Skip to main content
Log in

The role of intracellular sodium in the regulation of NMDA-receptor-mediated channel activity and toxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sodium (Na+) is the major cation in extracellular space and, with its entry into cells, may act as a critical intracellular second messenger that regulates many cellular functions. Through our investigations of mechanisms underlying the activity-dependent regulation of N-methyl-d-aspartate (NMDA) receptors, we recently characterized intracellular Na+ as a possible signaling factor common to processes underlying the upregulation of NMDA receptors by non-NMDA glutamate channels, voltage-gated Na+ channels, and remote NMDA receptors. Furthermore, although Ca2+ influx during the activation of NMDA receptors acts as a negative feedback mechanism that downregulates NMDA receptor activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition, thereby potentiating both NMDA receptor activity and inward Ca2+ flow. NMDA receptors may be recruited to cause excitoxicity through a Na+-dependent mechanism. Therefore, the further characterization of mechanisms underlying the regulation of NMDA receptors by intracellular Na+ is essential to understanding activity-dependent neuroplasticity in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholls D. and Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11, 462–468.

    Article  PubMed  Google Scholar 

  2. Hille B. (1992) In Ionic Channels of Excitable Membranes, Sinauen, Sunderland.

    Google Scholar 

  3. Waxman S. G., Dib-Hajj S., Cummins T. R., and Black J. A. (2000) Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states(1). Brain Res. 886, 5–14.

    Article  PubMed  CAS  Google Scholar 

  4. Cantrell A. R. and Catterall W. A. (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat. Rev. Neurosci. 2, 397–407.

    Article  PubMed  CAS  Google Scholar 

  5. Goldin A. L. (2001) Resurgence of sodium channel research. Annu. Rev. Physiol 63, 871–894.

    Article  PubMed  CAS  Google Scholar 

  6. Catterall W. A., Goldin A. L., and Waxman S. G. (2003) International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev. 55, 575–578.

    Article  PubMed  CAS  Google Scholar 

  7. Linden D. J., Smeyne M., and Connor J. A. (1993) Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions. Neuron 11, 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  8. Linden D. J. (1994) Long-term synaptic depression in the mammalian brain. Neuron 12, 457–472.

    Article  PubMed  CAS  Google Scholar 

  9. Stuart G. and Sakmann B. (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  10. Bouron A. and Reuter H. (1996) A role of intracellular Na+ in the regulation of synaptic transmission and turnover of the vesicular pool in cultured hippocampal cells. Neuron 17, 969–978.

    Article  PubMed  CAS  Google Scholar 

  11. Linden D. J. (1999) The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22, 661–666.

    Article  PubMed  CAS  Google Scholar 

  12. Thomas M. J., Watabe A. M., Moody T. D., Makhinson M., and O'Dell T. J. (1998) Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J. Neurosci. 18, 7118–7126.

    PubMed  CAS  Google Scholar 

  13. Callaway J. C. and Ross W. N. (1997) Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J. Neurophysiol. 77, 145–152.

    PubMed  CAS  Google Scholar 

  14. Rose C. R. and Ransom B. R. (1997) Regulation of intracellular sodium in cultured rat hippocampal neurones. J. Physiol. (Lond.) 499, 573–587.

    CAS  Google Scholar 

  15. Rose C. R. and Konnerth A. (2001) NMDA receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21, 4207–4214.

    PubMed  CAS  Google Scholar 

  16. Rose C. R. (2002) Na+ signals at central synapses. Neuroscientist 8, 532–539.

    Article  PubMed  CAS  Google Scholar 

  17. Aizman O., Brismar H., Uhlen P., et al. (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3, 226–230.

    Article  PubMed  CAS  Google Scholar 

  18. Komwatana P., Dinudom A., Young J. A., and Cook D. I. (1996) Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc. Natl. Acad. Sci. USA 93, 8107–8111.

    Article  PubMed  CAS  Google Scholar 

  19. Dinudom A., Harvey K. F., Komwatana P., et al. (2001) Roles of the C termini of alpha-, beta-, and gamma-subunits of epithelial Na+ channels (ENaC) in regulating ENaC and mediating its inhibition by cytosolic Na+. J. Biol. Chem. 276, 13,744–13,749.

