Skip to main content

Advertisement

Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Biologic products are large molecules such as proteins, peptides, nucleic acids, etc., which have already produced many new drugs for clinical use in the last decades. Due to the inherent challenges faced by biologics after oral administration (e.g., acidic stomach pH, digestive enzymes, and limited permeation through the gastrointestinal tract), several alternative routes of administration have been investigated to enable sufficient drug absorption into systemic circulation. This review describes the buccal, sublingual, pulmonary, and transdermal routes of administration for biologics with relevant details of the respective barriers. While all these routes avoid transit through the gastrointestinal tract, each has its own strengths and weaknesses that may be optimal for specific classes of compounds. Buccal and sublingual delivery enable rapid drug uptake through a relatively permeable barrier but are limited by small epithelial surface area, stratified epithelia, and the practical complexities of maintaining a drug delivery system in the mouth. Pulmonary delivery accesses the highly permeable and large surface area of the alveolar epithelium but must overcome the complexities of safe and effective delivery to the alveoli deep in the lung. Transdermal delivery offers convenient access to the body for extended-release delivery via the skin surface but requires the use of novel devices and formulations to overcome the skin’s formidable stratum corneum barrier. New technologies and strategies advanced to overcome these challenges are reviewed, and critical views in future developments of each route are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21–39.

    Article  CAS  PubMed  Google Scholar 

  3. Moroz E, Matoori S, Leroux J-C. Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv Drug Deliv Rev. 2016;101:108–21.

    Article  CAS  PubMed  Google Scholar 

  4. Pavlou AK, Reichert JM. Recombinant protein therapeutics—success rates, market trends and values to 2010. Nat Biotechnol. 2004;22(12):1513–9.

    Article  CAS  PubMed  Google Scholar 

  5. Maher S, Ryan B, Duffy A, Brayden DJ. Formulation strategies to improve oral peptide delivery. Pharm Pat Anal. 2014;3(3):313–36.

    Article  CAS  PubMed  Google Scholar 

  6. Brayden DJ. Principles underlying peptide, protein and macromolecule interactions with noninjected mucosae: from oral to buccal and nasal delivery. It’s just mucosa get it. 2014;11–8.

  7. Rosenmayr-Templeton L. The oral delivery of peptides and proteins: established versus recently patented approaches. Pharm Pat Anal. 2012;2(1):125–45.

    Article  CAS  Google Scholar 

  8. Senel S, Rathbone MJ, Cansız M, Pather I. Recent developments in buccal and sublingual delivery systems. Expert Opin Drug Deliv. 2012;9(6):615–28.

    Article  CAS  PubMed  Google Scholar 

  9. Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr. 2001;2001(29):7–15.

    Article  Google Scholar 

  10. Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ, editor. Oral mucosal drug delivery. Informa Health Care. 1996.

  11. Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deliv Rev. 1994;13(1–2):43–74.

    Article  CAS  Google Scholar 

  12. Law S, Wertz PW, Swartzendruber DC, Squier CA. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch Oral Biol. 1995;40(12):1085–91.

    Article  CAS  PubMed  Google Scholar 

  13. Morales JO, McConville JT. Novel strategies for the buccal delivery of macromolecules. Drug Dev Ind Pharm. 2014;40(5):579–90.

    Article  CAS  PubMed  Google Scholar 

  14. Caon T, Jin L, Simões CMO, Norton RS, Nicolazzo JA. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res. 2014;29:1–21.

    Article  Google Scholar 

  15. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  16. Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers—how do they really work? J Control Release. 2005;105(1–2):1–15.

    Article  CAS  PubMed  Google Scholar 

  17. von Richter O, Burk O, Fromm MF, Thon KP, Eichelbaum M, Kivistö KT. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2004;75(3):172–83.

    Article  CAS  Google Scholar 

  18. Gao X, Bhattacharya S, Chan WK, Jasti BR, Upadrashta B, Li X. Expression of P-glycoprotein and CYP3A4 along the porcine oral-gastrointestinal tract: implications on oral mucosal drug delivery. Drug Dev Ind Pharm. 2014;40(5):599–603.

    Article  CAS  PubMed  Google Scholar 

  19. Generex Biotechnology Corporation. Generex Oral-lyn delivered by Rapid-Mist spray system evolution of a concept to a viable pharmaceutical product [Internet]. [cited 2016 Feb 3]. Available from: http://www.generex.com/UserFiles/File/GenerexOral-lynWhitePaperAug2015.pdf.

  20. Bernstein G. Delivery of insulin to the buccal mucosa utilizing the RapidMist system. Expert Opin Drug Deliv. 2008;5(9):1047–55.

    Article  CAS  PubMed  Google Scholar 

  21. Palermo A, Maddaloni E, Pozzilli P. Buccal spray insulin (Oralgen) for type 2 diabetes: what evidence? Expert Opin Biol Ther. 2012;12(6):767–72.

    Article  CAS  PubMed  Google Scholar 

  22. Adis Insight. Transbuccal insulin—MidaSol. Drug profile [Internet]. [cited 2016 Feb 3]. Available from: http://adisinsight.springer.com/drugs/800035425.

