Abstract
Protein ubiquitination has been identified as a regulatory mechanism in key cellular activities, and deubiquitination is recognized as an important step in processes governed by ubiquitin and ubiquitin-like modifiers. Viruses are known to target ubiquitin and ubiquitin-like modifier pathways using various strategies, including the recruitment of host deubiquitinating enzymes. Deubiquitinating activities have recently been described for proteins from three different virus families (adenovirus, coronavirus and herpesvirus), and predicted for others. This review centers on structural-functional aspects that characterize the confirmed viral deubiquitinating enzymes, and their relationships to established families of cellular deubiquitinating enzymes.
References
Ambroggio, X.I., Rees, D.C., and Deshaies, R.J. (2004). JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol.2, e2.10.1371/journal.pbio.0020002Search in Google Scholar
Amerik, A.Y. and Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta1695, 189–207.10.1016/j.bbamcr.2004.10.003Search in Google Scholar
Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J.P., Chothia, C., and Murzin, A.G. (2004). SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res.32, D226–D229.10.1093/nar/gkh039Search in Google Scholar
Balakirev, M.Y., Jaquinod, M., Haas, A.L., and Chroboczek, J. (2002). Deubiquitinating function of adenovirus proteinase. J. Virol.76, 6323–6331.10.1128/JVI.76.12.6323-6331.2002Search in Google Scholar
Balakirev, M.Y., Tcherniuk, S.O., Jaquinod, M., and Chroboczek, J. (2003). Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep.4, 517–522.10.1038/sj.embor.embor824Search in Google Scholar
Baniecki, M.L., McGrath, W.J., McWhirter, S.M., Li, C., Toledo, D.L., Pellicena, P., Barnard, D.L., Thorn, K.S., and Mangel, W.F. (2001). Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc. Biochemistry40, 12349–12356.10.1021/bi0109008Search in Google Scholar
Banks, L., Pim, D., and Thomas, M. (2003). Viruses and the 26S proteasome: hacking into destruction. Trends Biochem. Sci.28, 452–459.10.1016/S0968-0004(03)00141-5Search in Google Scholar
Baroth, M., Orlich, M., Thiel, H.J., and Becher, P. (2000). Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology278, 456–466.10.1006/viro.2000.0644Search in Google Scholar
Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A.D., and Baker, S.C. (2005). The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol.79, 15189–15198.10.1128/JVI.79.24.15189-15198.2005Search in Google Scholar
Borodovsky, A., Ovaa, H., Kolli, N., Gan-Erdene, T., Wilkinson, K.D., Ploegh, H.L., and Kessler, B.M. (2002). Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol.9, 1149–1159.10.1016/S1074-5521(02)00248-XSearch in Google Scholar
Brown, M.T. and Mangel, W.F. (2004). Interaction of actin and its 11-amino acid C-terminal peptide as cofactors with the adenovirus proteinase. FEBS Lett.563, 213–218.10.1016/S0014-5793(04)00285-6Search in Google Scholar
Brown, M.T., McBride, K.M., Baniecki, M.L., Reich, N.C., Marriott, G., and Mangel, W.F. (2002). Actin can act as a cofactor for a viral proteinase in the cleavage of the cytoskeleton. J. Biol. Chem.277, 46298–46303.10.1074/jbc.M202988200Search in Google Scholar PubMed
Chen, P.H., Ornelles, D.A., and Shenk, T. (1993). The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J. Virol.67, 3507–3514.10.1128/jvi.67.6.3507-3514.1993Search in Google Scholar PubMed PubMed Central
Cotten, M. and Weber, J.M. (1995). The adenovirus protease is required for virus entry into host cells. Virology213, 494–502.10.1006/viro.1995.0022Search in Google Scholar PubMed
d'Azzo, A., Bongiovanni, A., and Nastasi, T. (2005). E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic6, 429–441.10.1111/j.1600-0854.2005.00294.xSearch in Google Scholar PubMed
Dao, C.T. and Zhang, D.E. (2005). ISG15: a ubiquitin-like enigma. Front. Biosci.10, 2701–2722.10.2741/1730Search in Google Scholar PubMed
Ding, J., McGrath, W.J., Sweet, R.M., and Mangel, W.F. (1996). Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J.15, 1778–1783.10.1002/j.1460-2075.1996.tb00526.xSearch in Google Scholar