    CAS  Google Scholar 

  20. Cook D. I., Dinudom A., Komwatana P., Kumar S., and Young J. A. (2002) Patch-clamp studies on epithelial sodium channels in salivary duct cells. Cell Biochem. Biophys. 36, 105–113.

    PubMed  CAS  Google Scholar 

  21. Fotia A. B., Dinudom A., Shearwin K. E., et al. (2003) The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J. 17, 70–72.

    PubMed  CAS  Google Scholar 

  22. Bader C. R., Bernheim L., and Bertrand D. (1985) Sodium-activated potassium current in cultured avian neurones. Nature 317, 540–542.

    Article  PubMed  CAS  Google Scholar 

  23. Dryer S. E. (1994) Na+-activated K+ channels: A new family of large-conductance ion channels. Trends Neurosci. 17, 155–160.

    Article  PubMed  CAS  Google Scholar 

  24. Zhainazarov A. B. and Ache B. W. (1997) Gating and conduction properties of a sodium activated cation channel from lobster olfactory receptor neurons. J. Membr. Biol. 156 173–190.

    Article  PubMed  CAS  Google Scholar 

  25. Knutson P., Ghiani C. A., Zhou J. M., Gallo V., and McBain C. J. (1997) K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J. Neurosci. 17, 2669–2682.

    PubMed  CAS  Google Scholar 

  26. Bhattacharjee A., Joiner W. J., Wu M., Yang Y., Sigworth F. J., and Kaczmarek L. K. (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J. Neurosci. 23, 11,681–11,691.

    CAS  Google Scholar 

  27. Dryer S. E. (2003) Molecular identification of the Na+-activated K+ channel. Neuron 37, 727–8.

    Article  PubMed  CAS  Google Scholar 

  28. Rishal I., Keren-Raifman T., Yakubovich D., et al. (2003) Na+ promotes the dissociation between Galpha GDP and Gbeta gamma, activating G protein-gated K+ channels. J. Biol. Chem. 278, 3840–3845.

    Article  PubMed  CAS  Google Scholar 

  29. Yuan A., Santi C. M., Wei A., et al. (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765–773.

    Article  PubMed  CAS  Google Scholar 

  30. Bhattacharjee A. and Kaczmarek L. K. (2005) For K(+) channels, Na(+) is the new Ca(2+). Trends Neurosci. 28, 422–428.

    Article  PubMed  CAS  Google Scholar 

  31. Yakubovich D., Rishal I., and Dascal N. (2005) Kinetic modeling of Na(+)-induced, Gbetagamma-dependent activation of G protein-gated K(+) channels. J. Mol. Neurosci. 25, 7–19.

    Article  PubMed  CAS  Google Scholar 

  32. Niu X. W. and Meech R. W. (2000) Potassium inhibition of sodium-activated potassium (K(Na)) channels in guinea-pig ventricular myocytes. J. Physiol. 526 (pt 1), 81–90.

    Article  PubMed  CAS  Google Scholar 

  33. Ho I. H. and Murrell-Lagnado R. D. (1999) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274, 8639–8648.

    Article  PubMed  CAS  Google Scholar 

  34. Blumenstein Y., Maximyuk O. P., Lozovaya N., et al. (2004) Intracellular Na+ inhibits voltage-dependent N-type Ca2+ channels by a G protein betagamma subunit-dependent mechanism. J. Physiol. 556, 121–134.

    Article  PubMed  CAS  Google Scholar 

  35. Liu X. and Stan L. L. (2004) Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells. Brain Res. 1023, 185–192.

    Article  PubMed  CAS  Google Scholar 

  36. Pert C. B., Snowman A. M., and Snyder S. H. (1974) Localization of opiate receptor binding in synaptic membranes of rat brain. Brain Res. 70, 184–8.

    Article  PubMed  CAS  Google Scholar 

  37. Pert C. B., Aposhian D., and Snyder S. H. (1974) Phylogenetic distribution of opiate receptor binding. Brain Res. 75, 356–361.