  23. MonoSol Rx. Pharmfilm products [Internet]. [cited 2016 Feb 3]. Available from: http://www.monosolrx.com/content/pharmfilm-products/overview.htm.

  24. Dexter AF, Malcolm AS, Middelberg APJ. Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface. Nat Mater. 2006;5(6):502–6.

    Article  CAS  PubMed  Google Scholar 

  25. de Barros JMS, Scherer T, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. A laminated polymer film formulation for enteric delivery of live vaccine and probiotic bacteria. J Pharm Sci. 2014;103(7):2022–32.

    Article  PubMed  CAS  Google Scholar 

  26. Dawson PL, Hirt DE, Rieck JR, Acton JC, Sotthibandhu A. Nisin release from films is affected by both protein type and film-forming method. Food Res Int. 2003;36(9–10):959–68.

    Article  CAS  Google Scholar 

  27. Padgett T, Han IY, Dawson PL. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J Food Prot. 1998;61(10):1330–5.

    Article  CAS  PubMed  Google Scholar 

  28. Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B Biointerfaces. 2013;112:9–15.

    Article  CAS  PubMed  Google Scholar 

  29. Morales JO, Huang S, Williams RO, McConville JT. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf B Biointerfaces. 2014;122:38–45.

    Article  CAS  PubMed  Google Scholar 

  30. Leong KH, Chung LY, Noordin MI, Onuki Y, Morishita M, Takayama K. Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for oral insulin delivery. Carbohydr Polym. 2011;86(2):555–65.

    Article  CAS  Google Scholar 

  31. Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release. 2009;135(2):144–51.

    Article  CAS  PubMed  Google Scholar 

  32. Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30(29):5691–700.

    Article  CAS  PubMed  Google Scholar 

  33. Colonna C, Genta I, Perugini P, Pavanetto F, Modena T, Valli M, et al. 5-Methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech. 2006;7(3):E107–13.

    Article  PubMed Central  Google Scholar 

  34. Soudry-Kochavi L, Naraykin N, Nassar T, Benita S. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release Off J Control Release Soc. 2015;217:202–10.

    Article  CAS  Google Scholar 

  35. Binkley N, Bolognese M, Sidorowicz-Bialynicka A, Vally T, Trout R, Miller C, et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the oral calcitonin in postmenopausal osteoporosis (ORACAL) trial. J Bone Miner Res. 2012;27(8):1821–9.

    Article  CAS  PubMed  Google Scholar 

  36. Farhadian A, Dounighi NM, Avadi M. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum Vaccin Immunother. 2015;11(12):2811–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol. 2011;164(2b):820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin L, Boyd BJ, White PJ, Pennington MW, Norton RS, Nicolazzo JA. Buccal mucosal delivery of a potent peptide leads to therapeutically-relevant plasma concentrations for the treatment of autoimmune diseases. J Control Release. 2015;199:37–44.

    Article  CAS  PubMed  Google Scholar 

  39. Xie E, Kotha A, Biaco T, Sedani N, Zou J, Stashenko P, et al. Oral delivery of a novel recombinant Streptococcus mitis vector elicits robust vaccine antigen-specific oral mucosal and systemic antibody responses and T cell tolerance. PLoS One. 2015;10(11):e0143422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm. 2014;88(1):194–206.

    Article  CAS  PubMed  Google Scholar 

  41. Zhen Y, Wang N, Gao Z, Ma X, Wei B, Deng Y, et al. Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine. 2015;33(35):4330–40.

    Article  CAS  PubMed  Google Scholar 

  42. Ibrahim MA, Ismail A, Fetouh MI, Göpferich A. Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres. J Control Release. 2005;106(3):241–52.

    Article  CAS  PubMed  Google Scholar 

  43. Morales JO, Su R, McConville JT. The influence of recrystallized caffeine on water-swellable polymethacrylate mucoadhesive buccal films. AAPS PharmSciTech. 2013;14(2):475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428(1–2):143–51.

    Article  CAS  PubMed  Google Scholar 

  45. Cui Z, Mumper RJ. Bilayer films for mucosal (Genetic) immunization via the buccal route in rabbits. Pharm Res. 2002;19(7):947–53.

    Article  CAS  PubMed  Google Scholar 

  46. Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28:2386–92.

    Article  CAS  PubMed  Google Scholar 

  47. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3B):1075–83.

    Article  CAS  PubMed  Google Scholar 

  48. Montenegro-Nicolini M, Miranda V, Morales JO. Inkjet printing of proteins: an experimental approach. AAPS J. 2017;19(1):234–43.

    Article  CAS  PubMed  Google Scholar 

  49. Cossé A, König C, Lamprecht A, Wagner KG. Hot melt extrusion for sustained protein release: matrix erosion and in vitro release of PLGA-based implants. AAPS PharmSciTech. 2017;18(1):15–26.

  50. Tortora GJ, Derrickson BH. Principles of anatomy and physiology. Wiley; 2008.

  51. Narang N, Sharma J. Sublingual mucosa as a route for systemic drug delivery. Int J Pharm Pharm Sci. 2011;3 Suppl 2:18–22.

    CAS  Google Scholar 

  52. Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery. Clin Pharmacokinet. 2002;41(9):661–80.

