Abstract
Fetuin-A prevents tissue calcification by forming soluble complexes with calcium and phosphate. A pathological depletion of serum fetuin-A has been observed in children on dialysis or after renal transplantation but knowledge on physiologic age-related changes in serum fetuin-A is limited. We prospectively evaluated serum fetuin-A in 133 infants and children, ranging from very low birth weight infants to adolescents. Highest serum fetuin-A levels were present between 23 and 30 wk of gestation (1 ± 0.33 mg/mL). Thereafter, the values decreased. This decrease was linked to biological rather than chronological age. At 32 to 36 and 37 to 40 wk of gestation, the serum fetuin-A concentration was 0.63 ± 0.26 and 0.63 ± 0.21 mg/mL, respectively. Thereafter, the concentrations remained stable until adolescence at 0.58 ± 0.12 mg/mL. Intercurrent infections were associated with a transient decrease of serum fetuin-A levels. The high serum fetuin-A concentrations in preterm children suggest that fetuin-A is of high physiologic impact for the fetal and the preterm-born organism, showing extensive tissue formation. This might point to a new mechanism contributing to organ damage in these patients, comparable with children on dialysis.
Similar content being viewed by others
Main
Fetuin-A is a serum protein that stabilizes calcium–phosphate in a complex, which enables its clearing by the phagocytic system (1,2). It is constitutively produced in the liver (3) and down-regulated during the acute phase (4). In healthy adults, serum fetuin-A ranges between 0.4 and 1 mg/mL serum, dominating the alpha-2 band on serum electrophoresis (5).
The in vivo function of fetuin-A was deduced by gene knockout in mice (6). These animals develop widespread soft tissue calcifications with renal failure and myocardial dysfunction (7–9). Fetuin-A is, therefore, assumed to act as a mineral chaperon, primarily preventing pathological mineralization and calcification (7,10). Further functions may include modulation of TGF-beta activities (11) and insulin signaling (12). Furthermore, crude preparations of fetuin-A have multiple activities in cell culture, many of which may be due to fetuin-A-bound molecules (13).
According to animal studies, fetuin-A may attain the highest serum concentration during fetal life (14), accumulating in regions of increased tissue turn over, such as the brain, the immune, and the hematopoietic system of the intrauterine-developing organism (15,16). It is abundant in the fetal bovine serum and also shows high concentrations in cattle and pigs (17). In the fetal pig, high fetuin-A serum concentrations, combined with low albumin-, low transferrin-, and high alpha-1 (acid) glycoprotein concentrations, may provide a protective constellation for the growing organism (18). After the high prenatal serum fetuin-A, a decrease with age was reported (15,16,19).
Compared with animal studies, published data on fetuin-A in the fetus and in children have remained contradictory (Table 1). Studies on the fetal plasma suggest that intrauterine serum fetuin-A may range widely between adult levels and very high concentrations (2.3 mg/mL maximum). Comparable heterogeneous findings have also been reported for neonates born at term (17,20,21). For children between 5 and 18 y, an increase in serum fetuin-A with age has been suggested (22,23). Although low serum fetuin-A have been reported in infected and malnourished children (24), defective glycosylation of fetuin-A was found in neonates with intrauterine growth restriction (25). Total fetuin-A concentrations, however, may be similar in healthy and growth-restricted term-born neonates (20).
Complete congenital fetuin-A deficiency is unknown in humans, but secondary fetuin-A deficiency in adults on dialysis is associated with increased mortality and morbidity as well as an increased small vessel calcification (9,26). This deficiency may, in part, be caused by subchronic inflammation associated with dialysis (27). Similarly, children on dialysis with cardiac calcifications have lower serum fetuin-A than those without (22). In children with renal transplantation, low serum fetuin-A were found although no correlation between serum fetuin-A and carotid artery vascular properties was established (28).
To specify the role of fetuin-A in distinct childhood diseases, more detailed knowledge on its physiologic concentration is required. Therefore, this prospective study aimed at studying the physiologic course of serum fetuin-A in children of different ages. To assess the potential impact of low serum fetuin-A in preterm infants, a group of very low birth weight infants was included and studied serially for several weeks.
PATIENTS AND METHODS
Patients.
