomized controlled trials. Menopause 2011;18:1256–62.10.1097/gme.0b013e31821bfa24Search in Google Scholar

105. Oger E, Alhenc-Gelas M, Plu-Bureau G, Mennen L, Cambillau M, Guize L, Pujol Y, Scarabin P. Association of circulating cellular adhesion molecules with menopausal status and hormone replacement therapy. Time-dependent change in transdermal, but not oral estrogen users. Thromb Res 2001;101:35–43.10.1016/S0049-3848(00)00382-0Search in Google Scholar

106. Bakir S, Mori T, Durand J, Chen YF, Thompson JA, Oparil S. Estrogen-induced vasoprotection is estrogen receptor dependent: evidence from the balloon-injured rat carotid artery model. Circulation 2000;101:2342–4.10.1161/01.CIR.101.20.2342Search in Google Scholar

107. Wang YX, Fitch RM. Vascular stiffness: measurements, mechanisms and implications. Curr Vasc Pharmacol 2004;2:379–84.10.2174/1570161043385448Search in Google Scholar

108. Xu Y, Arenas IA, Armstrong SJ, Plahta WC, Xu H, Davidge ST. Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor-alpha. Cardiovasc Res 2006;69:836–44.10.1016/j.cardiores.2005.11.031Search in Google Scholar

109. Karas RH, Hodgin JB, Kwoun M, Krege JH, Aronovitz M, Mackey W, Gustafsson JA, Korach KS, Smithies O, Mendelsohn ME. Estrogen inhibits the vascular injury response in estrogen receptor beta-deficient female mice. Proc Natl Acad Sci USA 1999;96:15133–6.10.1073/pnas.96.26.15133Search in Google Scholar

110. Brouchet L, Krust A, Dupont S, Chambon P, Bayard F, Arnal JF. Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-β. Circulation 2001;103:423–8.10.1161/01.CIR.103.3.423Search in Google Scholar

111. Christian RC, Liu PY, Harrington S, Ruan M, Miller VM, Fitzpatrick LA. Intimal estrogen receptor (ER)beta, but not ERalpha expression, is correlated with coronary calcification and atherosclerosis in pre- and postmenopausal women. J Clin Endocrinol Metab 2006;91:2713–20.10.1210/jc.2005-2672Search in Google Scholar

112. Krom YD, Pires NM, Jukema JW, de Vries MR, Frants RR, Havekes LM, van Dijk KW, Quax PH. Inhibition of neointima formation by local delivery of estrogen receptor alpha and beta specific agonists. Cardiovasc Res 2007;73:217–26.10.1016/j.cardiores.2006.10.024Search in Google Scholar

113. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen receptor gene in a man. N Engl J Med 1994;331:1056–61.10.1056/NEJM199410203311604Search in Google Scholar

114. Jensen LB, Vestergaard P, Hermann AP, Gram J, Eiken P, Abrahamsen B, Brot C, Kolthoff N, Sørensen OH, Beck-Nielsen H, Nielsen SP, Charles P, Mosekilde L. Hormone replacement therapy dissociates fat mass and bone mass, and tends to reduce weight gain in early postmenopausal women: a randomized controlled 5-year clinical trial of the Danish Osteoporosis Prevention Study. J Bone Miner Res 2003;18:333–42.10.1359/jbmr.2003.18.2.333Search in Google Scholar

115. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. J Am Med Assoc 2002;288:321–33.10.1001/jama.288.3.321Search in Google Scholar

116. Martin RB, Zissimos SL. Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone 1991;12:123–31.10.1016/8756-3282(91)90011-7Search in Google Scholar

117. Wu CW, Tajar A, Beynon JM, Pye SR, Silman AJ, Finn JD, O’Neill TW, Bartfai G, Casanueva FF, Forti G, Giwercman A, Han TS, Kula K, Lean ME, Pendleton N, Punab M, Boonen S, Vanderschueren D, Labrie F, Huhtaniemi IT, EMAS Group. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med 2010;363:123–35.10.1056/NEJMoa0911101Search in Google Scholar

118. Lunenfeld B, Mskhalaya G, Kalinchenko S, Tishova Y. Recommendations on the diagnosis, treatment and monitoring of late-onset hypogonadism in men – a suggested update. Aging Male 2013;16:143–50.10.3109/13685538.2013.853731Search in Google Scholar

119. Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care 2007:30:911–7.10.2337/dc06-1426Search in Google Scholar

120. Derby CA, Zilber S, Brambilla D, Morales KH, McKinlay JB. Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin Endocrinol (Oxf) 2006;65:125–31.10.1111/j.1365-2265.2006.02560.xSearch in Google Scholar

121. Gray A, Feldman HA, Mckinlay JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab 1991;73:1016–25.10.1210/jcem-73-5-1016Search in Google Scholar

122. Svartberg J, Von Muhlen D, Sundsfjord J, Jorde R. Waist circumference and testosterone levels in community dwelling men. The Tromso study. Eur J Epidemiol 2004;19:657–63.10.1023/B:EJEP.0000036809.30558.8fSearch in Google Scholar

123. Seidell JC, Bjorntorp P, Sjostrom L. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism 1990;39:897–901.10.1016/0026-0495(90)90297-PSearch in Google Scholar

124. Aversa A, Bruzziches R, Francomano D, Spera G, Lenzi A. Efficacy and safety of two different testosterone undecanoate formulations in hypogonadal men with metabolic syndrome. J Endocrinol Invest 2010;33:776–83.10.1007/BF03350341Search in Google Scholar PubMed