Dong, S. and Baker, S.C. (1994). Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology204, 541–549.10.1006/viro.1994.1567Search in Google Scholar PubMed PubMed Central
Everett, R.D., Meredith, M., Orr, A., Cross, A., Kathoria, M., and Parkinson, J. (1997). A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J.16, 1519–1530.10.1093/emboj/16.7.1519Search in Google Scholar PubMed PubMed Central
Giannakopoulos, N.V., Luo, J.K., Papov, V., Zou, W., Lenschow, D.J., Jacobs, B.S., Borden, E.C., Li, J., Virgin, H.W., and Zhang, D.E. (2005). Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem. Biophys. Res. Commun.336, 496–506.10.1016/j.bbrc.2005.08.132Search in Google Scholar PubMed
Glickman, M.H. and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev.82, 373–428.10.1152/physrev.00027.2001Search in Google Scholar
Greber, U.F., Webster, P., Weber, J., and Helenius, A. (1996). The role of the adenovirus protease on virus entry into cells. EMBO J.15, 1766–1777.10.1002/j.1460-2075.1996.tb00525.xSearch in Google Scholar
Haglund, K. and Dikic, I. (2005). Ubiquitylation and cell signaling. EMBO J.24, 3353–3359.10.1038/sj.emboj.7600808Search in Google Scholar
Han, Y.S., Chang, G.G., Juo, C.G., Lee, H.J., Yeh, S.H., Hsu, J.T., and Chen, X. (2005). Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition. Biochemistry44, 10349–10359.10.1021/bi0504761Search in Google Scholar
Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Rota, P.A., and Baker, S.C. (2004). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol.78, 13600–13612.10.1128/JVI.78.24.13600-13612.2004Search in Google Scholar
Herold, J., Siddell, S.G., and Gorbalenya, A.E. (1999). A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J. Biol. Chem.274, 14918–14925.10.1074/jbc.274.21.14918Search in Google Scholar
Hetfeld, B.K.J., Helfrich, A., Kapelari, B., Scheel, H., Hofmann, K., Guterman, A., Glickman, M., Schade, R., Kloetzel, P.M., and Dubiel, W. (2005). The zinc finger of the CSN-associated deubiquitinating enzyme USP15 is essential to rescue the E3 ligase Rbx1. Curr. Biol.15, 1217–1221.10.1016/j.cub.2005.05.059Search in Google Scholar
Honig, J.E., Osborne, J.C., and Nichol, S.T. (2004). Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology321, 29–35.10.1016/j.virol.2003.09.042Search in Google Scholar
Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J.W., Gu, W., Cohen, R.E., and Shi, Y. (2002). Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell111, 1041–1054.10.1016/S0092-8674(02)01199-6Search in Google Scholar
Hu, M., Li, P., Sing, L., Jeffrey, P., Chenova, T., Wilkinson, K.D., Cohen, R.E., and Shi, Y. (2005). Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J.24, 3747–3756.10.1038/sj.emboj.7600832Search in Google Scholar PubMed PubMed Central
Iyer, L.M., Koonin, E.V., and Aravind, L. (2004). Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle3, 1440–1450.10.4161/cc.3.11.1206Search in Google Scholar
Johnston, S.C., Riddle, S.M., Cohen, R.E., and Hill, C.P. (1999). Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J.18, 3877–3887.10.1093/emboj/18.14.3877Search in Google Scholar
Kattenhorn, L.M., Korbel, G.A., Kessler, B.M., Spooner, E., and Ploegh, H.L. (2005). A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family herpesviridae. Mol. Cell19, 547–557.10.1016/j.molcel.2005.07.003Search in Google Scholar
Katze, M.G., He, Y., and Gale, M. Jr. (2002). Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol.2, 675–687.10.1038/nri888Search in Google Scholar
Kiel, C. and Serrano, L. (2006). The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J. Mol. Biol.355, 821–844.10.1016/j.jmb.2005.10.010Search in Google Scholar
Krishna, S.S. and Grishin, N.V. (2004). The finger domain of the human deubiquitinating enzyme HAUSP is a zinc ribbon. Cell Cycle3, 1046–1049.10.4161/cc.3.8.1017Search in Google Scholar
Krylov, D.M. and Koonin, E.V. (2001). A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr. Biol.11, R584–R587.Search in Google Scholar
