Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 24, 2005

Recombinant human cathepsin X is a carboxymonopeptidase only: a comparison with cathepsins B and L

  • Luciano Puzer , Simone S. Cotrin , Maria H.S. Cezari , Izaura Y. Hirata , Maria A. Juliano , Ivica Stefe , Dusan Turk , Boris Turk , Luiz Juliano and Adriana K. Carmona
From the journal Biological Chemistry

Abstract

The S1 and S2 subsite specificity of recombinant human cathepsins X was studied using fluorescence resonance energy transfer (FRET) peptides with the general sequences Abz-Phe-Xaa-Lys(Dnp)-OH and Abz-Xaa-Arg-Lys(Dnp)-OH, respectively (Abz=ortho-aminobenzoic acid and Dnp=2,4-dinitrophenyl; Xaa=various amino acids). Cathepsin X cleaved all substrates exclusively as a carboxymonopeptidase and exhibited broad specificity. For comparison, these peptides were also assayed with cathepsins B and L. Cathepsin L hydrolyzed the majority of them with similar or higher catalytic efficiency than cathepsin X, acting as an endopeptidase mimicking a carboxymonopeptidase (pseudo-carboxymonopeptidase). In contrast, cathepsin B exhibited poor catalytic efficiency with these substrates, acting as a carboxydipeptidase or an endopeptidase. The S1′ subsite of cathepsin X was mapped with the peptide series Abz-Phe-Arg-Xaa-OH and the enzyme preferentially hydrolyzed substrates with hydrophobic residues in the P1′ position.

:

Corresponding author

References

Alves, M.F.M., Puzer, L., Cotrin, S.S., Juliano, M.A., Juliano, L., Bromme, D., and Carmona, A.K. (2003). S3 to S3′ subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates. Biochem. J.373, 981–986.10.1042/bj20030438Search in Google Scholar

Cezari, M.H., Puzer, L., Juliano, M.A., Carmona, A.K., and Juliano, L. (2002). Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides. Biochem. J.368, 365–369.10.1042/bj20020840Search in Google Scholar

Cirman, T., Oresic, K., Mazovec, G.D., Turk, V., Reed, J.C., Myers, R.M., Salvesen, G.S., and Turk, B. (2004). Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J. Biol. Chem.279, 3578–3587.10.1074/jbc.M308347200Search in Google Scholar

Devanathan, G., Turnbull, J.L., Ziomek, E., Purisima, E.O., Menard, R., and Sulea, T. (2005). Carboxy-monopeptidase substrate specificity of human cathepsin X. Biochem. Biophys. Res. Commun.329, 445–452.10.1016/j.bbrc.2005.01.150Search in Google Scholar

Guncar, G., Pungercic, G., Klemencic, I., Turk, V., and Turk, D. (1999). Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J.18, 793–803.10.1093/emboj/18.4.793Search in Google Scholar

Guncar, G., Klemencic, I., Turk, B., Turk, V., Carmona, A.K., Juliano, L., and Turk, D. (2000). Crystal structure of cathepsin X: a flip-flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Struct. Fold Des.8, 305–313.10.1016/S0969-2126(00)00108-8Search in Google Scholar

Kargel, H.J., Dettmer, R., Etzold, G., Kirschke, H., Bohley, P., and Langner, J. (1980). Action of cathepsin L on the oxidized B-chain of bovine insulin. FEBS Lett.114, 257–260.10.1016/0014-5793(80)81128-8Search in Google Scholar

Klemencic, I., Carmona, A.K., Cezari, M.H.S., Juliano, M.A., Juliano, L., Guncar, G., Turk, D., Krizaj, I., Turk, V., and Turk, B. (2000). Biochemical characterization of human cathepsin X revealed that the enzyme is an exopeptidase, acting as a carboxymonopeptidase or carboxydipeptidase. Eur. J. Biochem.267, 5404–5412.10.1046/j.1432-1327.2000.01592.xSearch in Google Scholar PubMed

Kos, J., Sekirnik, A., Premzl, A., Zavasnik-Bergant, V., Langer-holc, T., Stefe, I., Turk, B., Werle, B., Golouh, R., Jeras, M. and Turk, V. (2005). Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues. Exp. Cell Res.306, 103–113.10.1016/j.yexcr.2004.12.006Search in Google Scholar PubMed

Kopitar-Jerala, N., Bevec, T., Barlic-Magania, D., Gubensek, F., and Turk, V. (2001). Anti-cathepsin L monoclonal antibodies that distinguish cathepsin L from cathepsin V. Biol. Chem.382, 867–870.10.1515/bchm.2001.382.5.867Search in Google Scholar

Leatherbarrow, R.J. (1992). Grafit Version 3.0 Erithacus Software Ltd., Surrey, UK.Search in Google Scholar

