Abstract
Sodium (Na+) is the major cation in extracellular space and, with its entry into cells, may act as a critical intracellular second messenger that regulates many cellular functions. Through our investigations of mechanisms underlying the activity-dependent regulation of N-methyl-d-aspartate (NMDA) receptors, we recently characterized intracellular Na+ as a possible signaling factor common to processes underlying the upregulation of NMDA receptors by non-NMDA glutamate channels, voltage-gated Na+ channels, and remote NMDA receptors. Furthermore, although Ca2+ influx during the activation of NMDA receptors acts as a negative feedback mechanism that downregulates NMDA receptor activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition, thereby potentiating both NMDA receptor activity and inward Ca2+ flow. NMDA receptors may be recruited to cause excitoxicity through a Na+-dependent mechanism. Therefore, the further characterization of mechanisms underlying the regulation of NMDA receptors by intracellular Na+ is essential to understanding activity-dependent neuroplasticity in the nervous system.
Similar content being viewed by others
References
Nicholls D. and Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11, 462–468.
Hille B. (1992) In Ionic Channels of Excitable Membranes, Sinauen, Sunderland.
Waxman S. G., Dib-Hajj S., Cummins T. R., and Black J. A. (2000) Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states(1). Brain Res. 886, 5–14.
Cantrell A. R. and Catterall W. A. (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat. Rev. Neurosci. 2, 397–407.
Goldin A. L. (2001) Resurgence of sodium channel research. Annu. Rev. Physiol 63, 871–894.
Catterall W. A., Goldin A. L., and Waxman S. G. (2003) International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev. 55, 575–578.
Linden D. J., Smeyne M., and Connor J. A. (1993) Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions. Neuron 11, 1093–1100.
Linden D. J. (1994) Long-term synaptic depression in the mammalian brain. Neuron 12, 457–472.
Stuart G. and Sakmann B. (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076.
Bouron A. and Reuter H. (1996) A role of intracellular Na+ in the regulation of synaptic transmission and turnover of the vesicular pool in cultured hippocampal cells. Neuron 17, 969–978.
Linden D. J. (1999) The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22, 661–666.
Thomas M. J., Watabe A. M., Moody T. D., Makhinson M., and O'Dell T. J. (1998) Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J. Neurosci. 18, 7118–7126.
Callaway J. C. and Ross W. N. (1997) Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J. Neurophysiol. 77, 145–152.
Rose C. R. and Ransom B. R. (1997) Regulation of intracellular sodium in cultured rat hippocampal neurones. J. Physiol. (Lond.) 499, 573–587.
Rose C. R. and Konnerth A. (2001) NMDA receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21, 4207–4214.
Rose C. R. (2002) Na+ signals at central synapses. Neuroscientist 8, 532–539.
Aizman O., Brismar H., Uhlen P., et al. (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3, 226–230.
Komwatana P., Dinudom A., Young J. A., and Cook D. I. (1996) Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc. Natl. Acad. Sci. USA 93, 8107–8111.
Dinudom A., Harvey K. F., Komwatana P., et al. (2001) Roles of the C termini of alpha-, beta-, and gamma-subunits of epithelial Na+ channels (ENaC) in regulating ENaC and mediating its inhibition by cytosolic Na+. J. Biol. Chem. 276, 13,744–13,749.
Cook D. I., Dinudom A., Komwatana P., Kumar S., and Young J. A. (2002) Patch-clamp studies on epithelial sodium channels in salivary duct cells. Cell Biochem. Biophys. 36, 105–113.
Fotia A. B., Dinudom A., Shearwin K. E., et al. (2003) The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J. 17, 70–72.
Bader C. R., Bernheim L., and Bertrand D. (1985) Sodium-activated potassium current in cultured avian neurones. Nature 317, 540–542.
Dryer S. E. (1994) Na+-activated K+ channels: A new family of large-conductance ion channels. Trends Neurosci. 17, 155–160.