    Article  PubMed  CAS  Google Scholar 

  38. Bloch R. J. (1986) Loss of acetylcholine receptor clusters induced by treatment of cultured rat myotubes with carbachol. J. Neurosci. 6, 691–700.

    PubMed  CAS  Google Scholar 

  39. Werling L. L., Brown S. R., Puttfarcken P., and Cox B. M. (1986) Sodium regulation of agonist binding at opioid receptors. II.Effects of sodium replacement on opioid binding in guinea pig cortical membranes. Mol. Pharmacol. 30, 90–95.

    PubMed  CAS  Google Scholar 

  40. Puttfarcken P., Werling L. L., Brown S. R., Cote T. E., and Cox B. M. (1986) Sodium regulation of agonist binding at opioid receptors I.Effects of sodium replacement on binding at mu- and delta-type receptors in 7315c and NG108-15 cells and cell membranes. Mol. Pharmacol. 30, 81–89.

    PubMed  CAS  Google Scholar 

  41. Pifl C., Angeter E., Drobny H., Reither H., and Singer E. A. (1997) Induction by low Na+ or Cl-of cocaine sensitive carrier-mediated efflux of amines from cells transfected with the cloned human catecholamine transporters. Br. J. Pharmacol. 121, 205–212.

    Article  PubMed  CAS  Google Scholar 

  42. Chen N., Trowbridge C. G., and Justice J. B. Jr. (1998) Vollammetric studies on mechanisms of dopamine efflux in the presence of substrates and cocaine from cells expressing human norepinephrine transporter. J. Neurochem. 71, 653–665.

    Article  PubMed  CAS  Google Scholar 

  43. Pifl C. and Singer E. A. (1999) Ion dependence of carrier-mediated release in dopamine or nor-epinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion. Mol. Pharmacol. 56, 1047–1054.

    PubMed  CAS  Google Scholar 

  44. Khoshbouei H., Wang H., Lechleiter J. D., Javitch J. A., and Galli A. (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J. Biol. Chem. 278, 12,070–12,077.

    Article  CAS  Google Scholar 

  45. Chen N. and Reith M. E. (2003) Na+ and the substrate permeation pathway in dopamine transporters. Eur. J. Pharmacol. 479, 213–221.

    Article  PubMed  CAS  Google Scholar 

  46. Koch R. A. and Barish M. E. (1994) Peturbation of intracellular calcium and hydrogen ion regulation in cultured mouse hippocampal neurons by reduction of the sodium ion concentration gradient. J. Neurosci. 14, 2585–2593.

    PubMed  CAS  Google Scholar 

  47. Blaustein M. P., Fontana G., and Rogowski R. S. (1996) The Na(+)-Ca2+ exchanger in rat brain synaptosomes. Kinetics and regulation. Ann. NY Acad. Sci. 779, 300–317.

    Article  PubMed  CAS  Google Scholar 

  48. Boonstra J., Moolenaar W. H., Harrison P. H., Moed P., van der Saag P. T., and de Laat S. W. (1983) Ionic responses and growth stimulation induced by nerve growth factor and epidermal growth factor in rat pheochromocytoma (PC12) cells. J. Cell Biol. 97, 92–98.

    Article  PubMed  CAS  Google Scholar 

  49. Moolenaar W. H., Tsien R. Y., van der Saag P. T., and de Laat S. W. (1983) Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304, 645–648.

    Article  PubMed  CAS  Google Scholar 

  50. Moolenaar W. H., Defize L. H., and de Laat S. W. (1986) Ionic signalling by growth factor receptors. J. Exp. Biol. 124, 359–373.

    PubMed  CAS  Google Scholar 

  51. Baxter K. A. and Church J. (1996) Characterization of acid extrusion mechanisms in cultured fetal rat hippocampal neurones. J. Physiol. (Lond.) 493, 457–470.

    CAS  Google Scholar 

  52. Ballard-Croft C., Carlson D., Maass D. L. and Horton J. W. (2004) Brain trauma alters calcium transporter protein expression in the heart. J. Appl. Physiol. 97, 1470–1476.