One hundred thirty-three patients treated at RWTH Aachen University Hospital during a 14-mo period were included prospectively. This included 31 preterm infants born between 23 and 36 completed weeks of gestation, six neonates born between 37 and 41 completed weeks of pregnancy, and 96 children of 3 wk to 17 y (6.3 ± 5.6 y).
For analysis of normal values, specimens were only included when no clinical signs of infections were present and when the C-reactive protein (CRP) serum concentrations were below 10 mg/L. In very low birth weight infants, isolated respiratory distress at birth was not the exclusion criteria. The patients studied after the neonatal period included children admitted for routine diagnostics or elective surgery with no overt infections, no immunologic disease, and no history of organ calcifications. In addition, serial measurements (total = 113; mean = 6 measurements/child) were taken in 18 preterm infants born between 23 and 30 wk of gestation.
All blood samples were drawn in the course of clinically confounded routine diagnostics. The study was approved by the ethics committee of RWTH Aachen University Hospital. Written parental consent was given for all patients.
Methods.
Serum samples were snap frozen and stored at −80°C. Serum fetuin-A concentrations were determined as published previously (29,30). In brief, the thawed serum samples were cleared by centrifugation (1 h, 4°C, 14000 × g). Ten microliter of the interface was added to 30-μL dilution buffer (S2005, DAKO) and vortexed. Ten microliter of the resulting solution was added to 20 μL of diluted rabbit anti-fetuin-A antibody (Dade Behring, Marburg, Germany) and 200 μL of reaction buffer (S2006; DAKO). The samples were analyzed using a Minineph nephelometer (The Binding Site, Heidelberg, Germany). All samples were studied in triplicate and accepted only if the SD was within 10%. The mean was used for further data analysis. A standard curve was established with purified human fetuin-A (Dade Behring, Marburg; >98% purity). Pooled serum from five healthy adults served as an external control and was measured every 10 samples.
Statistics.
Data are commonly reported as mean ± SD. Statistical differences between groups were assessed by the unpaired t test. Coefficients of determination were calculated using EXCEL software (Microsoft).
RESULTS
Fetuin-A concentrations in preterm and term neonates.
Serum fetuin-A measured immediately after the birth may reflect intrauterine levels. Therefore, serum fetuin-A was measured in 32 neonates within 4 days (0.8 ± 1.2 d) after birth. The children born after 24 to 40 completed weeks of pregnancy showed CRP values below 10 mg/L and had no clinical signs of infections. Highest serum fetuin-A was found among the 13 preterm neonates of 24 to 30 wk of gestation, displaying fetuin-A values of 1 ± 0.33 mg/mL. Serum fetuin-A concentrations above 1 mg/mL were only recorded in this patient group. Children born between 32 to 36 (n = 13) and 37 to 40 (n = 6) weeks of pregnancy, respectively, showed serum fetuin-A of 0.63 ± 0.26 and 0.63 ± 0.21 mg/mL, respectively (Fig. 1).
Longitudinal fetuin-A studies in children born between 23 and 30 wk of pregnancy.
To study the longitudinal development of serum fetuin-A in preterm children, 18 children born between 23 and 30 completed weeks of pregnancy (including the above-mentioned 13 children) were studied. Only samples obtained at times without clinical or laboratory signs of acute infections were included. Finally, 113 measurements were available for analysis. As already shown earlier, serum fetuin-A above 1 mg/mL was only recorded in samples taken before an adjusted gestational age of 37 wk (Fig. 2). Thereafter, serum fetuin-A reached adult levels. Hereby, intraindividual changes of serum fetuin-A in preterm children followed a similar time course as suggested by the early postpartal measurements (Fig. 1), again suggesting that serum fetuin-A concentrations are closely linked to biological age.
Fetuin-A serum concentrations are stable between 3 wk and 17 y of life.
Fetuin-A concentrations were also studied in 96 children and adolescents between 3 wk and 17 y (Fig. 3). In contrast to previous studies, serum fetuin-A remained stable during the whole time period (0.58 ± 0.12 mg/mL).
Intercurrent infections cause a decrease of fetuin-A serum concentrations.
