Skip to main content

Structural genomics

The ultimate approach for rational drug design

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Structural genomics can be defined as structural biology on a large number of target proteins in parallel. This approach plays an important role in modern structure-based drug design. Although a number of structural genomics initiatives have been initiated, relatively few are associated with integral membrane proteins. This indicates the difficulties in expression, purification, and crystallization of membrane proteins, which has also been confirmed by the existence of some 100 high-resolution structures of membrane proteins among the more than 30,000 entries in public databases. Paradoxically, membrane proteins represent 60–70% of current drug targets and structural knowledge could both improve and speed up the drug discovery process. In order to improve the sucess rate for structure resolution of membrane proteins structural genomics networks have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blundell, T. L. (1996) Structure-based drug design. Nature 384S, 23–26.

    Google Scholar 

  2. Campbell, S. F. (2000) Science, art and drug discovery: a personal perspective. Clin. Sci. 99, 255–260.

    Article  PubMed  CAS  Google Scholar 

  3. Hardy, L. W. and Malikayil, A. (2003) The impact of structure-guided drug design on clinical agents. Curr. Drug. Discov. 3, 15–20.

    Google Scholar 

  4. Stoll, V., Qin, W., Stewart, K. D., et al (2002) X-ray crystallographic structure of ABT-378 (lopinavir) bound to HIV-1 protease. Bioorg. Med. Chem. 10, 2803–2806.

    Article  PubMed  CAS  Google Scholar 

  5. Varghese, J. N. (1999) Development of neuroaminidase inhibitors as anti-influenza virus drugs. Drug. Dev. Res. 46, 176–196.

    Article  CAS  Google Scholar 

  6. Michel, H. (2005) Membrane proteins of known structure. Max Planck Institute of Biophysics. Frankfurt, Germany http://www.mpibp-frankfurt.mpg.de/ michel/public/memprotstruct.html

    Google Scholar 

  7. Long, S. B., Campbell, E. B., and MacKinnon, R. (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903.

    Article  PubMed  CAS  Google Scholar 

  8. Long, S. B., Campbell, E. B., and MacKinnon, R. (2005) Voltage sensor of Kv 1.2: structural basis of electromechanical coupling. Science 309, 903–908.

    Article  PubMed  CAS  Google Scholar 

  9. Unwin, N. (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555, 91–95.

    Article  PubMed  CAS  Google Scholar 

  10. Palczewski, K., Kumasaka, T., Hori, T., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  11. Vanti, W. B., Swaminathan, S., Blevins, R., et al. (2001) Parent status of the therapeutically important G protein-coupled receptors. Exp. Opin. Ther. Patents 11, 1861–1887.

    Article  Google Scholar 

  12. Tucker, J. and Grisshammer, R. (1996) Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem. J. 317, 891–899.

    PubMed  CAS  Google Scholar 

  13. Weiss, H. M., Haase, W., Michel, H. and Reilander, H. (1998) Comparative biochemical and pharmacological characterization of the mouse 5HT5A 5-hydroxytryptamine receptor and the human beta 2-adrenergic receptor produced in the methylotrophic yeast Pichia pastoris. Biochem J. 330, 1137–1147.

    PubMed  CAS  Google Scholar 

  14. Massotte, D. (2003) G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. Biochim. Biophys Acta 1610, 77–89.

    Article  PubMed  CAS  Google Scholar 

  15. Reeves, P. J., Callewaert, N., Contreras, R., and Khorana, H. G. (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucos-aminyltransferase I-negative HEK 293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13,419–13,424.

    CAS  Google Scholar 

  16. Lundstrom, K. (2003) Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim. Biophys. Acta 1610, 90–96.

    Article  PubMed  CAS  Google Scholar 

  17. Goulding, C. W., Perry, L. J., Anderson, D., et al. (2003) Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA. Biophys. Chem. 105, 361–370.

    Article  PubMed  CAS  Google Scholar 

  18. Essen, L. O. (2002) Structural genomics of “non-standard” proteins: a chance for membrane proteins? Gene Funct. Dis. 3, 39–48.

    Article  CAS  Google Scholar 

  19. Canaves, J. M., Page, R., Wilson, I. A., and Stevens, R. C. (2004) Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. J. Mol. Biol. 344, 977–991.

    Article  PubMed  CAS  Google Scholar 

  20. Yokoyama, S., Hirota, H., Kigawa, T., et al. (2000) Structural genomics projects in Japan. Nat. Struct. Biol. 7, 943–945.

    Article  PubMed  CAS  Google Scholar 

  21. Quevillon-Cheruel, S., Liger, D., Leulliot, N., et al. (2004) The Paris-Sud yeast structural genomics pilot-project: from structure to function. Biochimie 86, 617–623.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, B. C., Adams, M. W., Dailey, H., et al. (2005) Protein production and crystallization at SECSG: an overview. J. Struct. Funct. Genomics 6, 233–243.

    Article  PubMed  CAS  Google Scholar 

  23. Todd, A. E., Marsden R. L., Thornton, J. M., and Orengo, C. A. (2005) Progress of structural genomics initiatives: an analysis of solved target structures. J. Mol. Biol. 353, 760.

    Article  CAS  Google Scholar 

  24. Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B., and Thornton, J. M. (1997) CATH: a hierarchic classification of protein domain structures. Structure 5, 1093–1108.

    Article  PubMed  CAS  Google Scholar 

  25. Kunji, E. R. S., Slotboom, D.-J., and Poolman, B. (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim. Biophys. Acta 1610, 97–108.

    Article  PubMed  CAS  Google Scholar 

  26. Kiefer, H., Krieger, J., Olszewski, J. D., Von, Heijne, G., Prestwich, G. D., and Breer, H. (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35, 16,077–16,084.

    Article  CAS  Google Scholar 

  27. Kiefer, H. (2003) In vitro folding of alpha-helical membrane proteins. Biochim. Biophys. Acta 1610, 57–62.

    Article  PubMed  CAS  Google Scholar 

  28. Baneres, J. L., Martin, A., Hullot, P., Girard, J. P., Rossi, J. C., and Parello, J. (2003) Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J. Mol. Biol. 329, 801–814.

    Article  PubMed  CAS  Google Scholar 

  29. Lopez de Maturana, R., Willshaw, A., Kuntzsch, A., Rudolph, R., and Donnelly, D. (2003) The isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1. J. Biol. Chem. 278, 10,195–10,200.

    Article  CAS  Google Scholar 

  30. Hassaine, G., Wagner, R., Kempf, J., et al. (2006) Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Protein Expr. Purif. 45, 343–351.

    Article  PubMed  CAS  Google Scholar 

  31. Long, S. B., Campbell, E. B., and MacKinnon, R. (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Lundstrom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundstrom, K. Structural genomics. Mol Biotechnol 34, 205–212 (2006). https://doi.org/10.1385/MB:34:2:205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:2:205

Index Entries