Skip to main content

Advertisement

Log in

LINE-1 Methylation Level and Patient Prognosis in a Database of 208 Hepatocellular Carcinomas

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

The level of long interspersed nucleotide element-1 (LINE-1) methylation has become regarded as a surrogate marker of global DNA methylation. Previously, we demonstrated that LINE-1 hypomethylation might contribute to the acquisition of aggressive tumor behavior through genomic gains of oncogenes such as cyclin-dependent kinase 6 (CDK6) in esophageal squamous cell carcinoma. However, the relationship between LINE-1 hypomethylation and clinical outcome in hepatocellular carcinoma (HCC) remains unclear.

Methods

LINE-1 methylation level in 208 samples of curatively resected HCCs was measured by pyrosequencing assay, and the prognostic value of LINE-1 methylation level in HCC was examined.

Results

LINE-1 methylation levels in the 208 HCC patients investigated were distributed as follows: mean 64.7; median 64.6; standard deviation (SD) 13.6; range 21.5–99.1; interquartile range 62.9–66.6. Univariate Cox regression analysis revealed a significantly higher cancer recurrence rate in the low-methylation-level group than in the high-methylation-level group (hazard ratio 1.58; 95 % CI 1.05–2.47; p = 0.028). Interestingly, the influence of LINE-1 hypomethylation on patient outcome was modified by hepatitis virus infection (p of interaction = 0.023); LINE-1 hypomethylation was associated with a higher cancer recurrence rate in patients without hepatitis virus infection (log-rank p = 0.0047). CDK6 messenger RNA expression levels were inversely associated with LINE-1 methylation levels (p = 0.0075; R = −0.37).

Conclusions

Genome-wide DNA hypomethylation, as measured by LINE-1 levels, might be associated with poor disease-free survival in HCC patients, suggesting a potential role for LINE-1 methylation level as a biomarker for identifying patients who will experience an unfavorable clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45:529–538.

    Article  PubMed  Google Scholar 

  3. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–1255.

    Article  PubMed  Google Scholar 

  4. Feng GS. Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer cell. 2012;21:150–154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Iakova P, Timchenko L, Timchenko NA. Intracellular signaling and hepatocellular carcinoma. Semin Cancer Biol. 2011;21:28–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Herath NI, Leggett BA, MacDonald GA. Review of genetic and epigenetic alterations in hepatocarcinogenesis. J Gastroenterol Hepatol. 2006;21:15–21.

    Article  CAS  PubMed  Google Scholar 

  7. Nishida N, Goel A. Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Curr Genomics. 2011;12:130–137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Calvisi DF, Ladu S, Gorden A, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest. 2007;117:2713–2722.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett. 2014;342:223–230.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Berman BP, Weisenberger DJ, Aman JF, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2012;44:40–46.

    Article  PubMed Central  CAS  Google Scholar 

  11. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–492.

    Article  CAS  PubMed  Google Scholar 

  12. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–428.

    Article  CAS  PubMed  Google Scholar 

  13. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Irahara N, Nosho K, Baba Y, et al. Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn. 2010;12:177–183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ogino S, Kawasaki T, Nosho K, et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122:2767–2773.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ogino S, Nosho K, Kirkner GJ, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100:1734–1738.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Iwagami S, Baba Y, Watanabe M, et al. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg. 2013;257:449–455.

    Article  PubMed  Google Scholar 

  19. Shigaki H, Baba Y, Watanabe M, et al. LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastric Cancer. 2013;16:480–487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pattamadilok J, Huapai N, Rattanatanyong P, et al. LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:711–717.

    Article  CAS  PubMed  Google Scholar 

  21. Baba Y, Watanabe M, Murata A, et al. LINE-1 hypomethylation, DNA copy number alterations, and CDK6 amplification in esophageal squamous cell carcinoma. Clin Cancer Res. 2014;20:1114–1124.

    Article  CAS  PubMed  Google Scholar 

  22. Sobin LH, Gospodarowicz MK, Wittekind C, International Union against Cancer. TNM classification of malignant tumours. 7th ed. Chichester; Hoboken, NJ: Wiley-Blackwell; 2010.

  23. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97:1180–1184.

    Article  CAS  PubMed  Google Scholar 

  24. Baba Y, Huttenhower C, Nosho K, et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer. 2010;9:125.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Iwagami S, Baba Y, Watanabe M, et al. Pyrosequencing assay to measure LINE-1 methylation level in esophageal squamous cell carcinoma. Ann Surg Oncol. 2012;19:2726–2732.

    Article  PubMed  Google Scholar 

  26. Kinoshita H, Okabe H, Beppu T, et al. CYLD downregulation is correlated with tumor development in patients with hepatocellular carcinoma. Mol Clin Oncol. 2013;1:309–314.

    PubMed Central  PubMed  Google Scholar 

  27. Ichida F, Tsuji T, Omata M, et al. New Inuyama classification: new criteria for histological assessment of chronic hepatitis. Int Hepatol Commun. 1996;6:112–119.

    Article  Google Scholar 

  28. Ohka F, Natsume A, Motomura K, et al. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma. PloS one. 2011;6:e23332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sigalotti L, Fratta E, Bidoli E, et al. Methylation levels of the “long interspersed nucleotide element-1” repetitive sequences predict survival of melanoma patients. J Transl Med. 2011;9:78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene. 2005;24:7213–7223.