    Article  PubMed  CAS  Google Scholar 

  53. Strichartz G., Rando T., and Wang G. K. (1987) An integrated view of the molecular toxinology of sodium channel gating in excitable cells. Annu. Rev. Neurosci. 10, 237–267.

    Article  PubMed  CAS  Google Scholar 

  54. Friedman J. E. and Haddad G. G. (1994) Anoxia induces an increase in intracellular sodium in rat central neurons in vitro. Brain. Res. 663 329–334.

    Article  PubMed  CAS  Google Scholar 

  55. Bauer R., Walter B., Fritz H., and Zwiener U. (1999) Ontogenetic aspects of traumatic brain edema—facts and suggestions. Exp. Toxicol. Pathol. 51, 143–150.

    PubMed  CAS  Google Scholar 

  56. Schwartz G. and Fehlings M. G. (2002) Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog. Brain Res. 137, 177–190.

    Article  PubMed  CAS  Google Scholar 

  57. Banasiak K. J., Burenkova O., and Haddad G. G. (2004) Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 126, 31–44.

    Article  PubMed  CAS  Google Scholar 

  58. Sheldon C., Diarra A., Cheng Y. M., and Church J. (2004) Sodium influx pathways during and after anoxia in rat hippocampal neurons. J. Neurosci. 24, 11,057–11,069.

    Article  CAS  Google Scholar 

  59. Choi D. W. (1993) NMDA receptors and AMPA/kainate receptors mediate parallel injury in cerebral cortical cultures subjected to oxygen-glucose deprivation. Prog. Brain Res. 96, 137–143.

    PubMed  CAS  Google Scholar 

  60. Choi D. W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 58–60.

    Article  PubMed  CAS  Google Scholar 

  61. Bortner C. D. and Cidlowski J. A. (2003) Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J. Biol. Chem. 278, 39,176–39,184.

    Article  CAS  Google Scholar 

  62. Vornov J. J., Thomas A. G., and Jo D. (1996) Protective effects of extracellular acidosis and blockade of sodium/hydrogen ion exchange during recovery from metabolic inhibition in neuronal tissue culture. J. Neurochem. 67, 2379–2789.

    Article  PubMed  CAS  Google Scholar 

  63. Mentzer R. M. Jr., Lasley R. D., Jessel A., and Karmazyn M. (2003) Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection. Ann. Thorac. Surg. 75, S700-S708.

    Article  PubMed  Google Scholar 

  64. Fehlings M. G. and Agrewal S. (1995) Role of sodium in the pathophysiology of secondary spinal cord injury. Spine 20, 2187–2191.

    Article  PubMed  CAS  Google Scholar 

  65. Agrawal S. K. and Fehlings M. G. (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(_)-Ca2+exchanger. J. Neurosci. 16, 545–552.

    PubMed  CAS  Google Scholar 

  66. Agrawal S. K. and Fehlings M. G. (1997) The effect of the sodium channel blocker QX-314 on recovery after acute spinal cord injury. J. Neurotrauma 14, 81–88.

    PubMed  CAS  Google Scholar 

  67. Teng Y. D. and Wrathall J. R. (1997) Local blockade of sodium channels by tetrodotoxin ameliorates tissue loss and long-term functional deficits resulting from experimental spinal cord injury. J. Neurosci. 17, 4359–4366.

    PubMed  CAS  Google Scholar 

  68. Hains B. C., Saab C. Y., Lo A. C., and Waxman S. G. (2004) Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motorerecovery after contusion SCI. Exp. Neurol. 188, 365–377.

    Article  PubMed  CAS  Google Scholar 

  69. Cummins T. R. and Waxman S. G. (1997) Down-regulation of tetrodotoxin-resitant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci. 17, 3503–3514.

    PubMed  CAS  Google Scholar 

  70. Appelgren L., Janson M., Nitescu P., and Curelaru I. (1996) Continuous intracisternal and high cervical intrathecal bupivacaine analgesia in refractory head and neck pain [see comments]. Anesthesiology 84, 256–272.

