Skip to main content

Advertisement

Log in

Transforming growth factor-β

A neuroprotective factor in cerebral ischemia

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Transforming growth factor-β (TGF-β) has diverse and multiple roles throughout the body. This review focuses on the evidence supporting its functions in the central nervous system, with a particular emphasis on its purported role in cerebral ischemia. Numerous studies have documented that TGF-β1 levels are enhanced in the brain following cerebral ischemia. As evidence that such an upregulation is beneficial, agonist studies have demonstrated that TGF-β1 reduces neuronal cell death and infarct size following middle cerebral artery occlusion (MCAO), while conversely, antagonist studies have shown increased neuronal cell death and infarct size after MCAO. These studies suggest that TGF-β1 has a neuroprotective role in cerebral ischemia. Recent work with adenoviral-mediated overexpression of TGF-β1 in vivo in mice has further implicated a neuroprotective role for TGF-β1 in cerebral ischemia, as evidenced by a reduction in neuronal cell death, infarct size, and neurological outcome. Additionally, numerous in vitro studies have documented the neuroprotective ability of TGF-β1 in neurons from a variety of species, including rats, mice, chicks, and humans. Of significant interest, TGF-β1 was shown to be protective against a wide variety of death-inducing agents/insults, including hypoxia/ischemia, glutamate excitotoxicity, β-amyloid, oxidative damage, and human immunodeficiency virus. The mechanism of TGF-β1-mediated neuroprotection remains to be resolved, but early evidence suggests that TGF-β1 regulates the expression and ratio of apoptotic (Bad) and antiapoptotic proteins (Bcl-2, Bcl-x1), creating an environment favorable for cell survival of death-inducing insults. Taken as a whole, these results suggest that TGF-β1 is an important neuroprotective factor that can reduce damage from a wide-array of death-inducing agents/insults in vitro, as well as exert protection of the brain during cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attisano, L., and Wrana, J. (2002) Signal transduction by the TGF-β superfamily. Science 296, 1646–1647.

    Article  PubMed  CAS  Google Scholar 

  2. Vitkovic, L., Maeda, S., and Sternberg, E. (2001) Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulators 9, 295–312.

    Article  CAS  Google Scholar 

  3. Kulkarni, A.B., Thyagarajan, T., and Letterio, J.J. (2002) Functions of cytokines within the TGF-beta superfamily as determined from transgenic and gene knockout studies. Curr. Mol. Med. 2, 303–327.

    Article  PubMed  CAS  Google Scholar 

  4. Bottner, M., Krieglstein, K., and Unsicker, K. (2000) The transforming growth factor-betas: structure, signaling, and roles in the nervous system development and functions. J. Neurochem. 75, 2227–2240.

    Article  PubMed  CAS  Google Scholar 

  5. Pratt, B.M. and McPherson, J.M. (1997) TGF-β in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 8, 267–292.

    Article  PubMed  CAS  Google Scholar 

  6. Massague, J. (1998) TGFβ signal transduction. Annu. Rev. Biochem. 67, 753–791.

    Article  PubMed  CAS  Google Scholar 

  7. Koli, K., Saharinen, J., Hyytiainen, M., Penttinen, C., and Keski-Oja, J. (2001) Latency, activation, and binding proteins of TGF-beta. Microsc. Res. Tech. 52, 354–362.

    Article  PubMed  CAS  Google Scholar 

  8. Murphy-Ullrich, J. and Poczatek, M. (2000) Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev. 11, 59–69.

    Article  PubMed  CAS  Google Scholar 

  9. Derynck, R. (1994) TGF-β receptor mediated signaling. Trends Biochem. Sci. 19, 548–553.

    Article  PubMed  CAS  Google Scholar 

  10. Miyazono, K., Dijke, P., Yamashita, H., and Heldin, C.H. (1994) Signal transduction via serine/threonine kinase receptors. Semin. Cell. Biol. 5, 389–398.

    Article  PubMed  CAS  Google Scholar 

  11. Raftery, L.A., Twombly, V., Wharton, K., and Gelbart, W.M. (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophilia. Genetics 139, 241–254.

    PubMed  CAS  Google Scholar 

  12. Sekelsky, J.J., Newfeld, S.J., Raftery, L.A., Chartoff, E.H., and Gelbart, W.M. (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophilia melanogaster. Genetics 139, 1347–1358.

