Skip to main content

Advertisement

The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The problem of Mycobacterium tuberculosis virulence, together with drug resistance, is becoming key for the design of drugs with a new mechanism of action and the production of modern concepts and tuberculosis treatment schemes. The review describes gene complexes and their products, including mycolic acids and global regulatory systems at the level of transcriptional, translational, and post-translational modification, etc. The criteria for selection of virulence/pathogenicity factors that might be used for comparative genomic analysis of strains differing in the degree of virulence were recommended. The experimental approaches and test systems for an adequate estimation of the virulence degree of different strains of M. tuberculosis were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Tuberculosis Report, Genewa: World Health Organization, 2012.

  2. Balabanova, Y., Nikolayevskyy, V., Ignatyeva, O., et al., Survival of civilian and prisoner drug-sensitive, multi- and extensive drug-resistant tuberculosis cohorts prospectively followed in Russia, PLoS One, 2011, vol. 6. e20531

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Udwadia, Z.F., MDR, XDR, TDR tuberculosis: ominous progression, Thorax, 2012, vol. 67, pp. 286–288.

    PubMed  Google Scholar 

  4. Homolka, S., Projahn, M., Feuerriegel, S., et al., High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms, PLoS One, 2012, vol. 7, no. 7. e39855

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Brudey, K., Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology, BMC Microbiol., 2006, vol. 6, no. 6, p. 23.

    PubMed Central  PubMed  Google Scholar 

  6. Mokrousov, I., Russian “Successful” clone B0/W148 of Mycobacterium tuberculosis Beijing genotype: a multiplex PCR assay for rapid detection and global screening, J. Clin. Microbiol., 2012, vol. 50, no. 11, pp. 3757–3759.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Prozorov, A.A. and Danilenko, V.N., Mycobacteria of the tuberculosis complex: genomics, molecular epidemiology, and evolution trends, Usp. Sovrem. Biol., 2011, vol. 13, no. 3, pp. 227–243.

    Google Scholar 

  8. Comas, I., Coscola, M., Luo, T., et al., Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans, Nat. Genet., 2013, vol. 45, no. 10, pp. 1176–1182.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gagneux, S. and Small, P., Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development, Lancet Infect. Dis., 2007, vol. 7, no. 5, pp. 328–337.

    PubMed  Google Scholar 

  10. Manabe, Y. and Bishai, W., Latent Mycobacterium tuberculosis-persisting, patience, and winning by waiting, Nat. Med., 2000, vol. 6, no. 12, pp. 1327–1329.

    CAS  PubMed  Google Scholar 

  11. Smith, I., Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence, Clin. Microbiol. Rev., 2003, vol. 16, no. 3, pp. 463–496.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Mishra, A.K., Driessen, N.N., Appelmelk, B.J., et al., Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction, FEMS Microbiol. Rev., 2011, vol. 35, no. 6, pp. 1126–1157.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Leber, J.H., Crimmins, G.T., Raghavan, S., et al., Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen, PLoS Pathogens., 2008, vol. 4, no. 1, pp. 84–95.

    CAS  Google Scholar 

  14. Court, N., Vasseur, V., Vacher, R., et al., Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection, J. Immunol., 2010, vol. 184, no. 12, pp. 7057–7070.

    CAS  PubMed  Google Scholar 

  15. Philips, J.A. and Ernst, J.D., Tuberculosis pathogenesis and immunity, Annu. Rev. Pathol., 2011, vol. 7, pp. 353–384.