Zhainazarov A. B. and Ache B. W. (1997) Gating and conduction properties of a sodium activated cation channel from lobster olfactory receptor neurons. J. Membr. Biol. 156 173–190.
Knutson P., Ghiani C. A., Zhou J. M., Gallo V., and McBain C. J. (1997) K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J. Neurosci. 17, 2669–2682.
Bhattacharjee A., Joiner W. J., Wu M., Yang Y., Sigworth F. J., and Kaczmarek L. K. (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J. Neurosci. 23, 11,681–11,691.
Dryer S. E. (2003) Molecular identification of the Na+-activated K+ channel. Neuron 37, 727–8.
Rishal I., Keren-Raifman T., Yakubovich D., et al. (2003) Na+ promotes the dissociation between Galpha GDP and Gbeta gamma, activating G protein-gated K+ channels. J. Biol. Chem. 278, 3840–3845.
Yuan A., Santi C. M., Wei A., et al. (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765–773.
Bhattacharjee A. and Kaczmarek L. K. (2005) For K(+) channels, Na(+) is the new Ca(2+). Trends Neurosci. 28, 422–428.
Yakubovich D., Rishal I., and Dascal N. (2005) Kinetic modeling of Na(+)-induced, Gbetagamma-dependent activation of G protein-gated K(+) channels. J. Mol. Neurosci. 25, 7–19.
Niu X. W. and Meech R. W. (2000) Potassium inhibition of sodium-activated potassium (K(Na)) channels in guinea-pig ventricular myocytes. J. Physiol. 526 (pt 1), 81–90.
Ho I. H. and Murrell-Lagnado R. D. (1999) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274, 8639–8648.
Blumenstein Y., Maximyuk O. P., Lozovaya N., et al. (2004) Intracellular Na+ inhibits voltage-dependent N-type Ca2+ channels by a G protein betagamma subunit-dependent mechanism. J. Physiol. 556, 121–134.
Liu X. and Stan L. L. (2004) Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells. Brain Res. 1023, 185–192.
Pert C. B., Snowman A. M., and Snyder S. H. (1974) Localization of opiate receptor binding in synaptic membranes of rat brain. Brain Res. 70, 184–8.
Pert C. B., Aposhian D., and Snyder S. H. (1974) Phylogenetic distribution of opiate receptor binding. Brain Res. 75, 356–361.
Bloch R. J. (1986) Loss of acetylcholine receptor clusters induced by treatment of cultured rat myotubes with carbachol. J. Neurosci. 6, 691–700.
Werling L. L., Brown S. R., Puttfarcken P., and Cox B. M. (1986) Sodium regulation of agonist binding at opioid receptors. II.Effects of sodium replacement on opioid binding in guinea pig cortical membranes. Mol. Pharmacol. 30, 90–95.
Puttfarcken P., Werling L. L., Brown S. R., Cote T. E., and Cox B. M. (1986) Sodium regulation of agonist binding at opioid receptors I.Effects of sodium replacement on binding at mu- and delta-type receptors in 7315c and NG108-15 cells and cell membranes. Mol. Pharmacol. 30, 81–89.
Pifl C., Angeter E., Drobny H., Reither H., and Singer E. A. (1997) Induction by low Na+ or Cl-of cocaine sensitive carrier-mediated efflux of amines from cells transfected with the cloned human catecholamine transporters. Br. J. Pharmacol. 121, 205–212.
Chen N., Trowbridge C. G., and Justice J. B. Jr. (1998) Vollammetric studies on mechanisms of dopamine efflux in the presence of substrates and cocaine from cells expressing human norepinephrine transporter. J. Neurochem. 71, 653–665.
Pifl C. and Singer E. A. (1999) Ion dependence of carrier-mediated release in dopamine or nor-epinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion. Mol. Pharmacol. 56, 1047–1054.
Khoshbouei H., Wang H., Lechleiter J. D., Javitch J. A., and Galli A. (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J. Biol. Chem. 278, 12,070–12,077.
Chen N. and Reith M. E. (2003) Na+ and the substrate permeation pathway in dopamine transporters. Eur. J. Pharmacol. 479, 213–221.