Li, M., Brooks, C.L., Kon, N., and Gu, W. (2004). A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell13, 879–886.10.1016/S1097-2765(04)00157-1Search in Google Scholar
Li, S.J. and Hochstrasser, M. (1999). A new protease required for cell-cycle progression in yeast. Nature398, 246–251.10.1038/18457Search in Google Scholar PubMed
Li, S.J. and Hochstrasser, M. (2000). The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol.20, 2367–2377.10.1128/MCB.20.7.2367-2377.2000Search in Google Scholar PubMed PubMed Central
Lindner, H.A., Fotouhi-Ardakani, N., Lytvyn, V., Lachance, P., Sulea, T., and Menard, R. (2005). The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol.79, 15199–15208.10.1128/JVI.79.24.15199-15208.2005Search in Google Scholar PubMed PubMed Central
Makarova, K.S., Aravind, L., and Koonin, E.V. (2000). A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci.25, 50–52.10.1016/S0968-0004(99)01530-3Search in Google Scholar
Mangel, W.F., McGrath, W.J., Toledo, D.L., and Anderson, C.W. (1993). Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature361, 274–275.10.1038/361274a0Search in Google Scholar
McGrath, W.J., Baniecki, M.L., Li, C., McWhirter, S.M., Brown, M.T., Toledo, D.L., and Mangel, W.F. (2001). Human adenovirus proteinase: DNA binding and stimulation of proteinase activity by DNA. Biochemistry40, 13237–13245.10.1021/bi0111653Search in Google Scholar
McGrath, W.J., Ding, J., Didwania, A., Sweet, R.M., and Mangel, W.F. (2003). Crystallographic structure at 1.6-Å resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: insights on a new fold. Biochim. Biophys. Acta1648, 1–11.Search in Google Scholar
Mossessova, E. and Lima, C.D. (2000). Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell5, 865–876.10.1016/S1097-2765(00)80326-3Search in Google Scholar
Narasimhan, J., Wang, M., Fu, Z., Klein, J.M., Haas, A.L., and Kim, J.J. (2005). Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem.280, 27356–27365.10.1074/jbc.M502814200Search in Google Scholar PubMed
Nanao, M.H., Tcherniuk, S.O., Chroboczek, J., Dideberg, O., Dessen, A., and Balakirev, M.Y. (2004). Crystal structure of human otubain 2. EMBO Rep.5, 783–788.10.1038/sj.embor.7400201Search in Google Scholar PubMed PubMed Central
Nicastro, G., Menon, R.P., Masino, L., Knowles, P.P., McDonald, N.Q., and Pastore, A. (2005). The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc. Natl. Acad. Sci. USA102, 10493–10498.10.1073/pnas.0501732102Search in Google Scholar PubMed PubMed Central
Nijman, S.M.B., Luna-Vargas, M.P.A., Velds, A., Brummelkamp, T.R., Dirac, A.M.G., Sixma, T.K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell123, 773–786.10.1016/j.cell.2005.11.007Search in Google Scholar PubMed
Palacios, S., Perez, L.H., Welsch, S., Schleich, S., Chmielarska, K., Melchior, F., and Locker, J.K. (2005). Quantitative SUMO-1 modification of a vaccinia virus protein is required for its specific localization and prevents its self-association. Mol. Biol. Cell16, 2822–2835.10.1091/mbc.e04-11-1005Search in Google Scholar PubMed PubMed Central
Passmore, L.A. and Barford, D. (2004). Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J.379, 513–525.10.1042/bj20040198Search in Google Scholar PubMed PubMed Central
Rawlings, N.D., Tolle, D.P., and Barrett, A.J. (2004). MEROPS: the peptidase database. Nucleic Acids Res.32, D160–D164.10.1093/nar/gkh071Search in Google Scholar
Reverter, D. and Lima, C.D. (2004). A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure12, 1519–1531.10.1016/j.str.2004.05.023Search in Google Scholar
Reverter, D., Wu, K., Erdene, T.G., Pan, Z.Q., Wilkinson, K.D., and Lima, C.D. (2005). Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1. J. Mol. Biol.345, 141–151.10.1016/j.jmb.2004.10.022Search in Google Scholar
Rubio, D., Alejo, A., Rodriguez, I., and Salas, M.L. (2003). Polyprotein processing protease of African swine fever virus: purification and biochemical characterization. J. Virol.77, 4444–4448.10.1128/JVI.77.7.4444-4448.2003Search in Google Scholar
