Skip to main content

Computational Prediction of Protein-Protein Interactions

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 261))

Abstract

Eukaryotic proteins typically contain one or more modular domains such as kinases, phosphatases, and phoshopeptide-binding domains, as well as characteristic sequence motifs that direct post-translational modifications such as phosphorylation, or mediate binding to specific modular domains. A computational approach to predict protein interactions on a proteomewide basis would therefore consist of identifying modular domains and sequence motifs from protein primary sequence data, creating sequence specificity-based algorithms to connect a domain in one protein with a motif in another in “interaction space” and then graphically constructing possible interaction networks. Computational methods for predicting modular domains in proteins have been quite successful, but identifying the short sequence motifs these domains recognize has been more difficult. We are developing improved methods to identify these motifs by combining experimental and computational techniques with databases of sequences and binding information. Scansite is a web-accessible program that predicts interactions between proteins using experimental binding data from peptide library and phage display experiments. This program focuses on domains important in cell signaling, but it can, in principle, be used for other interactions if the domains and binding motifs are known. This chapter describes in detail how to use Scansite to predict the binding partners of an input protein, and how to find all proteins that contain a given sequence motif.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uetz, P. and Hughes, R. E. (2000) Systematic and large-scale two-hybrid screens. Curr. Opin. Microbiol. 3, 303–308.

    Article  PubMed  CAS  Google Scholar 

  2. Zucconi, A., Panni, S., Paoluzi, S., Castagnoli, L., Dente, L., and Cesareni, G. (2000) Domain repertoires as a tool to derive protein recognition rules. FEBS Lett. 480, 49–54.

    Article  PubMed  CAS  Google Scholar 

  3. Kay, B. K., Kasanov, J., and Yamabhai, M. (2001) Screening phage-displayed combinatorial peptide libraries. Methods 24, 240–246.

    Article  PubMed  CAS  Google Scholar 

  4. Ho, Y., Gruhler, A., Heilbut, A., et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.

    Article  PubMed  CAS  Google Scholar 

  5. Gavin, A. C., Bosche, M., Krause, R., et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147.

    Article  PubMed  CAS  Google Scholar 

  6. Link, A. J., Eng, J., Schieltz, D. M., et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682.

    Article  PubMed  CAS  Google Scholar 

  7. Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., and Cesareni, G. (2002) MINT: a Molecular INTeraction database. FEBS Lett. 513, 135–140.

    Article  PubMed  CAS  Google Scholar 

  8. Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S. M., and Eisenberg, D. (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305.

    Article  PubMed  CAS  Google Scholar 

  9. Bader, G. D. and Hogue, C. W. (2000) BIND—a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16, 465–477.

    Article  PubMed  CAS  Google Scholar 

  10. Kreegipuu, A., Blom, N., and Brunak, S. (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res. 27, 237–239.

    Article  PubMed  CAS  Google Scholar 

  11. Yaffe, M. B., Leparc, G. G., Lai, J., Obata, T., Volinia, S., and Cantley, L. C. (2001) A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348–353.

    Article  PubMed  CAS  Google Scholar 

  12. Brannetti, B., Via, A., Cestra, G., Cesareni, G., and Helmer-Citterich, M. (2000) SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. J. Mol. Biol. 298, 313–328.

    Article  PubMed  CAS  Google Scholar 

  13. Blom, N., Gammeltoft, S., and Brunak, S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  14. Tong, A. H., Drees, B., Nardelli, G., et al. (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324.

    Article  PubMed  CAS  Google Scholar 

  15. Luthy, R., Xenarios, I., and Bucher, P. (1994) Improving the sensitivity of the sequence profile method. Protein Sci. 3, 139–146.

    Article  PubMed  CAS  Google Scholar 

  16. Henikoff, S., Henikoff, J. G., and Pietrokovski, S. (1999) Blocks+: a nonredundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15, 471–479.

    Article  PubMed  CAS  Google Scholar 

  17. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  18. Marchler-Bauer, A., Panchenko, A. R., Shoemaker, B. A., Thiessen, P. A., Geer, L. Y., and Bryant, S. H. (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 30, 281–283.

    Article  PubMed  CAS  Google Scholar 

  19. Hart, R. K., Royyuru, A. K., Stolovitzky, G., and Califano, A. (2000) Systematic and fully automated identification of protein sequence patterns. J. Comput. Biol. 7, 585–600.

    Article  PubMed  CAS  Google Scholar 

  20. Ponting, C. P., Schultz, J., Milpetz, F., and Bork, P. (1999) SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res. 27, 229–232.

    Article  PubMed  CAS  Google Scholar 

  21. Kemp, B. E. and Pearson, R. B. (1990) Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15, 342–346.

    Article  PubMed  CAS  Google Scholar 

  22. Pinna, L. A. and Ruzzene, M. (1996) How do protein kinases recognize their substrates? Biochim. Biophys. Acta 1314, 191–225.

    Article  PubMed  CAS  Google Scholar 

  23. Songyang, Z. and Cantley, L. C. (1998) The use of peptide library for the determination of kinase peptide substrates. Methods Mol. Biol. 87, 87–98.

    PubMed  CAS  Google Scholar 

  24. Yaffe, M. B. and Cantley, L. C. (2000) Mapping specificity determinants for protein-protein association using protein fusions and random peptide libraries. Methods Enzymol. 328, 157–170.

    Article  PubMed  CAS  Google Scholar 

  25. Rebhan, M., Chalifa-Caspi, V., Prilusky, J., and Lancet, D. (1998) GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14, 656–664.

    Article  PubMed  CAS  Google Scholar 

  26. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Finn, R. D., and Sonnhammer, E. L. (1999) Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 27, 260–262.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Obenauer, J.C., Yaffe, M.B. (2004). Computational Prediction of Protein-Protein Interactions. In: Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 261. Humana Press. https://doi.org/10.1385/1-59259-762-9:445

Download citation

  • DOI: https://doi.org/10.1385/1-59259-762-9:445

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-120-2

  • Online ISBN: 978-1-59259-762-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics