EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1
Fig 3
Colocalization of EBNA2 with RBP-jκ and EBF1 co-occupied sites.
(A) Heatmap of EBNA2 ChIP-Seq peaks from LCL was compared with EBNA2 peaks from Mutu III, EBF1 and RBP-jκ from LCL or Mutu I, EBNA3C from LCL or Mutu III, or EBNALP from LCL. Peaks were sorted based on the EBNA2 levels in LCL and show -/+ 4kb window. (B) The fold changes (LCL versus Mutu I) were plotted for EBF1 (x-axis) and RBP-jκ (y-axis) for all EBF1 and RBP-jκ peaks. The peaks were colored based on the EBNA2 occupancy. The positive correlation (Pearson’s correlation coefficient = 0.8) between the fold changes suggests that EBF1 and RBP-jκ co-localize with each other. The strong occupancy of EBNA2 at the top-right panel of the plot shows that high occupancy EBNA2 correlates with sites of high occupancies for EBF1 and RBP-jκ. (C) Heatmap comparison of histone modification marks (H3K4me3, H3Km4me1, H3K27me3) and transcription factors BATF, JunD, and EBNA2 from LCL centered at EBF1 peaks enriched in LCL (cluster i) or Mutu I (cluster ii). (D) Box plot quantitation of peak number and intensity for ChIP-Seq clustered sets i and ii shown in panel C as indicated. (E and F) Same as in C and D, except centered at cell-specific RBP-jκ peaks.