    PubMed  CAS  Google Scholar 

  13. Savage, C., Das, P., Finelli, A.L., Townsend, S.R., Sun, C.Y., Baird, S.E., and Padgett R.W. (1996) Caenorhabditis elegans genes sma-2, sma-3 and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc. Natl. Acad. Sci. USA. 93, 790–794.

    Article  PubMed  CAS  Google Scholar 

  14. Kretzschmar, M., Liu, F., Hata, A., Doody, J., and Massague, J. (1997) The TGF-beta family mediator Smad1 is phosphorylation directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984–995.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, Y., Lebrun, J.J., and Vale, W. (1996) Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins. Proc. Natl. Acad. Sci. USA. 93, 12992–12997.

    Article  PubMed  CAS  Google Scholar 

  16. Lagna, G., Hata, A., Hemmati-Brivanlou, A., and Massague, J. (1996) Partnership between DPC4 and SMAD proteins in TGF-beta signaling pathways. Nature 282, 832–836.

    Article  Google Scholar 

  17. Zhang, Y., Feng, X., We, R., and Derynck, R. (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 382, 168–172.

    Article  Google Scholar 

  18. Liu, F., Hata, A., Baker, J.C., Doody, J., Carcamo, J., Harland, R.M., and Massague, J. (1996) A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623.

    Article  PubMed  CAS  Google Scholar 

  19. Hoodless, P.A., Haerry, T., Abdollah, S., Stapleton, M., O’Connor, M.B., Attisano, L., and Wrana J.L. (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500.

    Article  PubMed  CAS  Google Scholar 

  20. Hahn, S.A., Schutte, M., Hoque, A.T., et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353.

    Article  PubMed  CAS  Google Scholar 

  21. Heldin, C.H., Miyazono, K., and ten Dijke, P. (1997) TGF-beta signaling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471.

    Article  PubMed  CAS  Google Scholar 

  22. Imamura, T., Takase, M., Nishihara, A., et al. (1997) Smad6 inhibits signaling by the TGF-beta superfamily. Nature 389, 622–626.

    Article  PubMed  CAS  Google Scholar 

  23. Nakao, A., Afrakhte, M., Moren, A., et al. (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signaling. Nature 389, 631–635.

    Article  PubMed  CAS  Google Scholar 

  24. Itoh, S., Landstrom, M., Hermansson, A., et al.(1998) Transforming growth factor beta 1 induces nuclear export of inhibitory Smad7. J. Biol. Chem. 273, 29195–29201.

    Article  PubMed  CAS  Google Scholar 

  25. Yu, L., Herbert, M.C., and Zhang, YE (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO 21, 3749–3759.

    Article  CAS  Google Scholar 

  26. Engel, M.E., McDonnell, M.A., Law, B.K., and Moses, H.L. (1999) Interdependent SMAD and JNK signaling in transforming factor-beta-mediated transcription. J. Biol. Chem. 274, 37413–37420.

    Article  PubMed  CAS  Google Scholar 

  27. Yan, Z., Kim, G.Y., Deng, X., and Friedman, E. (2002) Transforming growth factor beta 1 induces proliferation in colon carcinoma cells by Ras-dependent, smad-independent down-regulation of p21cip1. J. Biol. Chem. 277, 9870–9879.

    Article  PubMed  CAS  Google Scholar 

  28. Itoh, S., Thorikay, M., Kowanetz, M., et al. (2002) Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J. Biol. Chem. Nov 22.

  29. de Caestecker, M.P., Pick, E., and Roberts, A.B. (2000) Role of transforming growth factor-beta signaling in cancer. J. Natl. Cancer Inst. 92, 1388–1402.

    Article  PubMed  Google Scholar 

  30. Ten Dijke, P., Goumans, M.J., Itoh, F., and Itoh, S. (2002) Regulation of cell proliferation by Smad proteins. J. Cell. Physiol. 191, 1–16.

    Article  PubMed  CAS  Google Scholar 

  31. Flanders, K.C., Ludecke, G., Engels, S., et al. (1991) Localizations and actions of transforming growth factor-βs in the embryonic nervous system. Development 113, 183–191.