    Article  CAS  PubMed  Google Scholar 

  53. Lueβen HL, Bohner V, Perard D, Langguth P, Verhoef JC, De Boer AG, et al. Mucoadhesive polymers in peroral peptide drug delivery. V. Effect of poly (acrylates) on the enzymatic degradation of peptide drugs by intestinal brush border membrane vesicles. Int J Pharm. 1996;141(1):39–52.

    Article  Google Scholar 

  54. Durfee S, Messina J, Khankari R. Fentanyl effervescent buccal tablets. Am J Drug Deliv. 2006;4(1):1–5.

    Article  CAS  Google Scholar 

  55. Al-Waili NS, Hasan NA. Efficacy of sublingual verapamil in patients with severe essential hypertension: comparison with sublingual nifedipine. Eur J Med Res. 1999;4(5):193–8.

    CAS  PubMed  Google Scholar 

  56. van Rooij K, Bloemers J, de Leede L, Goldstein I, Lentjes E, Koppeschaar H, et al. Pharmacokinetics of three doses of sublingual testosterone in healthy premenopausal women. Psychoneuroendocrinology. 2012;37(6):773–81.

    Article  PubMed  CAS  Google Scholar 

  57. Roth T, Krystal A, Steinberg FJ, Singh NN, Moline M. Novel sublingual low-dose zolpidem tablet reduces latency to sleep onset following spontaneous middle-of-the-night awakening in insomnia in a randomized, double-blind, placebo-controlled, outpatient study. Sleep. 2013;36(2):189.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Parry-Strong A, Langdana F, Haeusler S, Weatherall M, Krebs J. Sublingual vitamin B12 compared to intramuscular injection in patients with type 2 diabetes treated with metformin: a randomised trial. N Z Med J. 2016;129(1436):67.

    PubMed  Google Scholar 

  59. Darwish M, Kirby M, Jiang JG, Tracewell W, Robertson Jr P. Bioequivalence following buccal and sublingual placement of fentanyl buccal tablet 400 μg in healthy subjects. Clin Drug Investig. 2008;28(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  60. Bredenberg S, Duberg M, Lennernäs B, Lennernäs H, Pettersson A, Westerberg M, et al. In vitro and in vivo evaluation of a new sublingual tablet system for rapid oromucosal absorption using fentanyl citrate as the active substance. Eur J Pharm Sci. 2003;20(3):327–34.

    Article  CAS  PubMed  Google Scholar 

  61. Sinatra RS, Jahr JS, Watkins-Pitchford JM. The essence of analgesia and analgesics. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  62. Lintzeris N, Leung SY, Dunlop AJ, Larance B, White N, Rivas GR, et al. A randomised controlled trial of sublingual buprenorphine–naloxone film versus tablets in the management of opioid dependence. Drug Alcohol Depend. 2013;131(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  63. Bellorini L, Nocelli L, Zoppetti G. Pharmaceutical composition for the sublingual administration of progesterone, and method for its preparation. Google Patents. 2015.

  64. Shahtalebi MA, Tabbakhian M, Harandi NS. Formulation and evaluation of orally disintegrating tablets of captopril using natural super disintegrants. J Rep Pharm Sci J Rep Pharm Sci. 2014;3(1):54–64.

    Google Scholar 

  65. Davies A. A new fast-acting sublingual fentanyl (Recivit®) for treating breakthrough cancer pain. Eur Oncol Haematol. 2014;10(1):12.

    Article  Google Scholar 

  66. Bowen T, Greenbaum J, Charbonneau Y, Hebert J, Filderman R, Sussman G, et al. Canadian trial of sublingual swallow immunotherapy for ragweed rhinoconjunctivitis. Ann Allergy Asthma Immunol. 2004;93(5):425–30.

    Article  PubMed  Google Scholar 

  67. Gedulin BR, Smith PA, Jodka CM, Chen K, Bhavsar S, Nielsen LL, et al. Pharmacokinetics and pharmacodynamics of exenatide following alternate routes of administration. Int J Pharm. 2008;356(1):231–8.

    Article  CAS  PubMed  Google Scholar 

  68. Taylor DR. Single-dose fentanyl sublingual spray for breakthrough cancer pain. Clin Pharmacol. 2013;5:131–41.

    PubMed  PubMed Central  Google Scholar 

  69. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2(4):289–95.

    Article  CAS  PubMed  Google Scholar 

  70. Patil NH, Devarajan PV. Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Deliv. 2016;23(2):429–36.

    Article  CAS  PubMed  Google Scholar 

  71. Durham SR, Yang WH, Pedersen MR, Johansen N, Rak S. Sublingual immunotherapy with once-daily grass allergen tablets: a randomized controlled trial in seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006;117(4):802–9.

    Article  CAS  PubMed  Google Scholar 

  72. Olsson B, Bondesson E, Borgstrom L, Edsbacker S. Pulmonary drug metabolism, clearance, and absorption. In: Smyth H, Hickey A, editors. Controlled pulmonary drug delivery. Controlled Release Society; 2011.

  73. Burmeister Getz E, Fisher DM, Fuller R. Human pharmacokinetics/pharmacodynamics of an interleukin-4 and interleukin-13 dual antagonist in asthma. J Clin Pharmacol. 2009;49(9):1025–36.