    Article  PubMed  CAS  Google Scholar 

  71. Loscher W. and Ebert U. (1996) The role of the piriform cortex in kindling. Prog. Neurobiol. 50, 427–481.

    Article  PubMed  CAS  Google Scholar 

  72. Mayer M. L. and Westbrook G. L. (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28, 197–276.

    Article  PubMed  CAS  Google Scholar 

  73. McBain C. J. and Mayer M. L. (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol. Rev. 74, 723–760.

    PubMed  CAS  Google Scholar 

  74. Dingledine R., Borges K., Bowie D., and Traynelis S. F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61.

    PubMed  CAS  Google Scholar 

  75. Bredt D. S. and Nicoll R. A. (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379.

    Article  PubMed  CAS  Google Scholar 

  76. Blitz D. M., Foster K. A., and Regehr W. G. (2004) Short-term synaptic plasticity: a comparison of two synapses. Nat. Rev. Neurosci. 5, 630–640.

    Article  PubMed  CAS  Google Scholar 

  77. Cull-Candy S. G. and Leszkiewicz D. N. (2004) Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE. 2004:re16.

  78. Carlisle H. J. and Kennedy M. B. (2005) Spine architecture and synaptic plasticity. Trends Neurosci. 28, 182–187.

    Article  PubMed  CAS  Google Scholar 

  79. Xia Z. and Storm D. R. (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci. 6, 267–276.

    Article  PubMed  CAS  Google Scholar 

  80. Choi D. W. (1988) Calcium-mediated neuro-toxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465–469.

    Article  PubMed  CAS  Google Scholar 

  81. Lipton S. A. and Rosenberg P. A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders [see comments]. N. Engl. J. Med. 330, 613–622.

    Article  PubMed  CAS  Google Scholar 

  82. Rothman S. M. and Olney J. W. (1995) Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends Neurosci. 18, 57,58.

    Article  Google Scholar 

  83. Arundine M. and Tymianski M. (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34, 325–337.

    Article  PubMed  CAS  Google Scholar 

  84. Vanhoutte P. and Bading H. (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr. Opin. Neurobiol. 13, 366–371.

    Article  PubMed  CAS  Google Scholar 

  85. Hardingham G. E. and Bading H. (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci. 26, 81–89.

    Article  PubMed  CAS  Google Scholar 

  86. Waxman E. A. and Lynch D. R. (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 37–49.

    Article  PubMed  CAS  Google Scholar 

  87. Westphal R. S., Tavalin S. J., Lin J. W., et al. (1999) Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96.

    Article  PubMed  CAS  Google Scholar 

  88. Husi H., Ward M. A., Choudhary J. S., Blackstock W. P., and Grant S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669.

    Article  PubMed  CAS  Google Scholar 

  89. Sheng M. and Pak D. T. (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu.Rev. Physiol. 62, 755–778.

    Article  PubMed  CAS  Google Scholar 

  90. Lee F. J. S., Xue S., Pei L., et al. (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111 219–230.

    Article  PubMed  CAS  Google Scholar 

  91. Lei G., Xue S., Chery N., et al. (2002) Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phopshatase alpha. EMBO J. 21, 2977–2989.

    Article  PubMed  CAS  Google Scholar 

  92. Ehlers M. D. (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242.

    Article  PubMed  CAS  Google Scholar 

  93. Salter M. W. and Kalia L. V. (2004) Src kinases: a hub for NMDA receptor regulation. Nat. Rev. Neurosci. 5, 317–328.

    Article  PubMed  CAS  Google Scholar 

  94. Bading H. and Greenberg M. E. (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914.

    Article  PubMed  CAS  Google Scholar 

  95. Woodrow S., Bissoon N., and Gurd J. W. (1992) Depolarization-dependent tyrosine phosphorylation in rat brain synaptosomes. J. Neurochem. 59, 857–862.

    Article  PubMed  CAS  Google Scholar 

  96. Wang Y. T. and Salter M. W. (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235.

    Article  PubMed  CAS  Google Scholar 

  97. Yu X.-M., Askalan R., Keil G. J. I., and Salter M. W. (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 257, 674–678.

    Article  Google Scholar 

  98. Yu X.-M. and Salter M. W. (1998) Gain control of NMDA-receptor currents by intracellular sodium. Nature 396, 469–474.