As fetuin-A is a negative acute phase protein, its serum concentration may decrease during intercurrent infections. Therefore, serum fetuin-A levels obtained at times of intercurrent infections in preterm children (n = 22), as suggested by increased CRP concentrations (≥10 mg/L), were compared with the data displayed in Figure 2. Overall, independently from adjusted gestational age, values obtained at times of infections were significantly lower than values obtained at times without (0.58 ± 0.21 mg/mL, n = 22 versus 0.78 ± 0.28 mg/mL, n = 113; p < 0.002, t test). As further suggested from Figure 4, the most profound infection-related decrease may occur in children below 34 adjusted weeks of gestation. To further illustrate this relationship, Figure 5 displays the serum fetuin-A concentrations in a patient with two episodes of intercurrent infections; both episodes leading to a transient decrease of fetuin-A.
Serum fetuin-A concentrations and total serum protein concentrations are not related.
Low total serum protein concentrations are frequent in preterm children and may be related to immature metabolic functions. Total serum protein concentrations routinely determined in 108 samples out of the above-mentioned 18 preterm children born between 23 and 30 wk of pregnancy were compared with the respective serum fetuin-A. However, no correlation was found (Fig. 6), suggesting that fetuin-A is regulated independently from total serum protein concentrations. In a similar fashion, no correlation between total serum protein and serum fetuin-A was found in children studied after the neonatal period (data not shown).
DISCUSSION
This study delineates the physiologic changes of serum fetuin-A in children including the complete pediatric age spectrum from very low birth weight infants to adolescents. Our main results were that immature preterm infants show the highest serum fetuin-A, frequently exceeding 1 mg/mL (Figs. 1 and 2). The ensuing decrease to adult values seems to be closely related to the increase in biological age, suggesting a slow maturation process rather than a rapid adaptation to the extrauterine environment. Term-born children, in contrast, do already show similar serum fetuin-A as older children who, in turn, show stable values between 1 and 17 y of life.
Our findings on preterm infants complement previously published data deriving from studies on fetuses of 14 to 37 wk of gestation, showing maximum serum fetuin-A of 2.4 mg/mL (Table 1) (17). These findings, however, were based on few samples, no clear relationship between gestational age and serum fetuin-A was established and it had remained uncertain whether low fetuin-A concentrations in distinct samples were due to an acute phase reaction (17). The data reported here confirm high intrauterine serum fetuin-A and further demonstrate that serum fetuin-A is not continuously increased during pregnancy but decreases with gestational age.
Previously published studies reported that serum fetuin-A in later childhood were higher than (31) or similar to adult levels (22,23,28), some also suggesting a slight increase with age (22,23). Among healthy newborns, marked differences in fetuin-A concentrations were found (17,20,21) (Table 1). Two factors may explain this inconsistency: inadvertent measurement of acute phase serum samples and assay variations. To rule out an acute phase reaction, we strictly excluded children with a history of infectious disease and/or increased CRP concentrations. This may have especially affected the group of young children in whom frequent recurrent infections may result in lower values.
Assay variation is currently a serious shortcoming of fetuin-A serum level measurements, so that at this current time, serum measurements of fetuin-A can only be compared in relative, not in absolute terms. Even the results between studies applying the same test system in the same age group may differ markedly (Table 1). Moreover, older assays based on radial immunodiffusion or rocket immunoelectrophoresis showed a high specificity but lower precision than ELISA systems. This all may have contributed to very heterogeneous findings (Table 1) (17,20,21). We have used ELISA (26) and nephelometry (30) in several studies with a total of well more than 1500 samples with replicate variation and interassay variation of a maximum of 10%. According to our experience, to compensate for the problems related to assay variation, control sera for interlaboratory comparisons would be highly desirable.
Nevertheless, the base levels of serum fetuin-A determined in this and in previous studies consistently showed that the highest fetuin-A serum concentrations were always measured during fetal life (14,17). It is reasonable, therefore, to assume that high fetuin-A levels are essential during these periods of extensive tissue formation and remodeling.