    Article  PubMed  CAS  Google Scholar 

  74. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T, Nasuhara Y, et al. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2010;181(12):1345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Larson JL, Kang SK, Choi BI, Hedlund M, Aschenbrenner LM, Cecil B, et al. A safety evaluation of DAS181, a sialidase fusion protein, in rodents. Toxicol Sci. 2011;122(2):567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. An open label study to examine the effects of DAS181 administered by dry powder inhaler (DPI) or nebulized formulation in immunocompromised subjects with parainfluenza (PIV) infection (PIV) [Internet]. U.S. National Institutes of Health; 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT01924793?term=DAS181++inhaled&rank=1.

  77. Diaz KT, Skaria S, Harris K, Solomita M, Lau S, Bauer K, et al. Delivery and safety of inhaled interferon-gamma in idiopathic pulmonary fibrosis. J Aerosol Med Pulm Drug Deliv. 2012;25(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  78. A randomized, double-blinded, placebo-controlled, phase II inhaled interferon gamma-1b and antimycobacterials to treat pulmonary Mycobacterium Avium complex infections. U.S. National Institutes of Health; 2016.

  79. Interferon gamma-1b by inhalation for the treatment of patients with cystic fibrosis [Internet]. U.S. National Institutes of Health; 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT00043316

  80. Huland E, Heinzer H, Huland H, Yung R. Overview of interleukin-2 inhalation therapy. Cancer J Sci Am. 2000;6 Suppl 1:S104–12.

    PubMed  Google Scholar 

  81. Posch C, Weihsengruber F, Bartsch K, Feichtenschlager V, Sanlorenzo M, Vujic I, et al. Low-dose inhalation of interleukin-2 bio-chemotherapy for the treatment of pulmonary metastases in melanoma patients. Br J Cancer. 2014;110(6):1427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aerosol IL-2 for pulmonary metastases [Internet]. U.S. National Institutes of Health; 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT01590069.

  83. Inhaled sargramostim in treating patients with first pulmonary (lung) recurrence of osteosarcoma [Internet]. U.S. National Institute of Health; 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT02542813.

  84. International study evaluating the safety and efficacy of inhaled, human, alpha-1 antitrypsin (AAT) in alpha-1 antitrypsin deficient patients with emphysema [Internet]. U.S. National Institutes of Health; 2014 [cited 2016 May 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT01217671.

  85. Hasaneen N, Vu T, Fusiak T, Foda H, Condos R, Smaldone G. Anti-fibrotic role of inhaled interferon-γ in idiopathic pulmonary fibrosis. Eur Respir J. 2015;46(59).

  86. Barnes PJ, Dixon CM. The effect of inhaled vasoactive intestinal peptide on bronchial reactivity to histamine in humans. Am Rev Respir Dis. 1984;130(2):162–6.

    CAS  PubMed  Google Scholar 

  87. Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111(9):1339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Griese M, Kappler M, Eismann C, Ballmann M, Junge S, Rietschel E, et al. Inhalation treatment with glutathione in patients with cystic fibrosis. A randomized clinical trial. Am J Respir Crit Care Med. 2013;188(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  89. Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013;447(1–2):251–80.

    Article  CAS  PubMed  Google Scholar 

  90. Bellary S, Barnett AH. Inhaled insulin: new technology, new possibilities. Int J Clin Pract. 2006;60(6):728–34.

    Article  CAS  PubMed  Google Scholar 

  91. Muchmore DB, Silverman B, De La Pena A, Tobian J. The AIR inhaled insulin system: system components and pharmacokinetic/glucodynamic data. Diabetes Technol Ther. 2007;9 Suppl 1:S41–7.

    CAS  PubMed  Google Scholar 

  92. Steiner S, Pfutzner A, Wilson BR, Harzer O, Heinemann L, Rave K. Technosphere/insulin—proof of concept study with a new insulin formulation for pulmonary delivery. Exp Clin Endocrinol Diabetes. 2002;110(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  93. Thipphawong J, Otulana B, Clauson P, Okikawa J, Farr SJ. Pulmonary insulin administration using the AERx insulin diabetes system. Diabetes Technol Ther. 2002;4(4):499–504.

    Article  PubMed  CAS  Google Scholar 

  94. Biopharm D. Dance Biopharm announces encouraging clinical data for AdagioTM—inhalable insulin product candidate for diabetes. Newswire P, editor. 2013 [cited 2016 Mar 21]; Available from: http://www.prnewswire.com/news-releases/dance-biopharm-announces-encouraging-clinical-data-for-adagio---inhalable-insulin-product-candidate-for-diabetes-219384281.html.

  95. Pfutzner A, Forst T. Pulmonary insulin delivery by means of the Technosphere drug carrier mechanism. Expert Opin Drug Deliv. 2005;2(6):1097–106.

    Article  PubMed  Google Scholar 

  96. Patton JS, Trinchero P, Platz RM. Special issue proceedings of the sixth international symposium on recent advances in drug delivery systems bioavailability of pulmonary delivered peptides and proteins: α-interferon, calcitonins and parathyroid hormones. J Control Release. 1994;28(1):79–85.