    PubMed  Google Scholar 

  16. Bafica, A., Scanga, C.A., Feng, C.G., et al., TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis, J. Exp. Med., 2005, vol. 202, no. 12, pp. 1715–1724.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kleinnijenhuis, J., Oosting, M., Joosten, L.A.B., et al., Innate immune recognition of Mycobacterium tuberculosis, Clin. Dev. Immunol., 2011, vol. 2011. doi 10.1155/2011/405310

  18. Ahmad, S., Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection, Clin. Dev. Immunol., 2011, vol. 2011. doi 10.1155/2011/814943

  19. Fenhalls, G., Stevens, L., Bezuidenhout, J., et al., Distribution of IFN-γ, IL-4 and TNF-αprotein and CD8 T cells producing IL-12p40 mRNA in human lung tuberculous granulomas, Immunology, 2002, vol. 105, no. 3, pp. 325–335.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Herrera, M.T., Torres, M., Nevels, D., et al., Compartmentalized bronchoalveolar IFN-γ and IL-12 response in human pulmonary tuberculosis, Tuberculosis, 2009, vol. 89, no. 1, pp. 38–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kellar, K.L., Gehrke, J., Weis, S.E., et al., Multiple cytokines are released when blood from patients with tuberculosis is stimulated with Mycobacterium tuberculosis antigens, PLoS One, 2011, vol. 6, no. 11, pp. 1–17.

    Google Scholar 

  22. Guler, R., Parihar, S.P., Spohn, G., et al., Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice, Vaccine, 2011, vol. 29, no. 6, pp. 1339–1346.

    CAS  PubMed  Google Scholar 

  23. Roach, D.R., Bean, A.G.D., Demangel, C., et al., TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection, J. Immunol., 2002, vol. 168, no. 9, pp. 4620–462.

    CAS  PubMed  Google Scholar 

  24. Cooper, A.M., Adams, L.B., Dalton, D.K., et al., IFN-γ and NO in mycobacterial disease: new jobs for old hands, Trends Microbiol., 2002, vol. 10, no. 5, pp. 221–226.

    CAS  PubMed  Google Scholar 

  25. Macmicking, J.D., North, R.J., Lacourse, R., et al., Identification of nitric oxide synthase as a protective locus against tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 10, pp. 5243–5248.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Cooper, A.M., Dalton, D.K., Stewart, T.A., et al., Disseminated tuberculosis in interferon gene-disrupted mice, J. Exp. Med., 1993, vol. 178, no. 6, pp. 2243–2247.

    CAS  PubMed  Google Scholar 

  27. Saunders, B.M., Frank, A.A., Orme, I.M., et al., Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection, Infect. Immun., 2000, vol. 68, no. 6, pp. 3322–3326.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Pompei, L., Jang, S., Zamlynny, B., et al., Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs, J. Immunol., 2007, vol. 178, no. 8, pp. 5192–5199.

    CAS  PubMed  Google Scholar 

  29. Filipe-Santos, O., Bustamante, J., Chapgier, A., et al., Inborn errors of IL-12/23- and IFN-γ mediated immunity: molecular, cellular, and clinical features, Semin. Immunol., 2006, vol. 18, no. 6, pp. 347–361.

    CAS  PubMed  Google Scholar 

  30. Mayanja-Kizza, H., Wajja, A., Wu, M., et al., Activation of β-chemokines and CCR5 in persons infected with human immunodeficiency virus type 1 and tuberculosis, J. Infect. Dis., 2001, vol. 183, no. 12, pp. 1801–1804.

    CAS  PubMed  Google Scholar 

  31. Algood, H.M.S., Chan, J., and Flynn, J.L., Chemokines and tuberculosis, Cytokine Growth Factor Rev., 2003, vol. 14, no. 6, pp. 467–477.

    CAS  PubMed  Google Scholar 

  32. Serbina, N.V., Jia, T., Hohl, T.M., et al., Monocytemediated defence against microbial pathogens, Annu. Rev. Immunol., 2008, vol. 26, pp. 421–452.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Takeda, K. and Akira, S., Toll-like receptors in innate immunity, Int. Immunol., 2005, vol. 17, no. 1, pp. 1–14.