Menard, R., Carmona, E., Plouffe, C., Bromme, D., Konishi, Y., Lefebvre, J., and Storer, A.C. (1993). The specificity of the S1′ subsite of cysteine proteases. FEBS Lett.328, 107–110.10.1016/0014-5793(93)80975-ZSearch in Google Scholar

Musil, D., Zucic, D., Engh, R.A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., and Bode, W. (1991). The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J.10, 2321–2330.Search in Google Scholar

Nagler, D.K. and Menard, R. (1998). Human cathepsin X: a novel cysteine protease of the papain family with a very short proregion and unique insertion. FEBS Lett.434, 135–139.10.1016/S0014-5793(98)00964-8Search in Google Scholar

Nagler, D.K., Sulea, T., and Menard, R. (1999a). Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Biochem. Biophys. Res. Commun.257, 313–318.10.1006/bbrc.1999.0461Search in Google Scholar

Nagler, D.K., Zhang, R., Tam, W., Sulea, T., Purisima, E.O., and Menard, R. (1999b). Human cathepsin X: a cysteine protease with unique carboxypeptidase activity. Biochemistry38, 12648–12654.10.1021/bi991371zSearch in Google Scholar

Nägler, D.K., Tam, W., Storer, W.C., Krupa, J.C., Mort, J.S., and Menard, R. (1999c). Interdependency of sequence and positional specificities for cysteine proteases of the papain family. Biochemistry38, 4868–4874.10.1021/bi982632sSearch in Google Scholar

Nagler, D.K., Kruger, S., Kellner, A., Ziomek, E., Menard, R., Buhtz, P., Krams, M., Roessner, A., and Kellner, U. (2004). Up-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasia. Prostate60, 109–119.10.1002/pros.20046Search in Google Scholar

Nascimento, F.D., Rizzi, C.C., Nantes, I.L., Stefe, I., Turk, B., Carmona, A.K., Nader, H.B., Juliano, L., and Tersariol, I.L. (2005). Cathepsin X binds to cell surface heparan sulfate proteoglycans. Arch. Biochem. Biophys.436, 323–332.10.1016/j.abb.2005.01.013Search in Google Scholar

Pauly, T.A., Sulea, T., Ammirati, M., Sivaraman, J., Danley, D.E., Griffor, M.C., Kamath, A.V., Wang, I.K., Laird, E.R., et al. (2003). Specificity determinants of human cathepsin S revealed by crystal structures of complexes. Biochemistry42, 3203–3213.10.1021/bi027308iSearch in Google Scholar

Polgar, L. and Csoma, C. (1987). Dissociation of ionizing groups in the binding cleft inversely controls the endo- and exopeptidase activities of cathepsin B. J. Biol. Chem.262, 14448–14453.10.1016/S0021-9258(18)47815-5Search in Google Scholar

Puzer, L., Cotrin, S.S., Alves, M.F., Egborge, T., Araujo, M.S., Juliano, M.A, Juliano, L., Bromme, D., and Carmona, A.K. (2004). Comparative substrate specificity analysis of recombinant human cathepsin V and cathepsin L. Arch. Biochem. Biophys.430, 274–283.10.1016/j.abb.2004.07.006Search in Google Scholar PubMed

Santamaria, I., Velasco, G., Cazorla, M., Fueyo, A., Campo, E., and Lopez-Otin, C. (1998). Cathepsin Z, a novel human cysteine proteinase with a short propeptide domain and a unique chromosomal location. Cancer Res.58, 1624–1630.10.1074/jbc.273.27.16816Search in Google Scholar

Sivaraman, J., Nagler, D.K., Zhang, R., Menard, R., and Cygler, M. (2000). Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine. J. Mol. Biol.295, 939–951.10.1006/jmbi.1999.3410Search in Google Scholar

Therrien, C., Lachance, P., Sulea, T., Purisima, E.O., Qi, H., Ziomek, E., Alvarez-Hernandez, A., Roush, W.R., and Menard, R. (2001). Cathepsins X and B can be differentiated through their respective mono- and dipeptidyl carboxypeptidase activities. Biochemistry40, 2702–2711.10.1021/bi002460aSearch in Google Scholar

Turk, D., Guncar, G., Podobnik, M., and Turk, B. (1998). Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem.379, 137–147.10.1515/bchm.1998.379.2.137Search in Google Scholar

Turk, B., Turk, D., and Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers Biochim. Biophys. Acta1477, 98–111.10.1016/S0167-4838(99)00263-0Search in Google Scholar

Published Online: 2005-11-24
Published in Print: 2005-11-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 17.3.2025 from https://www.degruyter.com/document/doi/10.1515/BC.2005.136/html
Scroll to top button