    Article  CAS  Google Scholar 

  97. Martin PL, Vaidyanathan S, Lane J, Rogge M, Gillette N, Niggemann B, et al. Safety and systemic absorption of pulmonary delivered human IFN-beta1a in the nonhuman primate: comparison with subcutaneous dosing. J Interferon Cytokine Res. 2002;22(6):709–17.

    Article  CAS  PubMed  Google Scholar 

  98. Vallee S, Rakhe S, Reidy T, Walker S, Lu Q, Sakorafas P, et al. Pulmonary administration of interferon beta-1a-fc fusion protein in non-human primates using an immunoglobulin transport pathway. J Interferon Cytokine Res. 2012;32(4):178–84.

    Article  CAS  PubMed  Google Scholar 

  99. Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2(4):198–209.

    Article  CAS  PubMed  Google Scholar 

  100. Inhaled interleukin-2 in treating patients with metastatic or unresectable cancer [Internet]. U.S. National Institutes of Health; 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT00003009.

  101. Niven R, Lott F, Cribbs J. Pulmonary absorption of recombinant methionyl human granulocyte colony stimulating factor (r-huG-CSF) after intratracheal instillation to the hamster. Pharm Res. 1993;10(11):1604–10.

    Article  CAS  PubMed  Google Scholar 

  102. Niven RW, Whitcomb KL, Shaner L, Ip AY, Kinstler OB. The pulmonary absorption of aerosolized and intratracheally instilled rhG-CSF and monoPEGylated rhG-CSF. Pharm Res. 1995;12(9):1343–9.

    Article  CAS  PubMed  Google Scholar 

  103. Walvoord EC, de la Pena A, Park S, Silverman B, Cuttler L, Rose SR, et al. Inhaled growth hormone (GH) compared with subcutaneous GH in children with GH deficiency: pharmacokinetics, pharmacodynamics, and safety. J Clin Endocrinol Metab. 2009;94(6):2052–9.

    Article  CAS  PubMed  Google Scholar 

  104. Bitonti AJ, Dumont JA, Low SC, Peters RT, Kropp KE, Palombella VJ, et al. Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci U S A. 2004;101(26):9763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dumont JA, Bitonti AJ, Clark D, Evans S, Pickford M, Newman SP. Delivery of an erythropoietin-Fc fusion protein by inhalation in humans through an immunoglobulin transport pathway. J Aerosol Med. 2005;18(3):294–303.

    Article  CAS  PubMed  Google Scholar 

  106. Belser JA, Lu X, Szretter KJ, Jin X, Aschenbrenner LM, Lee A, et al. DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection. J Infect Dis. 2007;196(10):1493–9.

    Article  CAS  PubMed  Google Scholar 

  107. Bendstrup KE, Gram J, Jensen JI. Effect of inhaled heparin on lung function and coagulation in healthy volunteers. Eur Respir J. 2002;19(4):606–10.

    Article  CAS  PubMed  Google Scholar 

  108. Glas GJ, Muller J, Binnekade JM, Cleffken B, Colpaert K, Dixon B, et al. HEPBURN—investigating the efficacy and safety of nebulized heparin versus placebo in burn patients with inhalation trauma: study protocol for a multi-center randomized controlled trial. Trials. 2014;15:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Low SC, Nunes SL, Bitonti AJ, Dumont JA. Oral and pulmonary delivery of FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis. Hum Reprod. 2005;20(7):1805–13.

    Article  CAS  PubMed  Google Scholar 

  110. Ryszka F, Dolinska B. Initial studies on the administration route of prolactin. Boll Chim Farm. 2001;140(3):169–71.

    CAS  PubMed  Google Scholar 

  111. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1:338–44.

    Article  CAS  PubMed  Google Scholar 

  112. Gupta S, Moussy F, Dalby RN, Miekka SI, Bruley DF. Pulmonary delivery of human protein c and factor IX. In: Nemoto EM, et al., editors. Advances in experimental medicine and biology. New York: Springer; 1997. p. 429–35.

  113. Kang KA, Anis NA, Eldefrawi ME, Drohan W, Bruley DF. Reusable, real-time, immuno-optical protein C biosensor. In: Nemoto EM, et al., editors. Oxygen transport to tissue XVIII. New York: Springer; 1997. p. 437–44.

  114. Woods A, Patel A, Spina D, Riffo-Vasquez Y, Babin-Morgan A, de Rosales RT, et al. In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery. J Control Release. 2015;210:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Deftos LJ, Nolan JJ, Seely BL, Clopton PL, Cote GJ, Whitham CL, et al. Intrapulmonary drug delivery of salmon calcitonin. Calcif Tissue Int. 1997;61(4):345–7.

    Article  CAS  PubMed  Google Scholar 

  116. Adjei A, Sundberg D, Miller J, Chun A. Bioavailability of leuprolide acetate following nasal and inhalation delivery to rats and healthy humans. Pharm Res. 1992;9(2):244–9.

    Article  CAS  PubMed  Google Scholar 

  117. Adjei A, Garren J. Pulmonary delivery of peptide drugs: effect of particle size on bioavailability of leuprolide acetate in healthy male volunteers. Pharm Res. 1990;7(6):565–9.

