skip to main content
research-article

Solving Graph Problems via Potential Maximal Cliques: An Experimental Evaluation of the Bouchitté--Todinca Algorithm

Published: 18 February 2019 Publication History

Abstract

The BT algorithm of Bouchitté and Todinca based on enumerating potential maximal cliques, originally proposed for the treewidth and minimum fill-in problems, yields improved exact exponential-time algorithms for various graph optimization problems related to optimal triangulations. While the BT algorithm has received significant attention in terms of theoretical analysis, less attention has been paid on engineering efficient implementations of the algorithm for different problems and thereby on empirical studies on its effectiveness in practice. In this work, we provide an experimental evaluation of an implementation of the BT algorithm, based on our second-place winning entry in the 2nd Parameterized Algorithms and Computational Experiments Challenge (PACE 2017), extended to several related graph problems: treewidth, minimum fill-in, generalized and fractional hypertreewidth, and the total table size problem. Instead of focusing on problem-specific optimization of BT for a particular problem, our focus in this work is on studying the applicability of BT more generally to a range of problems. Based on the results, we conclude that an efficient implementation of the BT algorithm yields an empirically competitive approach to each of the considered problems when compared to available implementations of alternative problem-specific algorithmic approaches.

References

[1]
Mario Alviano, Carmine Dodaro, and Francesco Ricca. 2015. A MaxSAT algorithm using cardinality constraints of bounded size. In Proc. AAAI. AAAI Press, 2677--2683.
[2]
Carlos Ansótegui, Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. 2017. MaxSAT Evaluation 2017. Retrieved from http://mse17.cs.helsinki.fi/.
[3]
Jeremias Berg and Matti Järvisalo. 2014. SAT-based approaches to treewidth computation: An evaluation. In Proc. ICTAI. IEEE Computer Society, 328--335.
[4]
David Bergman, Carlos H. Cardonha, André Augusto Ciré, and Arvind U. Raghunathan. 2016. On the minimum chordal completion polytope. CoRR abs/1612.01966. Retrieved from http://arxiv.org/abs/1612.01966.
[5]
David Bergman and Arvind U. Raghunathan. 2015. A Benders approach to the minimum chordal completion problem. In Proc. CPAIOR (Lecture Notes in Computer Science), Vol. 9075. Springer, 47--64.
[6]
Anne Berry, Jean R. S. Blair, Pinar Heggernes, and Barry W. Peyton. 2004. Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica 39, 4 (2004), 287--298.
[7]
Anne Berry, Jean-Paul Bordat, and Olivier Cogis. 1999. Generating all the minimal separators of a graph. In Proc. WG (Lecture Notes in Computer Science), Vol. 1665. Springer, 167--172.
[8]
Umberto Bertele and Francesco Brioschi. 1972. Nonserial Dynamic Programming. Academic Press, Inc., Orlando, FL.
[9]
Hans L Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1 (1998), 1--45.
[10]
Hans L. Bodlaender. 2005. Discovering treewidth. In Proc. SOFSEM (Lecture Notes in Computer Science), Vol. 3381. Springer, 1--16.
[11]
Hans L. Bodlaender and Fedor V. Fomin. 2005. Tree decompositions with small cost. Discrete Appl. Math. 145, 2 (2005), 143--154.
[12]
Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M. Thilikos. 2012. On exact algorithms for treewidth. ACM Trans. Algorithms 9, 1, Article 12 (2012).
[13]
Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. 1995. Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Alg. 18, 2 (1995), 238--255.
[14]
Hans L. Bodlaender, Pinar Heggernes, and Yngve Villanger. 2011. Faster parameterized algorithms for minimum fill-in. Algorithmica 61, 4 (2011), 817--838.
[15]
Hans L. Bodlaender and Arie M. C. A. Koster. 2006. Safe separators for treewidth. Discrete Math. 306, 3 (2006), 337--350.
[16]
Vincent Bouchitté and Ioan Todinca. 2001. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 1 (2001), 212--232.
[17]
Vincent Bouchitté and Ioan Todinca. 2002. Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276, 1 (2002), 17--32.
[18]
Gregory F. Cooper. 1990. The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42, 2--3 (1990), 393--405.
[19]
Jessica Davies and Fahiem Bacchus. 2013. Exploiting the power of MIP solvers in MaxSAT. In Proc. SAT (Lecture Notes in Computer Science), Vol. 7962. Springer, 166--181.
[20]
Rina Dechter. 1999. Bucket elimination: A unifying framework for reasoning. Artif. Intell. 113, 1--2 (1999), 41--85.
[21]
Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and Frances A. Rosamond. 2016. The first parameterized algorithms and computational experiments challenge. In Proc. IPEC (LIPIcs), Vol. 63. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 30:1--30:9.
[22]
Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. 2018. The PACE 2017 parameterized algorithms and computational experiments challenge: The second iteration. In Proc. IPEC 2017 (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 30:1--30:12.