    PubMed  CAS  Google Scholar 

  32. Pelton, R.W., Saxena, B., Jones, M., Moses, H.L., Gold, L.I. (1991) Immunohistochemical localization of TGF-β1, TGF-β2 and TGF-β3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J. Cell. Biol. 115, 1091–1105.

    Article  PubMed  CAS  Google Scholar 

  33. Unsicker, K., Meier, C., Krieglstein, K., Sartor, B.M., and Flanders, K.C. (1996) Expression, localization and function of transforming growth factor-βs in the embryonic chick spinal cord, hindbrain, and dorsal root ganglion. J. Neurobiol. 29, 262–276.

    Article  PubMed  CAS  Google Scholar 

  34. Jakowlew, S.B., Climent, G., Tuan, R.S., Sporn, M.B., and Roberts, A.B. (1994) Expression of transforming growth factor-β2 and β3 mRNAs and proteins in the developing chicken embryo. Differentiation 55, 105–118.

    Article  PubMed  CAS  Google Scholar 

  35. Unsicker, K., Flanders, K.C., Cissel, D.S., Lafyatis, R., and Sporn, M.B. (1991) Transforming growth factor β isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–625.

    Article  PubMed  CAS  Google Scholar 

  36. Buchanan, C., Mahesh, V.B., and Brann, D.W. (2000) Estrogen-astrocyte-luteinizing hormone-releasing hormone signaling: a role for transforming growth factor-β. Biol. Reprod. 62, 1710–1721.

    Article  PubMed  CAS  Google Scholar 

  37. Bruno, V., Battaglia, G., Casabona, G., Copiani, A., Caciagli, F., and Nicoletti, F. (1998) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J. Neurosci. 18, 9594–9600.

    PubMed  CAS  Google Scholar 

  38. Unsicker, K. and Strelau, J. (2000) Functions of transforming growth factor-β isoforms in the nervous system. Cues based on localization and experimental in vitro and in vivo evidence. Eur. J. Biochem. 267, 6972–6975.

    Article  PubMed  CAS  Google Scholar 

  39. Peress, N.S. and Perillo, E. (1995) Differential expression of TGF-β1, 2, 3 isotypes in Alzheimer’s disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J. Neuropathol. Exp. Neurol. 54, 802–811.

    PubMed  CAS  Google Scholar 

  40. Flanders, K.C., Lippa, C.F., Smith, T.W., Pollen, D.A., and Sporn, M.B. (1995) Altered expression of transforming growth factor-β in Alzheimer’s disease. Neurology 45, 1561–1569.

    PubMed  CAS  Google Scholar 

  41. Galbiati, M., Magnaghi, V., Martini, L., and Melcangi, R.C. (2001) Hypothalamic transforming growth factor beta1 and basic fibroblast growth factor mRNA expression is modified during the rat oestrous cycle. J. Neuroendocrinol. 13, 483–489.

    Article  PubMed  CAS  Google Scholar 

  42. Bottner, M., Unsicker, K., and Suter-Crazzolara, C. (1996) Expression of the TGF-beta type II receptor mRNA in the CNS. Neuroreport 7, 2903–2907.

    Article  PubMed  CAS  Google Scholar 

  43. Lorentzon, M., Hoffer, B., Ebendal, T., Olson, L., and Tomac, A. (1996) Habrec1, a novel serine/threonine kinase TGF-beta type I-like receptor, has a specific cellular expression suggesting function in the developing organism and adult brain. Exp. Neurol. 142, 351–369.

    Article  PubMed  CAS  Google Scholar 

  44. Tsuchida, K., Sawchenki, P.E., Nishikawa, S., and Vale, W.W. (1996) Molecular cloning of a novel type I receptor serine/threonine kinase for the TGF beta superfamily from rat brain. Mol. Cell. Neurosci. 7, 467–478.

    Article  PubMed  CAS  Google Scholar 

  45. Ata, A.K., Funa, K., and Olsson, Y. (1997) Expression of various TGF-beta isoforms and type I receptor in necrotizing human brain lesions. Acta Neuropathol. 93, 326–333.

    Article  PubMed  CAS  Google Scholar 

  46. Ren, R.F., Hawver, D.B., Kim, R.S., and Flanders, K.C. (1997) Transforming growth factor-β protects human hNT cells from degeneration induced by β-amyloid peptide: involvement of the TGF-β type II receptor. Mol. Brain Res. 48, 315–322.