    Article  CAS  PubMed  Google Scholar 

  118. Lizio R, Klenner T, Borchard G, Romeis P, Sarlikiotis AW, Reissmann T, et al. Systemic delivery of the GnRH antagonist cetrorelix by intratracheal instillation in anesthetized rats. Eur J Pharm Sci. 2000;9(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  119. Kuehl PJ, Boyden T, Dobry DE, Doyle-Eisele M, Friesen DT, McDonald JD, et al. Inhaled PYY(3–36) dry-powder formulation for appetite suppression. Drug Dev Ind Pharm. 2015;26:1–7.

    Google Scholar 

  120. A study designed to determine the safety and pharmacological response of MKC253 inhalation powder in adults with type 2 diabetes mellitus. U.S. National Institutes of Health; 2016.

  121. Prankerd RJ, Nguyen TH, Ibrahim JP, Bischof RJ, Nassta GC, Olerile LD, et al. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries. PLoS One. 2013;8(12):e82965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Bennett DB, Tyson E, Nerenberg CA, Mah S, de Groot JS, Teitelbaum Z. Pulmonary delivery of detirelix by intratracheal instillation and aerosol inhalation in the briefly anesthetized dog. Pharm Res. 1994;11(7):1048–55.

    Article  CAS  PubMed  Google Scholar 

  123. Sheehy AM, Hoover JL, Rush BD, Wilkinson KF, et al. Intrapulmonary delivery of renin inhibitory peptides results in sustained release because of saturable transport. Pharm Res. 1993;10(10):1548–51.

    Article  CAS  PubMed  Google Scholar 

  124. Taljanski W, Pierzynowski SG, Lundin PD, Westrom BR, Eirefelt S, Podlesny J, et al. Pulmonary delivery of intratracheally instilled and aerosolized cyclosporine A to young and adult rats. Drug Metab Dispos. 1997;25(8):917–20.

    CAS  PubMed  Google Scholar 

  125. Welschoff J, Matthey M, Wenzel D. RGD peptides induce relaxation of pulmonary arteries and airways via beta3-integrins. FASEB J. 2014;28(5):2281–92.

    Article  PubMed  CAS  Google Scholar 

  126. Vasoactive intestinal peptide in COPD [Internet]. U.S. National Institutes of Health; 2007 [cited 2016 Jun 3]. Available from: https://clinicaltrials.gov/ct2/show/NCT00464932?term=vasoactive+intestinal+peptide&rank=2.

  127. Leuchte HH, Baezner C, Baumgartner RA, Bevec D, Bacher G, Neurohr C, et al. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J. 2008;32(5):1289–94.

    Article  CAS  PubMed  Google Scholar 

  128. Ca C. Excipient selection for protein stabilization. Pharm Technol. 2015;39(18):s35–9.

    Google Scholar 

  129. Bosquillon C, Lombry C, Preat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  130. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  131. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takano M, Kawami M, Aoki A, Yumoto R. Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells. Expert Opin Drug Deliv. 2015;12(5):813–25.

    Article  PubMed  Google Scholar 

  133. Taylor A, Townsley MI, Korthuis RJ. Macromolecule transport across the pulmonary microvessel walls. Exp Lung Res. 1985;8(2–3):97–123.

    Article  CAS  PubMed  Google Scholar 

  134. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244–9.

    Article  CAS  PubMed  Google Scholar 

  136. Edwards DA, Hanes J, Caponetti G, Hrkach J, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–72.

    Article  CAS  PubMed  Google Scholar 

  137. Morita T, Yamamoto A, Takakura Y, Hashida M, Sezaki H. Improvement of the pulmonary absorption of (Asu1,7)-eel calcitonin by various protease inhibitors in rats. Pharm Res. 1994;11(6):909–13.

    Article  CAS  PubMed  Google Scholar 

  138. Kim KJ, Malik AB. Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol. 2003;284(2):L247–59.

    Article  CAS  PubMed  Google Scholar 

  139. Weers JG, Bell J, Chan HK, Cipolla D, Dunbar C, Hickey AJ, et al. Pulmonary formulations: what remains to be done? J Aerosol Med Pulm Drug Deliv. 2010;23 Suppl 2:S5–23.

    CAS  PubMed  Google Scholar 

  140. Morales JO, Peters JI, Williams III RO. Surfactants—their critical role in enhancing drug delivery to the lungs. Ther Deliv. 2011;2(5):623–41.

    Article  CAS  PubMed  Google Scholar 

  141. Zheng J, Zheng Y, Chen J, Fang F, He J, Li N, et al. Enhanced pulmonary absorption of recombinant human insulin by pulmonary surfactant and phospholipid hexadecanol tyloxapol through Calu-3 monolayers. Pharmazie. 2012;67(5):448–51.

    CAS  PubMed  Google Scholar 

  142. Yamamoto A, Tanaka H, Okumura S, Shinsako K, Ito M, Yamashita M, et al. Evaluation of insulin permeability and effects of absorption enhancers on its permeability by an in vitro pulmonary epithelial system using Xenopus pulmonary membrane. Biol Pharm Bull. 2001;24(4):385–9.