Importantly, the continuous intrauterine decrease of fetuin-A serum concentrations to adult levels and the finding of similarly low fetuin-A concentrations from early infancy to adulthood are not necessarily related to a decrease of fetuin-A synthesis. Bone mineralization starts in utero and in parallel to these mineralization processes intrauterine serum calcium concentrations continuously increase during the last trimester, leading to highest serum calcium concentrations immediately before birth (32). Soon after birth, during the first year of life, characterized by rapid bone growth and mineralization, the human body shows the fastest increase of calcium content in relation to body size compared with any other year of life and the calcium × phosphate product reaches highest values especially during the first 6 months of life. Simultaneously, infants show the lowest urinary calcium excretion, the highest daily net calcium absorption, and the highest calcium retention when calculating uptake versus excretion (33). During this time, fetuin-A may be critically required as a mineral chaperone, not only to counteract pathological mineralization but also to foster physiologic bone mineralization while being incorporated into the new bone. In a comparable fashion, fetuin-A consumption has been reported for diseases associated with increased bone metabolism such as Paget's disease or bone neoplasms (34,35).
As already known from older children and adults, intercurrent infections also lead to an acute phase reaction with a decrease of serum fetuin-A concentrations in preterm children (Figs. 4 and 5). At present, it remains speculative whether this decrease might be harmful or protective for the growing organism. In our opinion, as hypothesized below for the pathogenesis of periventricular leukomalacia (PVL), a contribution to organ damage seems likely. The crucial event in the development of PVL is the destruction of oligodendrocytes of the periventricular white matter. Oligodendrocytes derived from the immature brain express calcium-permeable AMPA/kainate receptors which, on oxygen-glucose deprivation and glutamate stimulation, mediate strong, sustained, and deleterious calcium influx into the cell (36). In a similar fashion, exposure of the immature brain to lipopolysaccharide derived from bacterial pathogens also causes a delayed and lethal rise of the intracellular calcium concentration (37). This increase of intracellular calcium concentration may activate various enzymes (phospholipases, proteases, and endonucleases), leading to apoptotic and/or necrotic cell death (38). For oligodendrocytes, the resulting damage can be prevented in vitro by decreasing the extracellular calcium concentration, which underlines the central role of calcium in this process and suggests that changes in the extracellular Ca-binding capacity might influence the extent of Ca-mediated tissue damage. Considering the high expression of fetuin-A in the developing brain (15,16), several potential connections between the pathogenesis of PVL and fetuin-A metabolism can be depicted. First, fetuin-A might counteract the noxious consequences of calcium influx into damaged cells by its Ca-binding ability, thus reducing the extent of oligodendrocyte death. Second, intercurrent infections with release of lipopolysaccharide might not only directly affect oligodendrocyte survival but also lead to a decrease of protective serum fetuin-A. Third, fetuin-A with its binding capability for TGF-beta superfamily members might contribute to the regulation or rather the bioavailability of TGF-beta, which is expressed in astrocytes during the reparative stage of PVL (39).
Fetuin-A seems to be an underestimated but emerging molecule. Its contribution to organ growth, function, and dysfunction between preterm birth and adolescence warrants further research.