[23]
Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. 2008. Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38, 3 (2008), 1058--1079.
[24]
Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. 2015. Large induced subgraphs via triangulations and CMSO. SIAM J. Comput. 44, 1 (2015), 54--87.
[25]
Fedor V. Fomin and Yngve Villanger. 2008. Treewidth computation and extremal combinatorics. In Proc. ICALP (Lecture Notes in Computer Science), Vol. 5125. Springer, 210--221.
[26]
Eugene C. Freuder. 1990. Complexity of K-tree structured constraint satisfaction problems. In Proc. AAAI. AAAI Press, 4--9.
[27]
Masanobu Furuse and Koichi Yamazaki. 2014. A revisit of the scheme for computing treewidth and minimum fill-in. Theor. Comput. Sci. 531 (2014), 66--76.
[28]
Tobias Ganzow, Georg Gottlob, Nysret Musliu, and Marko Samer. 2005. A CSP Hypergraph Library. Technical Report DBAI-TR-2005-50. Vienna University of Technology Institute of Information Systems (DBAI).
[29]
Fǎnicǎ Gavril. 1974. The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory, Series B 16, 1 (1974), 47--56.
[30]
Vibhav Gogate and Rina Dechter. 2004. A complete anytime algorithm for treewidth. In Proc. UAI. AUAI Press, 201--208.
[31]
Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree decompositions and tractable queries. J. Comput. System Sci. 64, 3 (2002), 579--627.
[32]
Georg Gottlob and Marko Samer. 2009. A backtracking-based algorithm for hypertree decomposition. ACM J. Exp. Algorithmics 13, Article 1 (2009).
[33]
Martin Grohe and Dániel Marx. 2014. Constraint solving via fractional edge covers. ACM Trans. Algorithms 11, 1, Article 4 (2014).
[34]
Rob Gysel. 2014. Minimal triangulation algorithms for perfect phylogeny problems. In Proc. LATA (Lecture Notes in Computer Science), Vol. 8370. Springer, 421--432.
[35]
Rob Gysel, Kristian Stevens, and Dan Gusfield. 2012. Reducing problems in unrooted tree compatibility to restricted triangulations of intersection graphs. In Proc. WABI (Lecture Notes in Computer Science), Vol. 7534. Springer, 93--105.
[36]
IBM ILOG. 2017. CPLEX Optimizer 12.7.0. Retrieved from https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer.
[37]
Finn V. Jensen and Frank Jensen. 1994. Optimal junction trees. In Proc. UAI. Morgan Kaufmann Publishers Inc., 360--366.
[38]
Sampath K. Kannan and Tandy J. Warnow. 1994. Inferring evolutionary history from DNA sequences. SIAM J. Comput. 23, 4 (1994), 713--737.
[39]
Uffe Kjaerulff. 1990. Triangulation of Graphs — Algorithms Giving Small Total State Space. Research Report R-90-09. Department of Mathematics and Computer Science, Aalborg University, Denmark.
[40]
Steffen L. Lauritzen and David J. Spiegelhalter. 1988. Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Series B (Methodological) 50, 2 (1988), 157--194.
[41]
Chao Li and Maomi Ueno. 2017. An extended depth-first search algorithm for optimal triangulation of Bayesian networks. Int. J. Approximate Reasoning 80 (2017), 294--312.
[42]
A Makhorin. 2001. GLPK-the GNU Linear Programming Toolkit. Retrieved from https://www.gnu.org/software/glpk/.
[43]
Ruben Martins, Vasco M. Manquinho, and Inês Lynce. 2014. Open-WBO: A modular MaxSAT solver. In Proc. SAT (Lecture Notes in Computer Science), Vol. 8561. Springer, 438--445.
[44]
Dániel Marx. 2010. Approximating fractional hypertree width. ACM Trans. Algorithms 6, 2, Article 29 (2010), 17 pages.
[45]
Lukas Moll, Siamak Tazari, and Marc Thurley. 2012. Computing hypergraph width measures exactly. Inform. Process. Lett. 112, 6 (2012), 238--242.
[46]
Assaf Natanzon, Ron Shamir, and Roded Sharan. 2000. A polynomial approximation algorithm for the minimum fill-in problem. SIAM J. Comput. 30, 4 (2000), 1067--1079.
[47]
Thorsten J. Ottosen and Jirí Vomlel. 2012. All roads lead to Rome—New search methods for the optimal triangulation problem. Int. J. Approximate Reasoning 53, 9 (2012), 1350--1366.
[48]
Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7, 3 (1986), 309--322.
[49]
Donald J. Rose. 1970. Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 3 (1970), 597--609.
[50]
Donald J. Rose, R. Endre Tarjan, and George S. Lueker. 1976. Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 2 (1976), 266--283.
[51]
Werner Schafhauser. 2006. New heuristic methods for tree decompositions and generalized hypertree decompositions. Master’s thesis. Vienna University of Technology.
[52]
Hisao Tamaki. 2017. Positive-instance driven dynamic programming for treewidth. In Proc. ESA (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 87. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 68:1--68:13.
[53]
Robert E. Tarjan. 1985. Decomposition by clique separators. Discrete Mathematics 55, 2 (1985), 221--232.
[54]
Robert E. Tarjan and Mihalis Yannakakis. 1984. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 3 (1984), 566--579.