    Article  CAS  PubMed  Google Scholar 

  143. Shao ZLY, Li Y, Mitra AK. Cyclodextrins as mucosal absorption promoters of insulin. III: pulmonary route of delivery. Eur J Pharm Biopharm. 1994;40:283–8.

    CAS  Google Scholar 

  144. Mack GS. Pfizer dumps Exubera. Nat Biotechnol. 2007;25(12):1331–2.

    Article  CAS  PubMed  Google Scholar 

  145. Siekmeier R, Scheuch G. Inhaled insulin—does it become reality? J Physiol Pharmacol. 2008;59 Suppl 6:81–113.

    PubMed  Google Scholar 

  146. Hickey AJ. Back to the future: inhaled drug products. J Pharm Sci. 2013;102(4):1165–72.

    Article  CAS  PubMed  Google Scholar 

  147. Newman SP. Principles of metered-dose inhaler design. Respir Care. 2005;50(9):1177–90.

    PubMed  Google Scholar 

  148. Melani AS, Bonavia M, Cilenti V, Cinti C, Lodi M, Martucci P, et al. Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med. 2011;105(6):930–8.

    Article  PubMed  Google Scholar 

  149. Adjei A, Gupta P. Pulmonary delivery of therapeutic peptides and proteins. J Control Release. 1994;29(3):361–73.

    Article  CAS  Google Scholar 

  150. Byron PR. Determinants of polypeptide bioavailability from aerosols delivered to the lung. Adv Drug Deliv Rev. 1990;5(1–2):107–32.

    Article  CAS  Google Scholar 

  151. Shoyele SA, Slowey A. Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J Pharm. 2006;314(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  152. Quinn EA, Forbes RT, Williams AC, Oliver MJ, McKenzie L, Purewal TS. Protein conformational stability in the hydrofluoroalkane propellants tetrafluoroethane and heptafluoropropane analysed by Fourier transform Raman spectroscopy. Int J Pharm. 1999;186(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  153. Hertel SP, Winter G, Friess W. Protein stability in pulmonary drug delivery via nebulization. Adv Drug Deliv Rev. 2015;93:79–94.

    Article  CAS  PubMed  Google Scholar 

  154. Carpenter JF. Rational design of stable protein formulations: theory and practice. In: Carpenter J, et al., editors. Rational design of stable protein formulations: theory and practice. Springer; 2002.

  155. Islam N, Gladki E. Dry powder inhalers (DPIs)—a review of device reliability and innovation. Int J Pharm. 2008;360(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  156. Yang M, Lai SK, Wang YY, Zhong W, Happe C, Zhang M, et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew Chem Int Ed Engl. 2011;50(11):2597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen D, Xia D, Li X, Zhu Q, Yu H, Zhu C, et al. Comparative study of Pluronic((R)) F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int J Pharm. 2013;449(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  158. Leach CL, Kou M, Bueche B, et al. Modifying the pulmonary absorption and retention of proteins through PEGylation. Respir Drug Deliv IX. 2004;1:69–77.

    Google Scholar 

  159. Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: gains and challenges of non-invasive administration methods. J Control Release [Internet]. 2015 Dec 11; Available from: http://www.ncbi.nlm.nih.gov/pubmed/26686079.

  160. Griesenbach U, Pytel KM, Alton EW. Cystic fibrosis gene therapy in the UK and elsewhere. Hum Gene Ther. 2015;26(5):266–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mastorakos P, da Silva AL, Chisholm J, Song E, Choi WK, Boyle MP, et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci U S A. 2015;112(28):8720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Feng F, Harper RL, Reynolds PN. BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-beta-mediated pulmonary cell signalling. Respirology [Internet]. 2015 Dec 21; Available from: http://www.ncbi.nlm.nih.gov/pubmed/26689975.

  163. Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11(3):393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Singh N, Kalluri H, Herwadkar A, Badkar A, Banga AK. Transcending the skin barrier to deliver peptides and proteins using active technologies. Crit Rev Ther Drug Carrier Syst. 2012;29(4):265–98.

    Article  CAS  PubMed  Google Scholar 

  165. Choy YB, Prausnitz MR. The rule of five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal. Pharm Res. 2011;28(5):943–8.

    Article  CAS  PubMed  Google Scholar 

  166. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6(11):1253–7.

    Article  CAS  PubMed  Google Scholar 

  167. Kim YC, Ludovice PJ, Prausnitz MR. Transdermal delivery enhanced by magainin pore-forming peptide. J Control Release. 2007;122(3):375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc Natl Acad Sci U S A. 2011;108(38):15816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M, et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol. 2006;24(4):455–60.

    Article  CAS  PubMed  Google Scholar 

  170. Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta. 2009;1788(11):2362–73.

    Article  CAS  PubMed  Google Scholar 

  171. Ita K. Perspectives on transdermal electroporation. Pharmaceutics [Internet]. 2016;8(1). Available from: http://www.ncbi.nlm.nih.gov/pubmed/26999191.

  172. Sen A, Daly ME, Hui SW. Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta Biomembr. 2002;1564(1):5–8.

    Article  CAS  Google Scholar 

  173. Prausnitz MR, Edelman E, Gimm J, Langer R, Weaver J. Transdermal delivery of heparin by skin electroporation. Biotechnology. 1995;13(11):1205–9.

