Abstract
Structural genomics can be defined as structural biology on a large number of target proteins in parallel. This approach plays an important role in modern structure-based drug design. Although a number of structural genomics initiatives have been initiated, relatively few are associated with integral membrane proteins. This indicates the difficulties in expression, purification, and crystallization of membrane proteins, which has also been confirmed by the existence of some 100 high-resolution structures of membrane proteins among the more than 30,000 entries in public databases. Paradoxically, membrane proteins represent 60–70% of current drug targets and structural knowledge could both improve and speed up the drug discovery process. In order to improve the sucess rate for structure resolution of membrane proteins structural genomics networks have been established.
Similar content being viewed by others
References
Blundell, T. L. (1996) Structure-based drug design. Nature 384S, 23–26.
Campbell, S. F. (2000) Science, art and drug discovery: a personal perspective. Clin. Sci. 99, 255–260.
Hardy, L. W. and Malikayil, A. (2003) The impact of structure-guided drug design on clinical agents. Curr. Drug. Discov. 3, 15–20.
Stoll, V., Qin, W., Stewart, K. D., et al (2002) X-ray crystallographic structure of ABT-378 (lopinavir) bound to HIV-1 protease. Bioorg. Med. Chem. 10, 2803–2806.
Varghese, J. N. (1999) Development of neuroaminidase inhibitors as anti-influenza virus drugs. Drug. Dev. Res. 46, 176–196.
Michel, H. (2005) Membrane proteins of known structure. Max Planck Institute of Biophysics. Frankfurt, Germany http://www.mpibp-frankfurt.mpg.de/ michel/public/memprotstruct.html
Long, S. B., Campbell, E. B., and MacKinnon, R. (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903.
Long, S. B., Campbell, E. B., and MacKinnon, R. (2005) Voltage sensor of Kv 1.2: structural basis of electromechanical coupling. Science 309, 903–908.
Unwin, N. (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555, 91–95.
Palczewski, K., Kumasaka, T., Hori, T., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745.
Vanti, W. B., Swaminathan, S., Blevins, R., et al. (2001) Parent status of the therapeutically important G protein-coupled receptors. Exp. Opin. Ther. Patents 11, 1861–1887.
Tucker, J. and Grisshammer, R. (1996) Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem. J. 317, 891–899.
Weiss, H. M., Haase, W., Michel, H. and Reilander, H. (1998) Comparative biochemical and pharmacological characterization of the mouse 5HT5A 5-hydroxytryptamine receptor and the human beta 2-adrenergic receptor produced in the methylotrophic yeast Pichia pastoris. Biochem J. 330, 1137–1147.
Massotte, D. (2003) G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. Biochim. Biophys Acta 1610, 77–89.
Reeves, P. J., Callewaert, N., Contreras, R., and Khorana, H. G. (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucos-aminyltransferase I-negative HEK 293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13,419–13,424.
Lundstrom, K. (2003) Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim. Biophys. Acta 1610, 90–96.
Goulding, C. W., Perry, L. J., Anderson, D., et al. (2003) Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA. Biophys. Chem. 105, 361–370.
Essen, L. O. (2002) Structural genomics of “non-standard” proteins: a chance for membrane proteins? Gene Funct. Dis. 3, 39–48.
Canaves, J. M., Page, R., Wilson, I. A., and Stevens, R. C. (2004) Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. J. Mol. Biol. 344, 977–991.
Yokoyama, S., Hirota, H., Kigawa, T., et al. (2000) Structural genomics projects in Japan. Nat. Struct. Biol. 7, 943–945.
Quevillon-Cheruel, S., Liger, D., Leulliot, N., et al. (2004) The Paris-Sud yeast structural genomics pilot-project: from structure to function. Biochimie 86, 617–623.
Wang, B. C., Adams, M. W., Dailey, H., et al. (2005) Protein production and crystallization at SECSG: an overview. J. Struct. Funct. Genomics 6, 233–243.
Todd, A. E., Marsden R. L., Thornton, J. M., and Orengo, C. A. (2005) Progress of structural genomics initiatives: an analysis of solved target structures. J. Mol. Biol. 353, 760.
Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B., and Thornton, J. M. (1997) CATH: a hierarchic classification of protein domain structures. Structure 5, 1093–1108.
Kunji, E. R. S., Slotboom, D.-J., and Poolman, B. (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim. Biophys. Acta 1610, 97–108.
Kiefer, H., Krieger, J., Olszewski, J. D., Von, Heijne, G., Prestwich, G. D., and Breer, H. (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35, 16,077–16,084.
Kiefer, H. (2003) In vitro folding of alpha-helical membrane proteins. Biochim. Biophys. Acta 1610, 57–62.
Baneres, J. L., Martin, A., Hullot, P., Girard, J. P., Rossi, J. C., and Parello, J. (2003) Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J. Mol. Biol. 329, 801–814.
Lopez de Maturana, R., Willshaw, A., Kuntzsch, A., Rudolph, R., and Donnelly, D. (2003) The isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1. J. Biol. Chem. 278, 10,195–10,200.
Hassaine, G., Wagner, R., Kempf, J., et al. (2006) Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Protein Expr. Purif. 45, 343–351.
Long, S. B., Campbell, E. B., and MacKinnon, R. (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lundstrom, K. Structural genomics. Mol Biotechnol 34, 205–212 (2006). https://doi.org/10.1385/MB:34:2:205
Issue Date:
DOI: https://doi.org/10.1385/MB:34:2:205