    CAS  PubMed  Google Scholar 

  34. Fenton, M. and Vermeulen, M., Immunopathology of tuberculosis: role of macrophages and monocytes, Infect. Immun., 1996, vol. 64, no. 3, pp. 683–690.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Glickman, M. and Jacobs, W., Microbial pathogenesis of Mycobacterium tuberculosis: down of a discipline, Cell, 2001, vol. 104, no. 2, pp. 477–485.

    CAS  PubMed  Google Scholar 

  36. Esmail, H., Barry, C.E., and Wilkinson, R.J., Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies, Drug Discov. Today, 2012, vol. 17, nos. 9–10, pp. 514–521.

    PubMed Central  PubMed  Google Scholar 

  37. Gideon, H.P. and Flynn, J.L., Latent tuberculosis: what the host “sees”?, Immunol. Results, 2011, vol. 50, pp. 202–212.

    Google Scholar 

  38. Suhail, A., New approaches in the diagnosis and treatment of latent tuberculosis infection, Respir. Res., 2010, vol. 11, no. 1, p. 169.

    Google Scholar 

  39. Shleeva, M.O., Salina, E.G., and Kaprel’yants, A.S., Dormant forms of mycobacteria, Microbiology, 2010, vol. 79, no. 1, pp. 1–12.

    CAS  Google Scholar 

  40. Keren, I., Minami, S., Rubin, E., and Lewis, K., Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters, MBio, 2011, vol. 2, no. 3. doi 10.1128/mBio.00100-11

    Google Scholar 

  41. Lyte, M., The microbial organ in the gut as a driver of homeostasis and disease, Med. Hypotheses, 2010, vol. 74, pp. 634–638.

    PubMed  Google Scholar 

  42. Lyte, M., Microbial Endocrinology: A Personal Journey, 2010. doi 10.1007/978-1-4419-5576-01

    Google Scholar 

  43. Lyte, M., Microbial endocrinology and infectious disease in the 21st century, Trends Microbiol., 2004, vol. 12, no. 1, pp. 14–20.

    CAS  PubMed  Google Scholar 

  44. Chen, X., Souza, R.D., and Hong, S., The role of gut microbiota in the gut-brain axis: current challenges and perspectives, Protein Cell, 2013, vol. 4, no. 6, pp. 403–414.

    PubMed  Google Scholar 

  45. Norris, V., Molina, F., and Gewirtz, A.T., Hypothesis: bacteria control host appetites, J. Bacteriol., 2013, vol. 195, no. 3, pp. 411–416.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Foster, J.A. and McVey Neufeld, K., Gut-brain axis: how the microbiome influences anxiety and depression, Trends Neirosci., 2013, vol. 36, no. 5, pp. 305–312.

    CAS  Google Scholar 

  47. Douglas-Escobar, M., Elliott, E., and Neu, J., Effect of intestinal microbial ecology on the developing brain, Jama Pediatr., 2013, vol. 167, no. 4, pp. 374–379.

    PubMed  Google Scholar 

  48. Dinan, T.G. and Quigley, E.M., Probiotics in the treatment of depression: science or science fiction? Aust. N. Z. J. Psychiatry, 2011, vol. 45, pp. 1023–1025.

    PubMed  Google Scholar 

  49. Moloney, R.D., Desbonnet, L., Clarke, G., et al., The microbiome: stress, health and disease, Mamm. Genome, 2014, vol. 25, nos. 1–2, pp. 49–74.

    CAS  PubMed  Google Scholar 

  50. Lawn, S.D., Wood, R., and Wilkinson, R.J., Changing concepts of “latent tuberculosis infection” in patients living with HIV infection, Clin. Dev. Immunol., 2011, vol. 2011. http://dx.doi.org/10.1155/2011/980594

  51. Salina, T.I. and Morozova, T.I., Molecular genetic analysis of the isoniazid-resistant strains of M. tuberculosis circulating over the Saratov region, Mol. Gen. Microbiol. Virol., 2013, vol. 3, pp. 8–26.

