Skip to main content

Mapping of Pseudouridine Residues in RNA to Nucleotide Resolution

  • Protocol
Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 77))

Abstract

The stable RNA molecules (rRNA, tRNA, and sn[o]RNA) of the cell are subjected to nucleotide modifications on the way to the functionally mature state (see refs. 13). These modifications, which account for up to 16% of the nucleotides in higher eucaryotic rRNAs, are introduced at the poly nucleotide level at specific sites. They include nucleosides methylated either on the base or on the 2′-hydroxyl of ribose, pseudouridine (ψ; 5-β-D-ribofuranosyluracil) and its derivatives such as 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine in eukaryotic small subunit rRNA, dihydrouridine, N4-acetylcytidine and a number of more complex nucleotides found in tRNA molecules (4). Some of these modified bases are shown Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sprinzl, M., Steegborn, C., Hubel, F., and Stemberg, S. (1996) Compilation of tRNA sequences and sequences of tRNA genes. Nucl. Acids Res. 24, 68–72.

    Article  PubMed  CAS  Google Scholar 

  2. Gu, J. and Reddy, R. (1997) Small RNA database. Nucleic Acids Res. 25, 98–101.

    Article  PubMed  CAS  Google Scholar 

  3. Maden, B. E. H. (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Progr. Nucl. Acids Res. & Mol. Biol. 39, 241–3031.

    Article  CAS  Google Scholar 

  4. Crain, P. F. and McCloskey, J. A. (1997) The RNA modification database. Nucleic Acids Res. 25, 126–127.

    Article  PubMed  CAS  Google Scholar 

  5. Davis, F. F. and Allen, F. W. (1957) Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol. Chem. 227, 907–915.

    PubMed  CAS  Google Scholar 

  6. Yu, C.-T. and Allen, F. W. (1959) Studies on an isomer of uridine isolated from ribonucleic acids. Biochim. Biophys. Acta. 32, 393–406.

    Article  PubMed  CAS  Google Scholar 

  7. Scannell, J. P., Crestfield, A. M., and Allen, F. W. (1959) Methylation studies on various uracil derivatives and on an isomer of uridine isolated from ribonucleic acids. Biochim. Biophys. Acta. 32, 406–412.

    Article  PubMed  CAS  Google Scholar 

  8. Spector, L. B. and Keller, E. B. (1958) Labile acetylated uracil derivatives. J. Biol. Chem. 232, 185–192.

    PubMed  CAS  Google Scholar 

  9. Cortese, R., Kammen, H. O., Spengler, S. J., and Ames, B. N. (1974) Biosynthesis of pseudouridine in transfer ribonucleic acid. J. Biol. Chem. 249, 1103–1108.

    PubMed  CAS  Google Scholar 

  10. Bakin, A. and Ofengand, J. (1993) Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyl transferase center. Analysis by the application of a new sequencing technique. Biochemistry 32, 9754–9762.

    Article  PubMed  CAS  Google Scholar 

  11. Bakin, A. V., Lane, B. G., and Ofengand, J. (1994) Clustering of pseudouridine residues around the peptidyl transferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry 33, 13475–13483.

    Article  PubMed  CAS  Google Scholar 

  12. Bakin, A., Kowalak, J. A., McCloskey, J. A., and Ofengand, J. (1994) The single pseudouridine residue in Escherichia coli 16S RNA is located at position 516. Nucleic Acids Res. 22, 3681–3684.

    Article  PubMed  CAS  Google Scholar 

  13. Bakin, A. and Ofengand, J. (1995) Mapping of the thirteen pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution. Nucleic Acids Res. 23, 3290–3294.

    Article  PubMed  CAS  Google Scholar 

  14. Ofengand, J. and Bakin, A. (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria, and chloroplasts. J. Mol. Biol. 266, 246–268.

    Article  PubMed  CAS  Google Scholar 

  15. Ho, N. W. Y. and Gilham, P. T. (1967) The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid. Biochemistry 6, 3632–3639.

    Article  PubMed  CAS  Google Scholar 

  16. Ho, N. W. Y. and Gilham, P. T. (1971) Reaction of pseudouridine and inosine with N-cyclohexyl-N′-β-(4-methylmorpholinium)ethylcarbodimide. Biochemistry B10, 3651–3657.

    Google Scholar 

  17. Moazed, D., Stern, S., and Noller, H. F. (1986) Rapid chemical probing of conformation in 16S ribosomal RNA and 30S ribosomal subunits using primer extension. J. Mol. Biol. 187, 399–416.

    Article  PubMed  CAS  Google Scholar 

  18. Verwoerd, D. W. and Zilleg, W. (1963) A specific partial hydrolysis procedure for soluble RNA. Biochim. Biophys. Acta. 68, 484–486.

    Article  PubMed  CAS  Google Scholar 

  19. Peattie, D. A. (1979) Direct chemical method for sequencing RNA. Proc. Natl. Acad Sci. USA 76, 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  20. Lankat-Buttgereit, B., Gross, H. J., and Krupp, G. (1987) Detection of modified nucleosides by rapid RNA sequencing methods. Nucleic Acids Res. 15, 7649.

    Article  PubMed  CAS  Google Scholar 

  21. Brown, D. M. (1967) The reaction of hydrazine with pyrimidine bases. Meth. Enzymol. 12A, 31–34.

    Article  Google Scholar 

  22. Branlant, C., Krol, A., Machatt, M. A., Pouyet, J., and Ebel, J. P. (1981) Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucl. Acids Res. 9, 4303–4324.

    Article  PubMed  CAS  Google Scholar 

  23. Kowalak, J. A, Bruenger, E., Hashizume, T., Peltier, J. M., Ofengand, J., and McCloskey, J. A. (1996) Structural characterization of 3-methylpseudouridine in Domain IV from E. coli 23S ribosomal RNA. Nucleic Acids Res. 24, 688–693.

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Bakin, A.V., Ofengand, J. (1998). Mapping of Pseudouridine Residues in RNA to Nucleotide Resolution. In: Martin, R. (eds) Protein Synthesis. Methods in Molecular Biology, vol 77. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-397-X:297

Download citation

  • DOI: https://doi.org/10.1385/0-89603-397-X:297

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-397-9

  • Online ISBN: 978-1-59259-563-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics