Abstract
Molecular imaging techniques for protein therapeutics rely on reporter labels, especially radionuclides or sometimes near-infrared fluorescent moieties, which must be introduced with minimal perturbation of the protein’s function in vivo and are detected non-invasively during whole-body imaging. PET is the most sensitive whole-body imaging technique available, making it possible to perform biodistribution studies in humans with as little as 1 mg of injected antibody carrying 1 mCi (37 MBq) of zirconium-89 radiolabel. Different labeling chemistries facilitate a variety of optical and radionuclide methods that offer complementary information from microscopy and autoradiography and offer some trade-offs in whole-body imaging between cost and logistic difficulty and image quality and sensitivity (how much protein needs to be injected). Interpretation of tissue uptake requires consideration of label that has been catabolized and possibly residualized. Image contrast depends as much on background signal as it does on tissue uptake, and so the choice of injected dose and scan timing guides the selection of a suitable label and helps to optimize image quality. Although only recently developed, zirconium-89 PET techniques allow for the most quantitative tomographic imaging at millimeter resolution in small animals and they translate very well into clinical use as exemplified by studies of radiolabeled antibodies, including trastuzumab in breast cancer patients, in The Netherlands.
Similar content being viewed by others
References
Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52 Suppl 2:42S–55S. Epub 2011/12/22.
Johnson I, Spence MTZ, editors. Molecular probes handbook—a guide to fluorescent probes and labeling technologies. 11 edn. Carlsbad: Life Technologies; 2010.
Vasquez KO, Casavant C, Peterson JD. Quantitative whole body biodistribution of fluorescent-labeled agents by non-invasive tomographic imaging. PLoS One. 2011;6(6):e20594. Epub 2011/07/07.
Cohen R, Stammes MA, de Roos IH, Stigter-van Walsum M, Visser GW, van Dongen GA. Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets. EJNMMI Res. 2011;1(1):31. Epub 2012/01/05.
Sevick-Muraca EM. Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med. 2012;63:217–31. Epub 2011/11/01.
Ntziachristos V. Clinical translation of optical and optoacoustic imaging. Philos Transact A Math Phys Eng Sci. 2011;369(1955):4666–78. Epub 2011/10/19.
Cherry SR. The 2006 Henry N. Wagner Lecture: of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med. 2006;47(11):1735–45. Epub 2006/11/03.
Weissleder R, Ross BD, Rehemtulla A, Gambhir S. Molecular imaging. Shelton: People’s Medical Publishing House; 2010.
Rudin M. Molecular imaging: principles and applications in biomedical research. London: Imperial College Press; 2005.
van Dongen GAMS, Vosjan MJWD. Immuno-positron emission tomography: shedding light on clinical antibody therapy. Cancer Biother Radiopharm. 2010;25(4):375–85.
Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752(2):233–45. Epub 2001/03/29.
Eisenhut M, Haberkorn U. Molecular position of radiolabels and its impact on functional integrity of proteins. J Nucl Med. 2006;47(9):1400–2.
Tait JF, Smith C, Levashova Z, Patel B, Blankenberg FG, Vanderheyden J-L. Improved detection of cell death in vivo with annexin V radiolabeled by site-specific methods. J Nucl Med. 2006;47(9):1546–53.
Tait J. Measurement of the affinity and cooperativity of annexin V—membrane binding under conditions of low membrane occupancy. Anal Biochem. 2004;329(1):112–9.
Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn Jr PA. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72(1):77–89. Epub 1984/08/03.
Mattes MJ. Determination of antibody immunoreactive fraction. Cancer Biother Radiopharm. 2004;19(6):667–8. Epub 2005/01/25.
Wakankar A, Chen Y, Gokarn Y, Jacobson FS. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs. 2011;3(2):161–72. Epub 2011/03/29.
Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63. Epub 2010/11/09.
Tinianow JN, Gill HS, Ogasawara A, Flores JE, Vanderbilt AN, Luis E, et al. Site-specifically 89Zr-labeled monoclonal antibodies for ImmunoPET. Nucl Med Biol. 2010;37(3):289–97. Epub 2010/03/30.
Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody–drug conjugates. Nat Biotechnol. 2012;30:184–9
Sampath L, Kwon S, Ke S, Wang W, Schiff R, Mawad ME, et al. Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med. 2007;48(9):1501–10. Epub 2007/09/06.
Vanderheyden JL, Liu G, He J, Patel B, Tait JF, Hnatowich DJ. Evaluation of 99mTc-MAG3-annexin V: influence of the chelate on in vitro and in vivo properties in mice. Nucl Med Biol. 2006;33(1):135–44. Epub 2006/02/07.
