Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia

Figure 8

Intracellular Ca2+ measurements in cultured astrocytes dissociated from the hippocampal CA1 region.

(A–D) Typical fluorescence response elicited by 5 µM 4αPDD in cultured hippocampal astrocytes. (A) Two astrocytes in aCSF before 4αPDD application, (B) during 4αPDD application in aCSF, (C) during 4αPDD application in aCSFØCa and (D) during washout with aCSF. (E) Immunocytochemical staining for glial fibrillary acidic protein (GFAP) to verify astrocyte identity. (F) Representative fluorescence traces of cultured astrocytes isolated from sham-operated animals (CTRL) and animals 1 hour (1H H/I) and 7 days (7D H/I) after H/I in response to stimulation as in A–D. Note the delay between the 4αPDD challenge and the onset of the fluorescence increase under the 3 conditions. (G) Histogram of the variation in the fluorescence intensities dF/F0 depicting the maximum intensity upon 4αPDD application in aCSF (4αPDD), the average intensity during the last minute of 4αPDD application in aCSFØCa (4αPDD in aCSFØCa) and the maximum intensity during washout (aCSF). (H) Histogram of the number of responding cells (top) and histogram of the 4αPDD response time delay (bottom). Note that in astrocytes 7 days (7D) after H/I, TRPV4-mediated Ca2+ entry is enhanced and the number of responding cells is higher when compared to control. The values are presented as mean ± S.E.M. Statistical significance was calculated using one-way ANOVA. *p<0.05, significant; **p<0.01, very significant; ***p<0.001, extremely significant.

Figure 8

doi: https://doi.org/10.1371/journal.pone.0039959.g008