Koch R. A. and Barish M. E. (1994) Peturbation of intracellular calcium and hydrogen ion regulation in cultured mouse hippocampal neurons by reduction of the sodium ion concentration gradient. J. Neurosci. 14, 2585–2593.
Blaustein M. P., Fontana G., and Rogowski R. S. (1996) The Na(+)-Ca2+ exchanger in rat brain synaptosomes. Kinetics and regulation. Ann. NY Acad. Sci. 779, 300–317.
Boonstra J., Moolenaar W. H., Harrison P. H., Moed P., van der Saag P. T., and de Laat S. W. (1983) Ionic responses and growth stimulation induced by nerve growth factor and epidermal growth factor in rat pheochromocytoma (PC12) cells. J. Cell Biol. 97, 92–98.
Moolenaar W. H., Tsien R. Y., van der Saag P. T., and de Laat S. W. (1983) Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304, 645–648.
Moolenaar W. H., Defize L. H., and de Laat S. W. (1986) Ionic signalling by growth factor receptors. J. Exp. Biol. 124, 359–373.
Baxter K. A. and Church J. (1996) Characterization of acid extrusion mechanisms in cultured fetal rat hippocampal neurones. J. Physiol. (Lond.) 493, 457–470.
Ballard-Croft C., Carlson D., Maass D. L. and Horton J. W. (2004) Brain trauma alters calcium transporter protein expression in the heart. J. Appl. Physiol. 97, 1470–1476.
Strichartz G., Rando T., and Wang G. K. (1987) An integrated view of the molecular toxinology of sodium channel gating in excitable cells. Annu. Rev. Neurosci. 10, 237–267.
Friedman J. E. and Haddad G. G. (1994) Anoxia induces an increase in intracellular sodium in rat central neurons in vitro. Brain. Res. 663 329–334.
Bauer R., Walter B., Fritz H., and Zwiener U. (1999) Ontogenetic aspects of traumatic brain edema—facts and suggestions. Exp. Toxicol. Pathol. 51, 143–150.
Schwartz G. and Fehlings M. G. (2002) Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog. Brain Res. 137, 177–190.
Banasiak K. J., Burenkova O., and Haddad G. G. (2004) Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 126, 31–44.
Sheldon C., Diarra A., Cheng Y. M., and Church J. (2004) Sodium influx pathways during and after anoxia in rat hippocampal neurons. J. Neurosci. 24, 11,057–11,069.
Choi D. W. (1993) NMDA receptors and AMPA/kainate receptors mediate parallel injury in cerebral cortical cultures subjected to oxygen-glucose deprivation. Prog. Brain Res. 96, 137–143.
Choi D. W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 58–60.
Bortner C. D. and Cidlowski J. A. (2003) Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J. Biol. Chem. 278, 39,176–39,184.
Vornov J. J., Thomas A. G., and Jo D. (1996) Protective effects of extracellular acidosis and blockade of sodium/hydrogen ion exchange during recovery from metabolic inhibition in neuronal tissue culture. J. Neurochem. 67, 2379–2789.
Mentzer R. M. Jr., Lasley R. D., Jessel A., and Karmazyn M. (2003) Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection. Ann. Thorac. Surg. 75, S700-S708.
Fehlings M. G. and Agrewal S. (1995) Role of sodium in the pathophysiology of secondary spinal cord injury. Spine 20, 2187–2191.
Agrawal S. K. and Fehlings M. G. (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(_)-Ca2+exchanger. J. Neurosci. 16, 545–552.
Agrawal S. K. and Fehlings M. G. (1997) The effect of the sodium channel blocker QX-314 on recovery after acute spinal cord injury. J. Neurotrauma 14, 81–88.
Teng Y. D. and Wrathall J. R. (1997) Local blockade of sodium channels by tetrodotoxin ameliorates tissue loss and long-term functional deficits resulting from experimental spinal cord injury. J. Neurosci. 17, 4359–4366.