    Article  PubMed  CAS  Google Scholar 

  99. Salter M. W. (1999) A pinch of salt for NMDA receptors. Mol. Psychiatry 4, 209–211.

    Article  PubMed  CAS  Google Scholar 

  100. Xin W.-K., Kwan C. L., Zhao X.-H., et al. (2005) A functional interaction of sodium and calcium in the regulation of NMDA receptor activity by remote NMDA receptors. J. Neurosci. 25, 139–148.

    Article  PubMed  CAS  Google Scholar 

  101. Xin W.-K., Zhao X.-H., Xu J., et al. (2005) The removal of extracellular calcium: a novel mechanism underlying the recruitment of N-methyl-d-aspartate (NMDA) receptors in neurotoxicity. Eur. J. Neurosci. 21, 622–636.

    Article  PubMed  Google Scholar 

  102. Legendre P., Rosenmund C., and Westbrook G. L. (1993) Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J. Neurosci. 13, 674–684.

    PubMed  CAS  Google Scholar 

  103. Rosenmund C. and Westbrook G. L. (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814.

    Article  PubMed  CAS  Google Scholar 

  104. Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  105. Rosenmund C., Feltz A., and Westbrook G. L. (1995) Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J. Neurophysiol. 73, 427–430.

    PubMed  CAS  Google Scholar 

  106. Rosenmund C., Feltz A., and Westbrook G. L. (1995) Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795.

    PubMed  CAS  Google Scholar 

  107. Ehlers M. D., Zhang S., Bernhardt J. P., and Huganir R. L. (1996) Inactivation of NMDA Receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755.

    Article  PubMed  CAS  Google Scholar 

  108. Kyrozis A., Albuquerque C., Gu J., and Mac-Dermott A. B. (1996) Ca(2+)-dependent inactivation of NMDA receptors: fast kinetics and high Ca2+ sensitivity in rat dorsal horn neurons. J. Physiol. (Lond.) 495, 449–463.

    CAS  Google Scholar 

  109. Medina I., Filippova N., Bakhramov A., and Bregestovski P. (1996) Calcium-induced inactivation of NMDA receptor-channels evolves independently of run-down in cultured rat brain neurones. J. Physiol. (Lond.) 495, 411–427.

    CAS  Google Scholar 

  110. Sucher N. J., Awobuluyi M., Choi Y. B., and Lipton S. A. (1996) NMDA receptors: from genes to channels. Trends Pharmacol. Sci. 17, 348–355.

    Article  PubMed  CAS  Google Scholar 

  111. Baker A. J., Moulton R. J., MacMillan V. H., and Shedden P. M. (1993) Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J. Neurosurg. 79, 369–372.

    PubMed  CAS  Google Scholar 

  112. Persson L. and Hillered L. (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J. Neurosurg. 76, 72–80.

    Article  PubMed  CAS  Google Scholar 

  113. Benveniste H., Drejer, J., Schousboe, A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  114. Lipton, P. (1999), Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  115. Morris G. F., Bullock R., Marshall, S. B., Marmarou, A., Maas A., and Marshall, L. F. (1999). Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J. Neurosurg. 91, 737–743.

    PubMed  CAS  Google Scholar 

  116. Albers G. W., Clark W. M., Atkinson R. P., Madden K., Data J. L., and Whitehouse M. J. (1999) Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke. Stroke 30, 508–513.

    PubMed  CAS  Google Scholar 

  117. Davis S. M., Lees K. R., Albers G. W., et al. (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31, 347–354.

    PubMed  CAS  Google Scholar 

  118. Ikonomidou C. and Turski L. (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1, 383–386.

    Article  PubMed  CAS  Google Scholar 

  119. Xiong Z., Lu W. and MacDonald J. F. (1997) Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 7012–7017.

    Article  PubMed  CAS  Google Scholar 

  120. Aarts M., Lihara K., Wei W.-L., et al. (2003), A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877.

    Article  PubMed  CAS  Google Scholar 

  121. Westbrook, G. L., Krupp, J. J., and Vissel B. (1997) Cytoskeletal interactions with glutamate receptors at central synapses. Soc. Gen. Physiol. Ser. 52, 163–175.