Abbreviations
- CRP:
-
C-reactive protein
- PVL:
-
periventricular leukomalacia
References
Heiss A, Eckert T, Aretz A, Richtering W, van Dorp W, Schafer C, Jahnen-Dechent W 2008 Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem 283: 14815–14825
Young JD, Martel J, Young L, Wu CY, Young A, Young D 2009 Putative nanobacteria represent physiological remnants and culture by-products of normal calcium homeostasis. PLoS One 4: e4417
Lee C, Bongcam-Rudloff E, Söllner C, Jahnen-Dechent W, Claesson-Welsh L 2009 Type 3 cystatins; fetuins, kininogen and histidine-rich glycoprotein. Front Biosci 14: 2911–2922
Wöltje M, Tschoke B, von Bülow V, Westenfeld R, Denecke B, Gräber S, Jahnen-Dechent W 2006 CCAAT enhancer binding protein beta and hepatocyte nuclear factor 3beta are necessary and sufficient to mediate dexamethasone-induced up-regulation of alpha2HS-glycoprotein/fetuin-A gene expression. J Mol Endocrinol 36: 261–277
Westenfeld R, Jahnen-Dechent W, Ketteler M 2007 Vascular calcification and fetuin-A deficiency in chronic kidney disease. Trends Cardiovasc Med 17: 124–128
Jahnen-Dechent W, Schinke T, Trindl A, Müller-Esterl W, Sablitzky F, Kaiser S, Blessing M 1997 Cloning and targeted deletion of the mouse fetuin gene. J Biol Chem 272: 31496–31503
Schäfer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Müller-Esterl W, Schinke T, Jahnen-Dechent W 2003 The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112: 357–366
Merx MW, Schafer C, Westenfeld R, Brandenburg V, Hidajat S, Weber C, Ketteler M, Jahnen-Dechent W 2005 Myocardial stiffness, cardiac remodeling, and diastolic dysfunction in calcification-prone fetuin-A-deficient mice. J Am Soc Nephrol 16: 3357–3364
Westenfeld R, Schafer C, Smeets R, Brandenburg VM, Floege J, Ketteler M, Jahnen-Dechent W 2007 Fetuin-A (AHSG) prevents extraosseous calcification induced by uraemia and phosphate challenge in mice. Nephrol Dial Transplant 22: 1537–1546
Jahnen-Dechent W, Schäfer C, Ketteler M, McKee M 2008 Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med 86: 379–389
Szweras M, Liu D, Partridge E, Pawling J, Sukhu B, Clokie C, Jahnen-Dechent W, Tenenbaum H, Swallow C, Grynpas M, Dennis J 2002 alpha 2-HS glycoprotein/fetuin, a transforming growth factor-beta/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J Biol Chem 277: 19991–19997
Mathews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang X, Goustin AS, Jen KL, Charron MJ, Jahnen-Dechent W, Grunberger G 2002 Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 51: 2450–2458
Nie Z 1992 Fetuin: its enigmatic property of growth promotion. Am J Physiol 263: C551–C562
Pedersen KO 1944 Fetuin, a new globulin isolated from serum. Nature 154: 575
Dziegielewska K, Brown WM, Deal A, Foster KA, Fry EJ, Saunders NR 1996 The expression of fetuin in the development and maturation of the hemopoietic and immune systems. Histochem Cell Biol 106: 319–330
Dziegielewska KM, Daikuhara Y, Ohnishi T, Waite MP, Ek J, Habgood MD, Lane MA, Potter A, Saunders NR 2000 Fetuin in the developing neocortex of the rat: distribution and origin. J Comp Neurol 423: 373–388
Dziegielewska KM, Matthews N, Saunders NR, Wilkinson G 1993 Alpha 2HS-glycoprotein is expressed at high concentration in human fetal plasma and cerebrospinal fluid. Fetal Diagn Ther 8: 22–27
Martin M, Tesouro MA, Gonz Am N, Pi A, Lampreave F 2005 Major plasma proteins in pig serum during postnatal development. Reprod Fertil Dev 17: 439–445
Suzuki M, Shimokawa H, Takagi Y, Sasaki S 1994 Calcium-binding properties of fetuin in fetal bovine serum. J Exp Zool 270: 501–507
Briana DD, Boutsikou M, Gourgiotis D, Boutsikou T, Baka S, Marmarinos A, Hassiakos D, Malamitsi-Puchner A 2008 Serum fetuin-A/alpha2-HS-glycoprotein in human pregnancies with normal and restricted fetal growth. J Matern Fetal Neonatal Med 21: 826–830
Abiodun PO, Olomu IN 1991 Serum alpha 2-HS-glycoprotein levels in neonatal infections. Biol Neonate 60: 114–117
Shroff RC, Shah V, Hiorns MP, Schoppet M, Hofbauer LC, Hawa G, Schurgers LJ, Singhal A, Merryweather I, Brogan P, Shanahan C, Deanfield J, Rees L 2008 The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not Matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol Dial Transplant 23: 3263–3271