Hains B. C., Saab C. Y., Lo A. C., and Waxman S. G. (2004) Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motorerecovery after contusion SCI. Exp. Neurol. 188, 365–377.
Cummins T. R. and Waxman S. G. (1997) Down-regulation of tetrodotoxin-resitant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci. 17, 3503–3514.
Appelgren L., Janson M., Nitescu P., and Curelaru I. (1996) Continuous intracisternal and high cervical intrathecal bupivacaine analgesia in refractory head and neck pain [see comments]. Anesthesiology 84, 256–272.
Loscher W. and Ebert U. (1996) The role of the piriform cortex in kindling. Prog. Neurobiol. 50, 427–481.
Mayer M. L. and Westbrook G. L. (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28, 197–276.
McBain C. J. and Mayer M. L. (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol. Rev. 74, 723–760.
Dingledine R., Borges K., Bowie D., and Traynelis S. F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61.
Bredt D. S. and Nicoll R. A. (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379.
Blitz D. M., Foster K. A., and Regehr W. G. (2004) Short-term synaptic plasticity: a comparison of two synapses. Nat. Rev. Neurosci. 5, 630–640.
Cull-Candy S. G. and Leszkiewicz D. N. (2004) Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE. 2004:re16.
Carlisle H. J. and Kennedy M. B. (2005) Spine architecture and synaptic plasticity. Trends Neurosci. 28, 182–187.
Xia Z. and Storm D. R. (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci. 6, 267–276.
Choi D. W. (1988) Calcium-mediated neuro-toxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465–469.
Lipton S. A. and Rosenberg P. A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders [see comments]. N. Engl. J. Med. 330, 613–622.
Rothman S. M. and Olney J. W. (1995) Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends Neurosci. 18, 57,58.
Arundine M. and Tymianski M. (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34, 325–337.
Vanhoutte P. and Bading H. (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr. Opin. Neurobiol. 13, 366–371.
Hardingham G. E. and Bading H. (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci. 26, 81–89.
Waxman E. A. and Lynch D. R. (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 37–49.
Westphal R. S., Tavalin S. J., Lin J. W., et al. (1999) Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96.
Husi H., Ward M. A., Choudhary J. S., Blackstock W. P., and Grant S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669.
Sheng M. and Pak D. T. (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu.Rev. Physiol. 62, 755–778.
Lee F. J. S., Xue S., Pei L., et al. (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111 219–230.
Lei G., Xue S., Chery N., et al. (2002) Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phopshatase alpha. EMBO J. 21, 2977–2989.
Ehlers M. D. (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242.
Salter M. W. and Kalia L. V. (2004) Src kinases: a hub for NMDA receptor regulation. Nat. Rev. Neurosci. 5, 317–328.
Bading H. and Greenberg M. E. (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914.
Woodrow S., Bissoon N., and Gurd J. W. (1992) Depolarization-dependent tyrosine phosphorylation in rat brain synaptosomes. J. Neurochem. 59, 857–862.
Wang Y. T. and Salter M. W. (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235.
Yu X.-M., Askalan R., Keil G. J. I., and Salter M. W. (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 257, 674–678.
Yu X.-M. and Salter M. W. (1998) Gain control of NMDA-receptor currents by intracellular sodium. Nature 396, 469–474.
Salter M. W. (1999) A pinch of salt for NMDA receptors. Mol. Psychiatry 4, 209–211.
Xin W.-K., Kwan C. L., Zhao X.-H., et al. (2005) A functional interaction of sodium and calcium in the regulation of NMDA receptor activity by remote NMDA receptors. J. Neurosci. 25, 139–148.
Xin W.-K., Zhao X.-H., Xu J., et al. (2005) The removal of extracellular calcium: a novel mechanism underlying the recruitment of N-methyl-d-aspartate (NMDA) receptors in neurotoxicity. Eur. J. Neurosci. 21, 622–636.
Legendre P., Rosenmund C., and Westbrook G. L. (1993) Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J. Neurosci. 13, 674–684.
Rosenmund C. and Westbrook G. L. (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814.
Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.