    PubMed  CAS  Google Scholar 

  122. Lieberman D. N. and Mody I. (1994) Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature 369, 235–239.

    Article  PubMed  CAS  Google Scholar 

  123. Mulkey R. M., Endo S., Shenolikar S., and Malenka R. C. (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488.

    Article  PubMed  CAS  Google Scholar 

  124. Tong G., Shepherd D., and Jahr C. E. (1995) Synaptic desensitization of NMDA receptors by calcineurin, Science 267, 1510–1512.

    Article  PubMed  CAS  Google Scholar 

  125. Zhang S., Ehlers M. D., Bernhardt J. P., Su C. T., and Huganir R. L. (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21, 443–453.

    Article  PubMed  CAS  Google Scholar 

  126. Wechsler A. and Teichberg V. I. (1998) Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 17, 3931–3939.

    Article  PubMed  CAS  Google Scholar 

  127. Krupp J. J., Vissel B., Thomas C. G., Heinemann S. F., and Westbrook G. L. (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19, 1165–1178.

    PubMed  CAS  Google Scholar 

  128. Vassilev P. M., Mitchel J., Vassilev M., Kanazirska M., and Brown E. M. (1997). Assessment of frequency-dependent alterations in the level of extracellular Ca2+ in the synaptic cleft. Biophys. J. 72, 2103–2116.

    PubMed  CAS  Google Scholar 

  129. Rusakov D. A. and Fine A. (2003). Extracellular Ca2+ depletion contributes to fast activitydependent modulation of synaptic transmission in the brain. Neuron 37, 287–297.

    Article  PubMed  CAS  Google Scholar 

  130. Heinemann U. and Hamon B. 1986. Calcium and epileptogenesis. Exp. Brain Res. 65, 1–10.

    Article  PubMed  CAS  Google Scholar 

  131. Ekholm A., Kristian T., and Siesjo B. K. 1995. Influence of hyperglycemia and of hypercapnia on cellular calcium transients during reversible brain ischemia. Exp. Brain Res. 104, 462–466.

    Article  PubMed  CAS  Google Scholar 

  132. Nicholson C., Bruggencate G. T., Steinberg R., and Stockle H. 1977. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc. Natl. Acad. Sci. USA 74, 1287–1290.

    Article  PubMed  CAS  Google Scholar 

  133. Harris R. J., Symon L., Branston N. M., and Bayhan M. 1981. Changes in extracellular calcium activity in cerebral ischaemia. J. Cereb. Blood Flow Metab. 1, 203–209.

    PubMed  CAS  Google Scholar 

  134. Yu X.-M. and Salter M. W. (1999). Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 96, 7697–7704.

    Article  PubMed  CAS  Google Scholar 

  135. Liu X., Brodeur S. R., Gish G., et al., 1993. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8, 1119–1126.

    PubMed  CAS  Google Scholar 

  136. Ali D. W. and Salter M. W. 2001. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr. Opin. Neurobiol. 11, 336–342.

    Article  PubMed  CAS  Google Scholar 

  137. Grant S. G., O'Dell T. J., Karl K. A., Stein P. L., Soriano P., and Kandel E. R. 1992. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910.

    Article  PubMed  CAS  Google Scholar 

  138. Miyakawa T., Yagi, T., and Kitazawa H., et al. 1997. Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 278, 698–701.

    Article  PubMed  CAS  Google Scholar 

  139. Kojima N., Ishibashi H., Obata K., and Kandel E. R. 1998. Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2B in fyn transgenic mice. Learn. Mem. 5, 429–445.

    PubMed  CAS  Google Scholar 

  140. Woolf C. J., and Salter M. W. 2000. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769.

    Article  PubMed  CAS  Google Scholar 

  141. Zhao W., Cavallaro S., Gusev P., and Alkon D. L. 2000. Nonreceptor tyrosine protein kinase pp60c-src in spatial learning: synapse-specific changes in its gene expression, tyrosine phosphorylation, and protein-protein interactions. Pro. Natl. Acad. Sci. USA 97, 8098–8103.