125. Aversa A, Bruzziches R, Francomano D, Rosano G, Isidori AM, Lenzi A, Spera G. Effects of testosterone undecanoate on cardiovascular risk factors and atherosclerosis in middle-aged men with late onset hypogonadism and metabolic syndrome: results from a 24-months, randomized, double-blind, placebo-controlled study. J Sex Med 2010;7:3495–503.10.1111/j.1743-6109.2010.01931.xSearch in Google Scholar PubMed

126. Francomano D, Bruzziches R, Barbaro G, Lenzi A, Aversa A. Effects of testosterone undecanoate replacement and withdrawal on cardio-metabolic, hormonal and body composition outcomes in severely obese hypogonadal men: a pilot study. J Endocrinol Invest 2014 DOI 10.1007/s40618-014-0066-9.10.1007/s40618-014-0066-9Search in Google Scholar PubMed

127. Corona G, Rastrelli G, Monami M, Guay A, Buvat J, Sforza A, Forti G, Mannucci E, Maggi MG. Hypogonadism as a risk factor for cardiovascular mortality in men: a meta-analytic study. Eur J Endocrinol 2011;165:687–701.10.1530/EJE-11-0447Search in Google Scholar PubMed

128. Malkin CJ, Pugh PJ, Morris PD, Kerry KE, Jones RD, Jones TH, Channer KS. Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart 2004;90:871–6.10.1136/hrt.2003.021121Search in Google Scholar PubMed PubMed Central

129. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D’Agostino RB, Wolf M, Vasan RS. Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008;117:503–11.10.1161/CIRCULATIONAHA.107.706127Search in Google Scholar PubMed PubMed Central

130. Bellastella G, Maiorino MI, Olita L Capuano A, Rafaniello C, Giugliano D, Esposito K. Vitamin D deficiency in type 2 diabetic patients with hypogonadism. J Sex Med 2014;11:536–42.10.1111/jsm.12384Search in Google Scholar PubMed

131. Nimitphong H, Chanprasertyothin S, Jongjaroenprasert W, Ongphiphadhanakul B. The association between vitamin D status and circulating adiponectin independent of adiposity in subjects with abnormal glucose tolerance. Endocrine 2009;36:205–10.10.1007/s12020-009-9216-9Search in Google Scholar PubMed

132. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G. Endocrine regulation of male fertility by the skeleton. Cell 2011;144:796–809.10.1016/j.cell.2011.02.004Search in Google Scholar PubMed PubMed Central

133. Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Prog Horm Res 2002;57:385–409.10.1210/rp.57.1.385Search in Google Scholar PubMed

134. Migliaccio S, Francomano D, Bruzziches R, Greco EA, Fornari R, Donini LM, Lenzi A. Aversa Trunk fat negatively influences skeletal and testicular functions in obese men: clinical implications for the aging male. Int J Endocrinol 2013; doi: 10.1155/2013/182753. Epub 2013 Nov 20.10.1155/2013/182753Search in Google Scholar PubMed PubMed Central

135. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 2010:205:201–10.10.1677/JOE-09-0431Search in Google Scholar PubMed

136. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 2008;29:535–59.10.1210/er.2007-0036Search in Google Scholar PubMed PubMed Central

137. Moran A, Jacobs DR Jr, Steinberger J, Cohen P, Hong CP, Prineas R, Sinaiko AR. Association between the insulin resistance of puberty and the insulin-like growth factor-I/growth hormone axis. J Clin Endocrinol Metab 2002;87:4817–20.10.1210/jc.2002-020517Search in Google Scholar PubMed

138. Corpas E, Harman SM, Blackman MR. Human growth hormone and human aging. Endocr Rev 1993;14:20–39.10.1210/edrv-14-1-20Search in Google Scholar PubMed

139. Veldhuis JD, Iranmanesh A. Physiological regulation of the human growth hormone (GH)-insulin-like growth factor type I (IGF-I) axis: predominant impact of age, obesity, gonadal function, and sleep. Sleep 1996;19:(10Suppl):S221–4.10.1093/sleep/19.suppl_10.S221Search in Google Scholar

140. Landin-Wilhelmsen K, Wilhelmsen L, Lappas G, Rosén T, Lindstedt G, Lundberg PA, Bengtsson BA. Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol 1994;41:351–7.10.1111/j.1365-2265.1994.tb02556.xSearch in Google Scholar PubMed

141. Dela F, Kjaer M. Resistance training, insulin sensitivity and muscle function in the elderly. Essays Biochem 2006;42:75–88.10.1042/bse0420075Search in Google Scholar PubMed

142. Franco C, Bengtsson BA, Johannsson G. The GH/IGF-1 axis in obesity: physiological and pathological aspects. Metab Syndr Relat Disord 2006;4:51–6.10.1089/met.2006.4.51Search in Google Scholar PubMed

143. Fornari R, Francomano D, Greco EA, Marocco C, Lubrano C, Wannenes F, Papa V, Bimonte VM, Donini LM, Lenzi A, Aversa A, Migliaccio S. Lean mass in obese adult subjects correlates with higher levels of vitamin D, insulin sensitivity and lower inflammation. J Endocrinol Invest 2014 Oct 29. (Epub ahead of print).10.1007/s40618-014-0189-zSearch in Google Scholar PubMed

Received: 2014-10-19
Accepted: 2014-11-5
Published Online: 2014-12-2
Published in Print: 2014-10-1

©2014 by De Gruyter

Downloaded on 24.1.2025 from https://www.degruyter.com/document/doi/10.1515/hmbci-2014-0030/html
Scroll to top button