Rosenmund C., Feltz A., and Westbrook G. L. (1995) Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J. Neurophysiol. 73, 427–430.
Rosenmund C., Feltz A., and Westbrook G. L. (1995) Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795.
Ehlers M. D., Zhang S., Bernhardt J. P., and Huganir R. L. (1996) Inactivation of NMDA Receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755.
Kyrozis A., Albuquerque C., Gu J., and Mac-Dermott A. B. (1996) Ca(2+)-dependent inactivation of NMDA receptors: fast kinetics and high Ca2+ sensitivity in rat dorsal horn neurons. J. Physiol. (Lond.) 495, 449–463.
Medina I., Filippova N., Bakhramov A., and Bregestovski P. (1996) Calcium-induced inactivation of NMDA receptor-channels evolves independently of run-down in cultured rat brain neurones. J. Physiol. (Lond.) 495, 411–427.
Sucher N. J., Awobuluyi M., Choi Y. B., and Lipton S. A. (1996) NMDA receptors: from genes to channels. Trends Pharmacol. Sci. 17, 348–355.
Baker A. J., Moulton R. J., MacMillan V. H., and Shedden P. M. (1993) Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J. Neurosurg. 79, 369–372.
Persson L. and Hillered L. (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J. Neurosurg. 76, 72–80.
Benveniste H., Drejer, J., Schousboe, A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374.
Lipton, P. (1999), Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.
Morris G. F., Bullock R., Marshall, S. B., Marmarou, A., Maas A., and Marshall, L. F. (1999). Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J. Neurosurg. 91, 737–743.
Albers G. W., Clark W. M., Atkinson R. P., Madden K., Data J. L., and Whitehouse M. J. (1999) Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke. Stroke 30, 508–513.
Davis S. M., Lees K. R., Albers G. W., et al. (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31, 347–354.
Ikonomidou C. and Turski L. (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1, 383–386.
Xiong Z., Lu W. and MacDonald J. F. (1997) Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 7012–7017.
Aarts M., Lihara K., Wei W.-L., et al. (2003), A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877.
Westbrook, G. L., Krupp, J. J., and Vissel B. (1997) Cytoskeletal interactions with glutamate receptors at central synapses. Soc. Gen. Physiol. Ser. 52, 163–175.
Lieberman D. N. and Mody I. (1994) Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature 369, 235–239.
Mulkey R. M., Endo S., Shenolikar S., and Malenka R. C. (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488.
Tong G., Shepherd D., and Jahr C. E. (1995) Synaptic desensitization of NMDA receptors by calcineurin, Science 267, 1510–1512.
Zhang S., Ehlers M. D., Bernhardt J. P., Su C. T., and Huganir R. L. (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21, 443–453.
Wechsler A. and Teichberg V. I. (1998) Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 17, 3931–3939.
Krupp J. J., Vissel B., Thomas C. G., Heinemann S. F., and Westbrook G. L. (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19, 1165–1178.
Vassilev P. M., Mitchel J., Vassilev M., Kanazirska M., and Brown E. M. (1997). Assessment of frequency-dependent alterations in the level of extracellular Ca2+ in the synaptic cleft. Biophys. J. 72, 2103–2116.
Rusakov D. A. and Fine A. (2003). Extracellular Ca2+ depletion contributes to fast activitydependent modulation of synaptic transmission in the brain. Neuron 37, 287–297.
Heinemann U. and Hamon B. 1986. Calcium and epileptogenesis. Exp. Brain Res. 65, 1–10.
Ekholm A., Kristian T., and Siesjo B. K. 1995. Influence of hyperglycemia and of hypercapnia on cellular calcium transients during reversible brain ischemia. Exp. Brain Res. 104, 462–466.
Nicholson C., Bruggencate G. T., Steinberg R., and Stockle H. 1977. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc. Natl. Acad. Sci. USA 74, 1287–1290.
Harris R. J., Symon L., Branston N. M., and Bayhan M. 1981. Changes in extracellular calcium activity in cerebral ischaemia. J. Cereb. Blood Flow Metab. 1, 203–209.