McQuade P, Belanger MJ, Meng X, Guenther I, Krause S, Gonzalez Trotter D, et al. Comparison of the in vivo distribution of four different annexin a5 adducts in rhesus monkeys. Int J mol imaging. 2011;2011:405840. Epub 2011/06/02.
Khawli LA, Kassis AI. Synthesis of 125I labeled N-succinimidyl p-iodobenzoate for use in radiolabeling antibodies. Int J Radiat Appl Instrum B Nucl med biol. 1989;16(7):727–33. Epub 1989/01/01.
Zalutsky MR, Narula AS. A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Int J Radiat Appl Instrum Appl Radiat Isot. 1987;38(12):1051–5. Epub 1987/01/01.
Vaidyanathan G, Affleck DJ, Zalutsky MR. Radioiodination of proteins using N-succinimidyl 4-hydroxy-3-iodobenzoate. Bioconjug Chem. 1993;4(1):78–84. Epub 1993/01/01.
Verel I, Visser GW, Boerman OC, van Eerd JE, Finn R, Boellaard R, et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET. Cancer Biother Radiopharm. 2003;18(4):655–61. Epub 2003/09/25.
Mukai T, Namba S, Arano Y, Ono M, Fujioka Y, Uehara T, et al. Synthesis and evaluation of a monoreactive DOTA derivative for indium-111-based residualizing label to estimate protein pharmacokinetics. J Pharm Pharmacol. 2002;54(8):1073–81. Epub 2002/08/28.
Perera RM, Zoncu R, Johns TG, Pypaert M, Lee FT, Mellman I, et al. Internalization, intracellular trafficking, and biodistribution of monoclonal antibody 806: a novel anti-epidermal growth factor receptor antibody. Neoplasia. 2007;9(12):1099–110. Epub 2007/12/18.
Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006;5(2):147–59. Epub 2006/01/21.
Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84):84ra44. Epub 2011/05/27.
Stout D, Pastuskovas CV. In vitro methods for in vivo quantitation of pet and SPECT imaging probes: autoradiography and gamma counting. In: Kiessling F, Pichler BJ, editors. Small Animal Imaging. Berlin Heidelberg: Springer; 2011.
Thurber GM, Weissleder R. Quantitating antibody uptake in vivo: conditional dependence on antigen expression levels. Mol Imaging Biol. 2011;13(4):623–32. Epub 2010/09/03.
Wittrup KD, Thurber GM, Schmidt MM, Rhoden JJ. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol. 2012;503:255–68. Epub 2012/01/11.
Graff CP, Wittrup KD. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res. 2003;63(6):1288–96. Epub 2003/03/22.
Boswell CA, Ferl GZ, Mundo EE, Bumbaca D, Schweiger MG, Theil FP, et al. Effects of anti-VEGF on predicted antibody biodistribution: roles of vascular volume, interstitial volume, and blood flow. PLoS One. 2011;6(3):e17874. Epub 2011/03/26.
Niu G, Li Z, Xie J, Le Q-T, Chen X. PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J Nucl Med. 2009;50(7):1116–23.
Niu G, Sun X, Cao Q, Courter D, Koong A, Le Q-T, et al. Cetuximab-Based Immunotherapy and Radioimmunotherapy of Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2010;16:2095–2105.
Aerts HJWL, Dubois L, Perk L, Vermaelen P, van Dongen GAMS, Wouters BG, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med. 2009;50(1):123–31.
Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23(9):1803–10. Epub 2005/01/29.
Cherry SR, Sorenson J, Phelps M. Physics in Nuclear Medicine. 3 ed: Saunders; 2003.
Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron emission tomography: basic science and clinical practice. London: Springer; 2003.
Sandler MP, Coleman RE, Patton JA, Wackers FJT, Gottschalk A, editors. Diagnostic molecular imaging. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2003.
von Schulthess GK, editor. Clinical Molecular anatomic imaging. Philadelphia: Lippincott Williams and Wilkins; 2003.
Langenberg WG, Schlegel DE. Autoradiography with 125-I-labeled antibodies as a means of localizing TMV antigen in plant cells. Virology. 1967;32(1):167–71. Epub 1967/05/01.
Wilbur DS. Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjug Chem. 1992;3(6):433–70. Epub 1992/11/01.
Pastuskovas CV, Mallet W, Clark S, Kenrick M, Majidy M, Schweiger M, et al. Effect of immune complex formation on the distribution of a novel antibody to the ovarian tumor antigen CA125. Drug metabol dispos biol fate chem. 2010;38(12):2309–19. Epub 2010/09/09.