    Article  CAS  Google Scholar 

  142. Guo W., Zou S., Guan Y., et al. 2002. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J. Neurosci. 22, 6208–6217.

    PubMed  CAS  Google Scholar 

  143. Sato E., Takano Y., Kuno Y., Takano M., and Sato I. 2003 Involvement of spinal tyrosine kinase in inflammatory and N-methyl-D-aspartate-induced hyperalgesia in rats. Eur. J. Pharmacol. 468, 191–198.

    Article  PubMed  CAS  Google Scholar 

  144. Guo W., Wei F., Zou S., et al. 2004. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J. Neurosci. 24, 9161–9173.

    Article  PubMed  CAS  Google Scholar 

  145. Kawasaki Y., Kohno T., Zhuang Z. Y., et al. 2004. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J. Neurosci. 24, 8310–8321.

    Article  PubMed  CAS  Google Scholar 

  146. Khan A. M., Cheung H. H., Gillard E. R., et al. 2004 Lateral Hypothalamic signaling Mechanisms Underlying Feeding Stimulation: Differential Contributions of Src Family Tyrosine Kinases to Feeding Triggered Either by NMDA Injection or by Food Deprivation. J. Neurosci. 24, 10,603–10,615.

    Article  CAS  Google Scholar 

  147. Bromann P. A., Korkaya H., and Courtneidge S. A. 2004. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23, 7957–7968.

    Article  PubMed  CAS  Google Scholar 

  148. Gauld S. B. and Cambier J. C. 2004. Src-family kinases in B-cell development and signaling. Oncogene 23, 8001–8006.

    Article  PubMed  CAS  Google Scholar 

  149. Geahlen R. L., Handley M. D., and Harrison M. L. 2004. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Oncogene 23, 8024–8032.

    Article  PubMed  CAS  Google Scholar 

  150. Kalia L. V., Gingrich J. R., and Salter M. W. 2004. Src in synaptic transmission and plasticity. Oncogene 23, 8007–8016.

    Article  PubMed  CAS  Google Scholar 

  151. Luttrell D. K. and Luttrell L. M. 2004. Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23, 7969–7978.

    Article  PubMed  CAS  Google Scholar 

  152. Palacios E. H. and Weiss A. 2004. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000.

    Article  PubMed  CAS  Google Scholar 

  153. Parsons S. J. and Parsons J. T. 2004. Src family kinases, key regulators of signal transduction. Oncogene 23, 7906–7909.

    Article  PubMed  CAS  Google Scholar 

  154. Playford M. P. and Schaller M. D., 2004. The interplay between Src and integrins in normal and tumor biology. Oncogene 23, 7928–7946.

    Article  PubMed  CAS  Google Scholar 

  155. Reynolds A. B. and Roczniak-Ferguson A. 2004. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 23, 7947–7956.

    Article  PubMed  CAS  Google Scholar 

  156. Shupnik M. A. 2004. Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 23, 7979–7989.

    Article  PubMed  CAS  Google Scholar 

  157. Silva C. M. 2004 Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23, 8017–8023.

    Article  PubMed  CAS  Google Scholar 

  158. Zheng F., Gingrich M. B., Traynelis S. F., and Conn P. J. 1998. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1, 185–191.

    Article  PubMed  CAS  Google Scholar 

  159. Cheung H. H., and Gurd J. W., 2001. Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases. J. Neurochem. 78, 524–534.

    Article  PubMed  CAS  Google Scholar 

  160. Grosshans D. R. and Browning M. D. 2001. Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor. J. Neurochem. 76, 737–744.

    Article  PubMed  CAS  Google Scholar 

  161. Yang M. and Leonard J. P. 2001 Identification of mouse NMDA receptor subunit NR2A C-terminal tyrosine sites phosphorylated by coexpression with v-Src. J. Neurochem. 77, 580–588.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Min Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XM. The role of intracellular sodium in the regulation of NMDA-receptor-mediated channel activity and toxicity. Mol Neurobiol 33, 63–79 (2006). https://doi.org/10.1385/MN:33:1:063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:33:1:063

Index Entries