Abstract
The stable RNA molecules (rRNA, tRNA, and sn[o]RNA) of the cell are subjected to nucleotide modifications on the way to the functionally mature state (see refs. 1–3). These modifications, which account for up to 16% of the nucleotides in higher eucaryotic rRNAs, are introduced at the poly nucleotide level at specific sites. They include nucleosides methylated either on the base or on the 2′-hydroxyl of ribose, pseudouridine (ψ; 5-β-D-ribofuranosyluracil) and its derivatives such as 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine in eukaryotic small subunit rRNA, dihydrouridine, N4-acetylcytidine and a number of more complex nucleotides found in tRNA molecules (4). Some of these modified bases are shown Fig. 1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Sprinzl, M., Steegborn, C., Hubel, F., and Stemberg, S. (1996) Compilation of tRNA sequences and sequences of tRNA genes. Nucl. Acids Res. 24, 68–72.
Gu, J. and Reddy, R. (1997) Small RNA database. Nucleic Acids Res. 25, 98–101.
Maden, B. E. H. (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Progr. Nucl. Acids Res. & Mol. Biol. 39, 241–3031.
Crain, P. F. and McCloskey, J. A. (1997) The RNA modification database. Nucleic Acids Res. 25, 126–127.
Davis, F. F. and Allen, F. W. (1957) Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol. Chem. 227, 907–915.
Yu, C.-T. and Allen, F. W. (1959) Studies on an isomer of uridine isolated from ribonucleic acids. Biochim. Biophys. Acta. 32, 393–406.
Scannell, J. P., Crestfield, A. M., and Allen, F. W. (1959) Methylation studies on various uracil derivatives and on an isomer of uridine isolated from ribonucleic acids. Biochim. Biophys. Acta. 32, 406–412.
Spector, L. B. and Keller, E. B. (1958) Labile acetylated uracil derivatives. J. Biol. Chem. 232, 185–192.
Cortese, R., Kammen, H. O., Spengler, S. J., and Ames, B. N. (1974) Biosynthesis of pseudouridine in transfer ribonucleic acid. J. Biol. Chem. 249, 1103–1108.
Bakin, A. and Ofengand, J. (1993) Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyl transferase center. Analysis by the application of a new sequencing technique. Biochemistry 32, 9754–9762.
Bakin, A. V., Lane, B. G., and Ofengand, J. (1994) Clustering of pseudouridine residues around the peptidyl transferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry 33, 13475–13483.
Bakin, A., Kowalak, J. A., McCloskey, J. A., and Ofengand, J. (1994) The single pseudouridine residue in Escherichia coli 16S RNA is located at position 516. Nucleic Acids Res. 22, 3681–3684.
Bakin, A. and Ofengand, J. (1995) Mapping of the thirteen pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution. Nucleic Acids Res. 23, 3290–3294.
Ofengand, J. and Bakin, A. (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria, and chloroplasts. J. Mol. Biol. 266, 246–268.
Ho, N. W. Y. and Gilham, P. T. (1967) The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid. Biochemistry 6, 3632–3639.
Ho, N. W. Y. and Gilham, P. T. (1971) Reaction of pseudouridine and inosine with N-cyclohexyl-N′-β-(4-methylmorpholinium)ethylcarbodimide. Biochemistry B10, 3651–3657.
Moazed, D., Stern, S., and Noller, H. F. (1986) Rapid chemical probing of conformation in 16S ribosomal RNA and 30S ribosomal subunits using primer extension. J. Mol. Biol. 187, 399–416.
Verwoerd, D. W. and Zilleg, W. (1963) A specific partial hydrolysis procedure for soluble RNA. Biochim. Biophys. Acta. 68, 484–486.
Peattie, D. A. (1979) Direct chemical method for sequencing RNA. Proc. Natl. Acad Sci. USA 76, 1760–1764.
Lankat-Buttgereit, B., Gross, H. J., and Krupp, G. (1987) Detection of modified nucleosides by rapid RNA sequencing methods. Nucleic Acids Res. 15, 7649.
Brown, D. M. (1967) The reaction of hydrazine with pyrimidine bases. Meth. Enzymol. 12A, 31–34.
Branlant, C., Krol, A., Machatt, M. A., Pouyet, J., and Ebel, J. P. (1981) Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucl. Acids Res. 9, 4303–4324.
Kowalak, J. A, Bruenger, E., Hashizume, T., Peltier, J. M., Ofengand, J., and McCloskey, J. A. (1996) Structural characterization of 3-methylpseudouridine in Domain IV from E. coli 23S ribosomal RNA. Nucleic Acids Res. 24, 688–693.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Humana Press Inc.
About this protocol
Cite this protocol
Bakin, A.V., Ofengand, J. (1998). Mapping of Pseudouridine Residues in RNA to Nucleotide Resolution. In: Martin, R. (eds) Protein Synthesis. Methods in Molecular Biology, vol 77. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-397-X:297
Download citation
DOI: https://doi.org/10.1385/0-89603-397-X:297
Publisher Name: Springer, Totowa, NJ
Print ISBN: 978-0-89603-397-9
Online ISBN: 978-1-59259-563-1
eBook Packages: Springer Protocols