Ferraiolo BL, Moore JA, Crase D, Gribling P, Wilking H, Baughman RA. Pharmacokinetics and tissue distribution of recombinant human tumor necrosis factor-alpha in mice. Drug metabol dispos biol fate chem. 1988;16(2):270–5. Epub 1988/03/01.
Hebert CA, Luscinskas FW, Kiely JM, Luis EA, Darbonne WC, Bennett GL, et al. Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J Immunol. 1990;145(9):3033–40. Epub 1990/11/01.
van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji C, et al. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med. 2009;50(4):599–605. Epub 2009/03/18.
Crunelle CL, de Wit TC, de Bruin K, Ramakers RM, van der Have F, Beekman FJ, et al. Varenicline increases in vivo striatal dopamine D(2/3) receptor binding: an ultra-high-resolution pinhole [(123)I]IBZM SPECT study in rats. Nucl Med Biol. 2012. doi:10.1016/j.nucmedbio.2011.11.006.
Burdette D, Albani D, Chesi E, Clinthorne NH, Cochran E, Honscheid K, et al. A study on PET image quality using both strong magnetic fields and a ML-EM positron range correction algorithm. IEEE Nucl Sci Conf R. 2009:3646–51.
Kayano D, Taki J, Fukuoka M, Wakabayashi H, Inaki A, Nakamura A, et al. Low-dose (123)I-metaiodobenzylguanidine diagnostic scan is inferior to (131)I-metaiodobenzylguanidine posttreatment scan in detection of malignant pheochromocytoma and paraganglioma. Nucl Med Commun. 2011;32(10):941–6. Epub 2011/08/31.
Waibel R, Alberto R, Willuda J, Finnern R, Schibli R, Stichelberger A, et al. Stable one-step technetium-99 m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol. 1999;17(9):897–901. Epub 1999/09/03.
Esteban JM, Schlom J, Gansow OA, Atcher RW, Brechbiel MW, Simpson DE, et al. New method for the chelation of indium-111 to monoclonal antibodies: biodistribution and imaging of athymic mice bearing human colon carcinoma xenografts. J Nucl Med. 1987;28(5):861–70. Epub 1987/05/01.
Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med. 1998;23(10):672–7. Epub 1998/10/28.
Bohdiewicz PJ. Indium-111 satumomab pendetide: the first FDA-approved monoclonal antibody for tumor imaging. J Nucl Med Technol. 1998;26(3):155–63. quiz 70-1. Epub 1998/10/02.
Conti PS, White C, Pieslor P, Molina A, Aussie J, Foster P. The role of imaging with (111)In-ibritumomab tiuxetan in the ibritumomab tiuxetan (zevalin) regimen: results from a Zevalin Imaging Registry. J Nucl Med. 2005;46(11):1812–8. Epub 2005/11/05.
Leyton JV, Hu M, Gao C, Turner PV, Dick JE, Minden M, et al. Auger electron radioimmunotherapeutic agent specific for the CD123+/CD131- phenotype of the leukemia stem cell population. J Nucl Med. 2011;52(9):1465–73. Epub 2011/08/06.
Prasad V, Baum RP. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging. 2010;54(1):61–7. Epub 2010/02/20.
Baum RP, Prasad V, Müller D, Schuchardt C, Orlova A, Wennborg A, et al. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68 Ga-labeled affibody molecules. J Nucl Med. 2010;51(6):892–7.
Gill HS, Marik J. Preparation of 18 F-labeled peptides using the copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition. Nat Protoc. 2011;6(11):1718–25. Epub 2011/10/21.
Gill HS, Tinianow JN, Ogasawara A, Flores JE, Vanderbilt AN, Raab H, et al. A modular platform for the rapid site-specific radiolabeling of proteins with 18 F exemplified by quantitative positron emission tomography of human epidermal growth factor receptor 2. J Med Chem. 2009;52(19):5816–25. Epub 2009/09/10.
Fedorova A, Zobel K, Gill HS, Ogasawara A, Flores JE, Tinianow JN, et al. The development of peptide-based tools for the analysis of angiogenesis. Chem Biol. 2011;18(7):839–45. Epub 2011/08/02.
Liu S, Liu H, Jiang H, Xu Y, Zhang H, Cheng Z. One-step radiosynthesis of (1)F-AlF-NOTA-RGD for tumor angiogenesis PET imaging. Eur J Nucl Med Mol Imaging. 2011;38(9):1732–41. Epub 2011/05/28.