    Article  CAS  PubMed  Google Scholar 

  174. Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev. 2014;72:127–43.

    Article  CAS  PubMed  Google Scholar 

  175. Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science. 1995;269(5225):850–3.

    Article  CAS  PubMed  Google Scholar 

  176. Mitragotri S, Kost J. Transdermal delivery of heparin and low-molecular weight heparin using low-frequency ultrasound. Pharm Res. 2001;18(8):1151–6.

    Article  CAS  PubMed  Google Scholar 

  177. Dahlan A, Alpar HO, Stickings P, Sesardic D, Murdan S. Transcutaneous immunisation assisted by low-frequency ultrasound. Int J Pharm. 2009;368(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  178. Tran MA, Gowda R, Park E, Adair J, Smith N, Kester M, et al. Noninvasive drug delivery using ultrasound: targeting melanoma using siRNA against mutant (V600E) B‐Raf. AIP Conf Proc. 2009;1113(1):423–7.

    Article  CAS  Google Scholar 

  179. Li YZ, Quan YS, Zang L, Jin MN, Kamiyama F, Katsumi H, et al. Trypsin as a novel potential absorption enhancer for improving the transdermal delivery of macromolecules. J Pharm Pharmacol. 2009;61(8):1005–12.

    Article  CAS  PubMed  Google Scholar 

  180. Huang Y, Yu F, Park YS, Wang J, Shin MC, Chung HS, et al. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials. 2010;31(34):9086–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gratieri T, Kalaria D, Kalia YN. Non-invasive iontophoretic delivery of peptides and proteins across the skin. Expert Opin Drug Deliv. 2011;8(5):645–63.

    Article  CAS  PubMed  Google Scholar 

  182. Kochhar C, Imanidis G. In vitro transdermal iontophoretic delivery of leuprolide under constant current application. J Control Release. 2004;98(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  183. Langkjaer L, Brange J, Grodsky GM, Guy RH. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment. J Control Release. 1998;51(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  184. Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364(2):227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, et al. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res. 2005;22(4):550–5.

    Article  CAS  PubMed  Google Scholar 

  186. Badkar AV, Smith AM, Eppstein JA, Banga AK. Transdermal delivery of interferon alpha-2B using microporation and iontophoresis in hairless rats. Pharm Res. 2007;24(7):1389–95.

    Article  CAS  PubMed  Google Scholar 

  187. Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002;8(4):415–9.

    Article  CAS  PubMed  Google Scholar 

  188. Glenn GM, Flyer DC, Ellingsworth LR, Frech SA, Frerichs DM, Seid RC, et al. Transcutaneous immunization with heat-labile enterotoxin: development of a needle-free vaccine patch. Expert Rev Vaccines. 2007;6(5):809–19.

    Article  CAS  PubMed  Google Scholar 

  189. Andrews S, Lee JW, Choi SO, Prausnitz MR. Transdermal insulin delivery using microdermabrasion. Pharm Res. 2011;28(9):2110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Caffarel-Salvador E, Donnelly RF. Transdermal drug delivery mediated by microneedle arrays: innovations and barriers to success. Curr Pharm Des. 2016;22(9):1105–17.

    Article  CAS  PubMed  Google Scholar 

  191. Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24(7):585–94.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine. 2014;32(16):1856–62.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release [Internet]. 2015 Nov 18; Available from: http://www.ncbi.nlm.nih.gov/pubmed/26603347.

  194. Rini CJ, McVey E, Sutter D, Keith S, Kurth HJ, Nosek L, et al. Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear. Drug Deliv Transl Res. 2015;5(4):332–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Norman JJ, Brown MR, Raviele NA, Prausnitz MR, Felner EI. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2013;14(6):459–65.

    Article  CAS  PubMed  Google Scholar 

  196. Skountzou I, Compans RW. Skin immunization with influenza vaccines. Curr Top Microbiol Immunol. 2015;386:343–69.

    CAS  PubMed  Google Scholar 

  197. Cosman F, Lane NE, Bolognese MA, Zanchetta JR, Garcia-Hernandez PA, Sees K, et al. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2010;95(1):151–8.

    Article  CAS  PubMed  Google Scholar 

  198. Pettis RJ, Harvey AJ. Microneedle delivery: clinical studies and emerging medical applications. Ther Deliv. 2012;3(3):357–71.

    Article  CAS  PubMed  Google Scholar 

  199. Leroux-Roels I, Weber F. Intanza ((R)) 9 microg intradermal seasonal influenza vaccine for adults 18 to 59 years of age. Hum Vaccin Immunother. 2013;9(1):115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hirobe S, Azukizawa H, Hanafusa T, Matsuo K, Quan YS, Kamiyama F, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials. 2015;57:50–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.O. Morales and M. Montenegro-Nicolini thank the financial support from FONDECYT 11130235 and FONDAP 15130011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier O. Morales, Jason T. McConville, Mark R. Prausnitz or Hugh D. C. Smyth.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, J.O., Fathe, K.R., Brunaugh, A. et al. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes. AAPS J 19, 652–668 (2017). https://doi.org/10.1208/s12248-017-0054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0054-z

KEY WORDS