    Article  PubMed  CAS  Google Scholar 

  47. Sattler, R., and Tymianski, M. (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 24, 107–129.

    Article  PubMed  CAS  Google Scholar 

  48. Klempt, D.N., Sirimanne, E., Gunn, A.J., et al. (1992) Hypoxia-ischemia induces transforming growth factor β1 mRNA in the infant rat brain. Mol. Brain Res. 13, 93–101.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, X., Yue, T.L., White, R., Barone, F., and Geuerstein, G. (1995) Transforming growth factor-β1 exhibits delayed gene expression following focal cerebral ischemia. Brain Res. Bull. 36, 607–609.

    Article  PubMed  CAS  Google Scholar 

  50. Knuckey, N.W., Finch, P., Palm, D.E., et al. (1996) Differential neuronal and astrocytic expression of transforming growth factor β isoforms in rat hippocampus following transient forebrain ischemia. Mol. Brain Res. 40, 1–14.

    PubMed  CAS  Google Scholar 

  51. Wiebner, C., Gehrmann, J., Lindholm, D., Topper, R., Kreutzberg, G.W., and Hossman, K.A. (1993) Expression of transforming growth factor-β1 and interleukin-β1 mRNA in rat brain following transient forebrain ischemia. Acta Neuropathol. 86, 439–446.

    Google Scholar 

  52. Lehrmann, E., Kiefer, R., Finsen, B., Diemer, N.H., Zimmer, J., and Hartung, H.P. (1995) Cytokines in cerebral ischemia: expression of transforming growth factor-beta1 (TGF-β1) mRNA in the postischemic adult rat hippocampus. Exp. Neurol. 131, 114–123.

    Article  PubMed  CAS  Google Scholar 

  53. Ali, C., Docagne, F., Nicole, O., et al. (2001) Increased expression of transforming growth factor-β after cerebral ischemia in the baboon: an endogenous marker of neuronal stress? J. Cereb. Blood Flow Metab. 21, 820–827.

    Article  PubMed  CAS  Google Scholar 

  54. Krupinski, J., Kumar, P., Kumar, S., and Kaluza, J. (1996) Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke 27, 852–857.

    PubMed  CAS  Google Scholar 

  55. Gross, C., Bednar, M., Howard, D., and Sporn, M. (1993) Transforming growth factor-β1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 24, 558–562.

    PubMed  CAS  Google Scholar 

  56. Prehn, J., Backhaub, C., and Krieglstein, J. (1993) Transforming growth factor-β1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J. Cereb. Blood Flow Metab. 13, 521–525.

    PubMed  CAS  Google Scholar 

  57. Henrich-Noack, P., Prehn, J.H.M., and Krieglstein, J. (1996) TGF-β1 protects hippocampal neurons against degeneration caused by transient global ischemia. Stroke 27, 1609–1615.

    PubMed  CAS  Google Scholar 

  58. McNeill, H., Williams, C., Guan, J., et al. (1994) Neuronal rescue with transforming growth factor-beta 1 after hypoxic-ischaemic brain injury. Neuroreport 5, 901–904.

    Article  PubMed  CAS  Google Scholar 

  59. Ruocco, A., Nicole, O., Docagne, F., et al. (1999) A transforming growth factor-β antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. J. Cereb. Blood Flow Metab. 19, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  60. Zhu, Y., Yang, G., Ahlemeyer, B., et al. (2002) Transforming growth factor-β1 increases bad phosphorylation and protects neurons against damage. J. Neurosci. 22, 3898–3909.

    PubMed  CAS  Google Scholar 

  61. Henrich-Noack, P., Prehn, J.H.M., Krieglstein, J. (1991) Neuroprotective effects of TGF-β1. J. Neural Transm. Suppl. 43, 33–45.

    Google Scholar 

  62. Prehn, J.H.M., and Miller, R. (1996) Opposite effects of TGF-β1 on rapidly and slowly triggered excitotoxic injury. Neurol. Res. 35, 249–256.

    CAS  Google Scholar 

  63. Prehn, J., Peruche, B., Unsicker, K., and Krieglstein, J. (1993) Isoform-specific effects of transforming growth factors-β on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate. J. Neurochem. 60, 165–172.