Saridakis, V., Sheng, Y., Sarkari, F., Holowaty, M.N., Shire, K., Nguyen, T., Zhang, R.G., Liao, J., Lee, W., and Edwards, A.M. (2005). Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1: implications for EBV-mediated immortalization. Mol. Cell18, 25–36.10.1016/j.molcel.2005.02.029Search in Google Scholar
Schlieker, C., Korbel, G.A., Kattenhorn, L.M., and Ploegh, H.L. (2005). A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J. Virol.79, 15582–15585.10.1128/JVI.79.24.15582-15585.2005Search in Google Scholar
Shackelford, J. and Pagano, J.S. (2005). Targeting of host-cell ubiquitin pathways by viruses. Essays Biochem.41, 139–156.10.1042/bse0410139Search in Google Scholar
Sheng, Y., Saridakis, V., Sarkari, F., Duan, S., Wu, T., Arrowsmith, C.H., and Frappier, L. (2006). Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat. Struct. Mol. Biol.13, 285–291.10.1038/nsmb1067Search in Google Scholar
Sircar, S., Ruzindana-Umunyana, A., Neugebauer, W., and Weber, J.M. (1998). Adenovirus endopeptidase and papain are inhibited by the same agents. Antiviral Res.40, 45–51.10.1016/S0166-3542(98)00040-0Search in Google Scholar
Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L.M., Guan, Y., Rozanov, M., Spaan, W.J.M., and Gorbalenya, A.E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol.331, 991–1004.10.1016/S0022-2836(03)00865-9Search in Google Scholar
Sou, Y.s., Tanida, I., Komatsu, M., Ueno, T., and Kominami, E. (2005). Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP and GATE-16. J. Biol. Chem.281, 3017–3024.Search in Google Scholar
Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R.L., Zhao, Q., et al. (1998). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science282, 754–759.10.1126/science.282.5389.754Search in Google Scholar
Strunnikov, A.V., Aravind, L., and Koonin, E.V. (2001). Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics158, 95–107.10.1093/genetics/158.1.95Search in Google Scholar
Sugawara, K., Suzuki, N.N., Fujioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem.280, 40058–40065.10.1074/jbc.M509158200Search in Google Scholar
Sulea, T., Lindner, H.A., Purisima, E.O., and Menard, R. (2005). Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease? J. Virol.79, 4550–4551.10.1128/JVI.79.7.4550-4551.2005Search in Google Scholar
Sulea, T., Lindner, H.A., Purisima, E.O., and Menard, R. (2006). Binding site-based classification of coronaviral papain-like proteases. Proteins62, 760–775.10.1002/prot.20802Search in Google Scholar
Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E.J., Rabenau, H., Doerr, H.W., et al. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol.84, 2305–2315.10.1099/vir.0.19424-0Search in Google Scholar
Weber, J. (1976). Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J. Virol.17, 462–471.Search in Google Scholar
Weber, J.M. (1995). Adenovirus endopeptidase and its role in virus infection. Curr. Top. Microbiol. Immunol.199, 227–235.10.1007/978-3-642-79496-4_12Search in Google Scholar
Webster, A., Russell, S., Talbot, P., Russell, W.C., and Kemp, G.D. (1989). Characterization of the adenovirus proteinase: substrate specificity. J. Gen. Virol.70, 3225–3234.10.1099/0022-1317-70-12-3225Search in Google Scholar
Webster, A., Hay, R.T., and Kemp, G. (1993). The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell72, 97–104.10.1016/0092-8674(93)90053-SSearch in Google Scholar
Welchman, R.L., Gordon, C., and Mayer, R.J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol.6, 599–609.10.1038/nrm1700Search in Google Scholar PubMed
Zhao, C., Denison, C., Huibregtse, J.M., Gygi, S., and Krug, R.M. (2005). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. USA102, 10200–10205.10.1073/pnas.0504754102Search in Google Scholar PubMed PubMed Central
Zhu, M., Shao, F., Innes, R.W., Dixon, J.E., and Xu, Z. (2004). The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc. Natl. Acad. Sci. USA101, 302–307.10.1073/pnas.2036536100Search in Google Scholar PubMed PubMed Central
Ziebuhr, J. (2005). The coronavirus replicase. Curr. Top. Microbiol. Immunol.287, 57–94.10.1007/3-540-26765-4_3Search in Google Scholar PubMed PubMed Central
©2006 by Walter de Gruyter Berlin New York