Marhaug G, Shah V, Shroff R, Varsani H, Wedderburn LR, Pilkington CA, Brogan PA 2008 Age-dependent inhibition of ectopic calcification: a possible role for fetuin-A and osteopontin in patients with juvenile dermatomyositis with calcinosis. Rheumatology (Oxford) 47: 1031–1037
Abiodun PO, Olomu IN 1987 Alpha 2 HS-glycoprotein levels in children with protein-energy malnutrition and infections. J Pediatr Gastroenterol Nutr 6: 271–275
Karamessinis PM, Malamitsi-Puchner A, Boutsikou T, Makridakis M, Vougas K, Fountoulakis M, Vlahou A, Chrousos G 2008 Marked defects in the expression and glycosylation of alpha2-HS glycoprotein/fetuin-A in plasma from neonates with intrauterine growth restriction: proteomics screening and potential clinical implications. Mol Cell Proteomics 7: 591–599
Ketteler M, Bongartz P, Westenfeld R, Wildberger J, Mahnken A, Bohm R, Metzger T, Wanner C, Jahnen-Dechent W, Floege J 2003 Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361: 827–833
Ciaccio M, Bivona G, Di Sciacca R, Iatrino R, Di Natale E, Li Vecchi M, Bellia C 2008 Changes in serum fetuin-A and inflammatory markers levels in end-stage renal disease (ESRD): effect of a single session haemodialysis. Clin Chem Lab Med 46: 212–214
van Summeren MJ, Hameleers JM, Schurgers LJ, Hoeks AP, Uiterwaal CS, Kruger T, Vermeer C, Kuis W, Lilien MR 2008 Circulating calcification inhibitors and vascular properties in children after renal transplantation. Pediatr Nephrol 23: 985–993
Hermans MM, Brandenburg V, Ketteler M, Kooman JP, van der Sande FM, Gladziwa U, Rensma PL, Bartelet K, Konings CJ, Hoeks AP, Floege J, Leunissen KM 2006 Study on the relationship of serum fetuin-A concentration with aortic stiffness in patients on dialysis. Nephrol Dial Transplant 21: 1293–1299
Schäfer C, Jahnen-Dechent W, Brandenburg V 2005 Clinical impact of the serum protein fetuin-A—a regulator of calcification. Laborwelt 6: 9–12
Ziolkowska H, Brzewski M, Roszkowska-Blaim M 2008 Determinants of the intima-media thickness in children and adolescents with chronic kidney disease. Pediatr Nephrol 23: 805–811
Hsu SC, Levine MA 2004 Perinatal calcium metabolism: physiology and pathophysiology. Semin Neonatol 9: 23–36
Matkovic V 1991 Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr 54: 245S–260S
Ashton BA, Smith R 1980 Plasma alpha 2HS-glycoprotein concentration in Paget's disease of bone: its possible significance. Clin Sci (Lond) 58: 435–438
Barbieri D, Pazzaglia UE, Riccardi C, Pavesi F, Lotzniker M, Moratti R 1987 Variations in alpha-2-HS glycoprotein level in neoplastic disease with and without involvement of bone. Ital J Orthop Traumatol 13: 535–539
Deng W, Rosenberg PA, Volpe JJ, Jensen FE 2003 Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci USA 100: 6801–6806
Sherwin C, Fern R 2005 Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL-1beta, and calcium. J Immunol 175: 155–161
Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA 2006 Calcium in cell injury and death. Annu Rev Pathol 1: 405–434
Meng SZ, Takashima S 1999 Expression of transforming growth factor-beta 1 in periventricular leukomalacia. J Child Neurol 14: 377–381
Author information
Authors and Affiliations
Corresponding author
Additional information
The study was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) (W.J.-D.) (DFG Ja 562/10).
Rights and permissions
About this article
Cite this article
Häusler, M., Schäfer, C., Osterwinter, C. et al. The Physiologic Development of Fetuin-A Serum Concentrations in Children. Pediatr Res 66, 660–664 (2009). https://doi.org/10.1203/PDR.0b013e3181bc3f60
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1203/PDR.0b013e3181bc3f60
This article is cited by
-
The hepatokine fetuin-A disrupts functional maturation of pancreatic beta cells
Diabetologia (2021)
-
Presepsin and fetuin-A dyad for the diagnosis of proven sepsis in preterm neonates
BMC Infectious Diseases (2019)
-
Barriers to Drug Distribution into the Perinatal and Postnatal Brain
Pharmaceutical Research (2018)
-
Mineral and bone disorders in children with chronic kidney disease
Nature Reviews Nephrology (2011)