    Article  CAS  PubMed  Google Scholar 

  31. Cho NY, Kim BH, Choi M, et al. Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol. 2007;211:269–277.

    Article  CAS  PubMed  Google Scholar 

  32. Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T. Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res. 2010;16:2418–2426.

    Article  CAS  PubMed  Google Scholar 

  33. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–1159.

    Article  CAS  PubMed  Google Scholar 

  34. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.

    Article  CAS  PubMed  Google Scholar 

  35. Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM 3rd, Jaenisch R. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell. 2005;8:275–285.

    Article  CAS  PubMed  Google Scholar 

  36. Karpf AR, Matsui S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res. 2005;65:8635–8639.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki K, Suzuki I, Leodolter A, et al. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell. 2006;9:199–207.

    Article  CAS  PubMed  Google Scholar 

  38. Cruickshanks HA, Tufarelli C. Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics. 2009;94:397–406.

    Article  CAS  PubMed  Google Scholar 

  39. Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene. 2008;27:404–408.

    Article  CAS  PubMed  Google Scholar 

  40. Schulz WA. L1 retrotransposons in human cancers. J Biomed Biotechnol. 2006;2006:83672.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Shukla R, Upton KR, Munoz-Lopez M, et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell. 2013;153:101–111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Weber B, Kimhi S, Howard G, Eden A, Lyko F. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene. 2010;29:5775–5784.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu C, Utsunomiya T, Ikemoto T, et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) is associated with poor prognosis via activation of c-MET in hepatocellular carcinoma. Ann Surg Oncol. Epub 4 Jul 2014.

  44. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19:698–711.

    Article  CAS  PubMed  Google Scholar 

  45. Bjornsson HT, Brown LJ, Fallin MD, et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst. 2007;99:1270–1273.

    Article  CAS  PubMed  Google Scholar 

  46. Cheah MS, Wallace CD, Hoffman RM. Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene. J Natl Cancer Inst. 1984;73:1057–1065.

    CAS  PubMed  Google Scholar 

  47. Shahrzad S, Bertrand K, Minhas K, Coomber BL. Induction of DNA hypomethylation by tumor hypoxia. Epigenetics. 2007;2:119-125.

    Article  PubMed  Google Scholar 

  48. Li J, Xu Y, Long XD, et al. Cbx4 governs HIF-1alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 2014;25:118–131.

    Article  CAS  PubMed  Google Scholar 

  49. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–572.

    Article  CAS  PubMed  Google Scholar 

  50. Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48:2047–2063.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang C, Xu Y, Zhao J, et al. Elevated expression of the stem cell marker CD133 associated with Line-1 demethylation in hepatocellular carcinoma. Ann Surg Oncol. 2011;18:2373–2380.

    Article  PubMed  Google Scholar 

  52. Choi GH, Kim DH, Kang CM, et al. Prognostic factors and optimal treatment strategy for intrahepatic nodular recurrence after curative resection of hepatocellular carcinoma. Ann Surg Oncol. 2008;15:618–629.

    Article  PubMed  Google Scholar 

  53. Poon RT, Fan ST, Lo CM, Liu CL, Wong J. Intrahepatic recurrence after curative resection of hepatocellular carcinoma: long-term results of treatment and prognostic factors. Ann Surg. 1999;229:216–222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sasaki Y, Imaoka S, Masutani S, et al. Influence of coexisting cirrhosis on long-term prognosis after surgery in patients with hepatocellular carcinoma. Surgery. 1992;112:515–521.

    CAS  PubMed  Google Scholar 

  55. Shirabe K, Shimada M, Kajiyama K, et al. Clinicopathologic features of patients with hepatocellular carcinoma surviving >10 years after hepatic resection. Cancer. 1998;83:2312–2316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Author contributions: conception and design: Kazuto Harada, Yoshifumi Baba, Toru Beppu, and Hideo Baba; acquisition of data: Kazuto Harada, Yoshifumi Baba, and Toru Beppu; analysis and interpretation of data: Kazuto Harada and Yoshifumi Baba; manuscript writing: Kazuto Harada, Yoshifumi Baba, and Hideo Baba. All authors approved the final manuscript.

Conflict of interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Baba MD, PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10434_2014_4134_MOESM1_ESM.tif

Kaplan–Meier curves for the study group (red) and excluded group (blue). The left and right panels show theoverall survival rate and the disease-free survival rate, respectively (TIFF 768 kb)

10434_2014_4134_MOESM2_ESM.tif

The pyrosequencing assay used to measure the LINE-1 methylation level. The overall LINE-1methylationlevel is the average proportion of C (%) at the 4 CpG sites. The percentages of C at each CpG site afterbisulfite conversion, used to compute the methylation level at each CpG site, are given in blue font. Upperand lower panels show the results for LINE-1 hypermethylated tumor (methylation level, 81.5%) and LINE-1hypomethylated tumor (methylation level, 48.3%), respectively (TIFF 2064 kb)

Supplementary material 3 (DOCX 25 kb)

Supplementary material 4 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, K., Baba, Y., Ishimoto, T. et al. LINE-1 Methylation Level and Patient Prognosis in a Database of 208 Hepatocellular Carcinomas. Ann Surg Oncol 22, 1280–1287 (2015). https://doi.org/10.1245/s10434-014-4134-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-4134-3

Keywords