McBride WJ, D'Souza CA, Sharkey RM, Goldenberg DM. The radiolabeling of proteins by the [18 F]AlF method. Appl Radiat Isot. 2012;70(1):200–4.
McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 1997;24(1):35–43. Epub 1997/01/01.
Strickland LA, Ross J, Williams S, Ross S, Romero M, Spencer S, et al. Preclinical evaluation of carcinoembryonic cell adhesion molecule (CEACAM) 6 as potential therapy target for pancreatic adenocarcinoma. J Pathol. 2009;218(3):380–90.
Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36(7):729–39. Epub 2009/09/02.
Dijkers ECF, Kosterink JGW, Rademaker AP, Perk LR, van Dongen GAMS, Bart J, et al. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med. 2009;50(6):974–81.
Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87(5):586–92.
Borjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clinic cancer res official J Amer Assoc Cancer Res. 2006;12(7 Pt 1):2133–40. Epub 2006/04/13.
Gaykema SB, Brouwers AH, Hovenga S, Lub-de Hooge MN, de Vries EG, Schroder CP. Zirconium-89-trastuzumab positron emission tomography as a tool to solve a clinical dilemma in a patient with breast cancer. J Clin Oncol. 2012;30:e74–5.
Oude Munnink TH, Arjaans ME, Timmer-Bosscha H, Schroder CP, Hesselink JW, Vedelaar SR, et al. PET with the 89Zr-labeled transforming growth factor-beta antibody fresolimumab in tumor models. J Nucl Med. 2011;52(12):2001–8. Epub 2011/11/11.
Heuveling DA, Visser GW, Baclayon M, Roos WH, Wuite GJ, Hoekstra OS, et al. 89Zr-nanocolloidal albumin-based PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results. J Nucl Med. 2011;52(10):1580–4. Epub 2011/09/06.
Nagengast WB, Lub-de Hooge MN, Oosting SF, den Dunnen WF, Warnders FJ, Brouwers AH, et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 2011;71(1):143–53. Epub 2010/11/19.
Borjesson PK, Jauw YW, de Bree R, Roos JC, Castelijns JA, Leemans CR, et al. Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. J Nucl Med. 2009;50(11):1828–36. Epub 2009/10/20.
Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl med official publ Soc Nucl Med. 2003;44(8):1271–81. Epub 2003/08/07.
Perk LR, Vosjan MJWD, Visser GWM, Budde M, Jurek P, Kiefer GE, et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur J Nucl Med Mol Imaging. 2009;37:250–9.
Meijs WE, Herscheid JD, Haisma HJ, Pinedo HM. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Int J Radiat Appl Instrum Appl Radiat Isot. 1992;43(12):1443–7. Epub 1992/12/01.
Abou DS, Ku T, Smith-Jones PM. In vivo biodistribution and accumulation of (89)Zr in mice. Nucl Med Biol. 2011;38(5):675–81. Epub 2011/07/02.
Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34(2):151–61. Epub 2006/12/05.
Wall JS, Richey T, Williams A, Stuckey A, Osborne D, Martin E, et al. Comparative analysis of peptide p5 and serum amyloid p component for imaging AA amyloid in mice using dual-isotope SPECT. Mol Imaging Biol. 2012. doi:10.1007/s11307-011-0524-0.
Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, et al. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. 2009;50(1):139–47. Epub 2009/01/14.
Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50(3):401–8. Epub 2009/02/19.
Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56(8):2375–89. Epub 2011/03/24.
Acknowledgments
I am grateful to Jan Marik for Figs. 1 and 4, Hugo Aerts for Fig. 2, Guus van Dongen for Fig. 3, and Elisabeth De Vries and Thijs Oude Munnink for Figs. 5 and 6, and for the advice of many colleagues at Genentech and elsewhere, including Jay Tibbitts, Paul Fielder, Lisa Bernstein, Ben Shen, Cinthia Pastuskovas, Leslie Khawli, Andy Boswell, Jan Marik, Nick van Bruggen (Genentech), Simon Cherry and Julie Sutcliffe (UC Davis), Koji Iwata, and the late Bruce Hasegawa (UCSF).
Disclosure statement
The author has no conflict of interest in this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Guest Editors: Craig Svensson, Joseph Balthasar, and Frank-Peter Theil
Rights and permissions
About this article
Cite this article
Williams, SP. Tissue Distribution Studies of Protein Therapeutics Using Molecular Probes: Molecular Imaging. AAPS J 14, 389–399 (2012). https://doi.org/10.1208/s12248-012-9348-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1208/s12248-012-9348-3