    Article  Google Scholar 

  64. Prehn, J., Bindokas, V., Marcuccilli, C., Krejewski, S., Reed, J., and Miller, R. (1994) Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type β confers wide ranging protection on rat hippocampal neurons. Proc. Natl. Acad. Sci. USA. 91, 12599–12603.

    Article  PubMed  CAS  Google Scholar 

  65. Prehn, J.H.M. (1996) Marked diversity in the action of growth factors on N-methyl-D-aspartate induced neuronal degeneration. Eur. J. Pharmacol. 306, 81–88.

    Article  PubMed  CAS  Google Scholar 

  66. Prehn, J.H. and Krieglstein, J. (1994) Opposing effects of transforming growth factor-β1 on glutamate neurotoxicity. Neuroscience 60, 7–10.

    Article  PubMed  CAS  Google Scholar 

  67. Ho, T., Bristol, L., Coccia, C., Li, Y., et al. (2000) TGF-beta trophic factors differentially modulate motor axon outgrowth and protection from exictotoxicity. Exp. Neurol. 161, 664–675.

    Article  PubMed  CAS  Google Scholar 

  68. Dhandapani, K.M., Wade, F.M., Buchanan, C.D., and Brann, D.W. (2000) Transforming growth factor-β released by astrocytes enhances connectivity and survival of neurons: regulation by 17β-estradiol. Mol. Cell. Biol. 11, 141 Suppl S.

    Google Scholar 

  69. Meucci, O., and Miller, R.J. (1996) gp-120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective actions of TGF-β1. J. Neurosci. 16, 4080–4088.

    PubMed  CAS  Google Scholar 

  70. Scorziello, A., Florio, T., Bajetto, A., Thellung, S., and Schettini, G. (1997) TGF-β1 prevents gp120-induced impairment of Ca2+ homeostasis and rescues cortical neurons from apoptotic death. J. Neurosci. Res. 49, 600–607.

    Article  PubMed  CAS  Google Scholar 

  71. Kim, E.S., Kim, R.S., Ren, R.F., Hawver, D.B., and Flanders, K.C. (1998) Transforming growth factor-β inhibits apoptosis induced by β-amyloid peptide fragment 25–35 in cultured neuronal cells. Mol. Brain Res. 62, 122–130.

    Article  PubMed  CAS  Google Scholar 

  72. Ren, R.F. and Flanders, K.C. (1996) Transforming growth factors-β protect primary rat hippocampal neuronal cultures from degeneration induced by beta-amyloid peptide. Brain Res. 732, 16–24.

    Article  PubMed  CAS  Google Scholar 

  73. Buisson, A., Nicole, O., Docagne, F., Sartelet, H., MacKenzie, E.T., and Vivien, D. (1998) Upregulation of a serine protease inhibitor in astrocytes mediates the neuro-protective activity of transforming growth factor β1. FASEB J. 12, 1683–1691.

    PubMed  CAS  Google Scholar 

  74. Kane, C.J., Brown, C.J., and Phelan, K.D. (1996) Transforming growth factor-beta2 increases NMDA receptor-mediated excitotoxicity in rat cerebral cortical neurons independently of glia. Neurosci. Lett. 204, 93–96.

    Article  PubMed  CAS  Google Scholar 

  75. Jones, L.L., Kreutzberg, G.W., and Raivich, G. (1998) Transforming growth factor beta’s 1,2 and 3 inhibit proliferation of ramified microglia on an astrocyte monolayer. Brain Res. 795, 301–306.

    Article  PubMed  CAS  Google Scholar 

  76. Basu, A., Krady, J.K., Enterline, J.R., and Levison, S.W. (2002) Transforming growth factor beta1 prevents IL-1beta-induced microglia activation, whereas TNFalpha- and IL-6-stimulated activation are not antagonized. Glia 40, 109–120.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell W. Brann.

Additional information

The authors’ research is supported by research grants (HD-28964 and AG-17186 to DWB) from the National Institutes of Health, NICHD, and NIA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhandapani, K.M., Brann, D.W. Transforming growth factor-β. Cell Biochem Biophys 39, 13–22 (2003). https://doi.org/10.1385/CBB:39:1:13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:1:13

Index Entries

Navigation