Yu X.-M. and Salter M. W. (1999). Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 96, 7697–7704.
Liu X., Brodeur S. R., Gish G., et al., 1993. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8, 1119–1126.
Ali D. W. and Salter M. W. 2001. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr. Opin. Neurobiol. 11, 336–342.
Grant S. G., O'Dell T. J., Karl K. A., Stein P. L., Soriano P., and Kandel E. R. 1992. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910.
Miyakawa T., Yagi, T., and Kitazawa H., et al. 1997. Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 278, 698–701.
Kojima N., Ishibashi H., Obata K., and Kandel E. R. 1998. Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2B in fyn transgenic mice. Learn. Mem. 5, 429–445.
Woolf C. J., and Salter M. W. 2000. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769.
Zhao W., Cavallaro S., Gusev P., and Alkon D. L. 2000. Nonreceptor tyrosine protein kinase pp60c-src in spatial learning: synapse-specific changes in its gene expression, tyrosine phosphorylation, and protein-protein interactions. Pro. Natl. Acad. Sci. USA 97, 8098–8103.
Guo W., Zou S., Guan Y., et al. 2002. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J. Neurosci. 22, 6208–6217.
Sato E., Takano Y., Kuno Y., Takano M., and Sato I. 2003 Involvement of spinal tyrosine kinase in inflammatory and N-methyl-D-aspartate-induced hyperalgesia in rats. Eur. J. Pharmacol. 468, 191–198.
Guo W., Wei F., Zou S., et al. 2004. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J. Neurosci. 24, 9161–9173.
Kawasaki Y., Kohno T., Zhuang Z. Y., et al. 2004. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J. Neurosci. 24, 8310–8321.
Khan A. M., Cheung H. H., Gillard E. R., et al. 2004 Lateral Hypothalamic signaling Mechanisms Underlying Feeding Stimulation: Differential Contributions of Src Family Tyrosine Kinases to Feeding Triggered Either by NMDA Injection or by Food Deprivation. J. Neurosci. 24, 10,603–10,615.
Bromann P. A., Korkaya H., and Courtneidge S. A. 2004. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23, 7957–7968.
Gauld S. B. and Cambier J. C. 2004. Src-family kinases in B-cell development and signaling. Oncogene 23, 8001–8006.
Geahlen R. L., Handley M. D., and Harrison M. L. 2004. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Oncogene 23, 8024–8032.
Kalia L. V., Gingrich J. R., and Salter M. W. 2004. Src in synaptic transmission and plasticity. Oncogene 23, 8007–8016.
Luttrell D. K. and Luttrell L. M. 2004. Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23, 7969–7978.
Palacios E. H. and Weiss A. 2004. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000.
Parsons S. J. and Parsons J. T. 2004. Src family kinases, key regulators of signal transduction. Oncogene 23, 7906–7909.
Playford M. P. and Schaller M. D., 2004. The interplay between Src and integrins in normal and tumor biology. Oncogene 23, 7928–7946.
Reynolds A. B. and Roczniak-Ferguson A. 2004. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 23, 7947–7956.
Shupnik M. A. 2004. Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 23, 7979–7989.
Silva C. M. 2004 Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23, 8017–8023.
Zheng F., Gingrich M. B., Traynelis S. F., and Conn P. J. 1998. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1, 185–191.
Cheung H. H., and Gurd J. W., 2001. Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases. J. Neurochem. 78, 524–534.
Grosshans D. R. and Browning M. D. 2001. Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor. J. Neurochem. 76, 737–744.
Yang M. and Leonard J. P. 2001 Identification of mouse NMDA receptor subunit NR2A C-terminal tyrosine sites phosphorylated by coexpression with v-Src. J. Neurochem. 77, 580–588.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yu, XM. The role of intracellular sodium in the regulation of NMDA-receptor-mediated channel activity and toxicity. Mol Neurobiol 33, 63–79 (2006). https://doi.org/10.1385/MN:33:1:063
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1385/MN:33:1:063