Cited By

View all
  • (2024)Computational Experiments in Computer Science Research: A Literature SurveyIEEE Access10.1109/ACCESS.2024.345880812(132254-132270)Online publication date: 2024
  • (2024)Output-Sensitive Enumeration of Potential Maximal Cliques in Polynomial SpaceCombinatorial Algorithms10.1007/978-3-031-63021-7_29(382-395)Online publication date: 1-Jul-2024
  • (2023)Incremental Updates of Generalized Hypertree DecompositionsACM Journal of Experimental Algorithmics10.1145/357826627(1-28)Online publication date: 3-Mar-2023
  • Show More Cited By

Index Terms

  1. Solving Graph Problems via Potential Maximal Cliques: An Experimental Evaluation of the Bouchitté--Todinca Algorithm

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Journal of Experimental Algorithmics
        ACM Journal of Experimental Algorithmics  Volume 24, Issue
        Special Issue ESA 2016, Regular Papers and Special Issue SEA 2018
        2019
        622 pages
        ISSN:1084-6654
        EISSN:1084-6654
        DOI:10.1145/3310279
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 18 February 2019
        Accepted: 01 December 2018
        Revised: 01 October 2018
        Received: 01 March 2018
        Published in JEA Volume 24

        Author Tags

        1. Bouchitté-Todinca algorithm
        2. Potential maximal cliques
        3. chordal completion
        4. empirical evaluation
        5. fractional hypertreewidth
        6. generalized hypertreewidth
        7. minimum fill-in
        8. total table size
        9. treewidth

        Qualifiers

        • Research-article
        • Research
        • Refereed

        Funding Sources

        • DoCS Doctoral Programme in Computer Science and the Research Funds of the University of Helsinki
        • Academy of Finland

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)6
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 03 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Computational Experiments in Computer Science Research: A Literature SurveyIEEE Access10.1109/ACCESS.2024.345880812(132254-132270)Online publication date: 2024
        • (2024)Output-Sensitive Enumeration of Potential Maximal Cliques in Polynomial SpaceCombinatorial Algorithms10.1007/978-3-031-63021-7_29(382-395)Online publication date: 1-Jul-2024
        • (2023)Incremental Updates of Generalized Hypertree DecompositionsACM Journal of Experimental Algorithmics10.1145/357826627(1-28)Online publication date: 3-Mar-2023
        • (2023)Computing optimal hypertree decompositions with SATArtificial Intelligence10.1016/j.artint.2023.104015325:COnline publication date: 1-Dec-2023
        • (2022)Finding Optimal Triangulations Parameterized by Edge Clique CoverAlgorithmica10.1007/s00453-022-00932-084:8(2242-2270)Online publication date: 5-Feb-2022
        • (2019)Enumerating potential maximal cliques via SAT and ASPProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367032.3367191(1116-1122)Online publication date: 10-Aug-2019

        View Options

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media