    Google Scholar 

  52. Safi, H., Lingaraju, S., and Amin, A., Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes, Nat. Genet., 2013, vol. 45, no. 10, pp. 1190–1197.

    CAS  PubMed  Google Scholar 

  53. Hickman, S.P., Chan, J., Salgame, P., et al., Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization, J. Immunol., 2002, vol. 168, no. 9, pp. 4636–4642.

    CAS  PubMed  Google Scholar 

  54. Bermudez, L.E. and Goodman, J., Mycobacterium tuberculosis invades and replicates within type II alveolar cells, Infect. Immun., 1996, vol. 64, no. 4, pp. 1400–1406.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Franzblau, S.G., DeGroote, M.A., Cho, S.H., et al., Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis, Tuberculosis, 2012, vol. 92, no. 6, pp. 453–488.

    CAS  PubMed  Google Scholar 

  56. Melo, M.D. and Stokes, R.W., Interaction of Mycobacterium tuberculosis with MH-S, an immortalized murine alveolar macrophage cell line: a comparison with primary murine macrophages, Tubercle Lung Dis., 2000, vol. 80, no. 1, pp. 35–46.

    CAS  Google Scholar 

  57. Kapina, M.A., Rubakova, E.I., Majorov, K.B., et al., Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis, PLoS One, 2013, vol. 8, no. 8. e72773

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Apt, A.S., Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!,’ Immunology, vol. 134, no. 2, pp. 109–115.

  59. Kramnik, I., Dietrich, W.F., Demant, P., et al., Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 15, pp. 8560–8568.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Rindi, L., Fattorini, L., Bonanni, D., et al., Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice, Microbiology, 2002, vol. 148, no. 12, pp. 3873–3880.

    CAS  PubMed  Google Scholar 

  61. Shi, L., Jung, Y.J., Tyagi, S., et al., Expression of Th1mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 1, pp. 241–246.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Poltorak, A., He, X., Smirnova, I., et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Science, 1998, vol. 282, no. 5396, pp. 2085–2088.

    CAS  PubMed  Google Scholar 

  63. Converse, P.J., Dannenberg, A.M., Estep, J.E., et al., Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli, Infect. Immun., 1996, vol. 64, no. 11, pp. 4776–4787.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Ghadimi, D., de Vrese, M., Heller, K.J., et al., Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagy-promoting cytokine (IFN-gamma) and nitric oxide (NO) levels and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen, Int. Immunopharmacol., 2010, vol. 10, no. 6, pp. 694–706.

    CAS  PubMed  Google Scholar 

  65. Meena, L.S. and Rajni, Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv, FEBS J., 2010, vol. 277, no. 11, pp. 2416–2427.

    CAS  PubMed  Google Scholar 

  66. Forrelad, M., Klepp, L., Gioffe, A., et al., Virulence factors of the Mycobacterium tuberculosis complex, Virulence, 2013, vol. 4, no. 1, pp. 3–66.

    Google Scholar 

  67. Neyrolles, O., Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis, Tuberculosis, 2011, vol. 91, no. 3, pp. 187–195.

    CAS  PubMed  Google Scholar 

  68. Jankute, M., Grover, Sh., Rana, A., et al., Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets, Future Microbiol., 2012, vol. 7, no. 1, pp. 120–147.

    Google Scholar 

  69. Mukherjee, R. and Chattej, D., Glycopeptidolipids: immuno-modulators in grelasy mycobacterial cell envelope, LUBMB Life, 2012, vol. 6, no. 3, pp. 215–225.

    Google Scholar 

  70. Lea-Smith, D., Pyke, J., Tull, D., et al., The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acid to arabinogalactan, J. Biol. Chem., 2007, vol. 282, no. 15, pp. 11000–11008.

    CAS  PubMed  Google Scholar 

  71. George, K., Yuan, Y., Shermans, D., et al., The biosynthesis of cyclopropanatemycolic acids in Mycobacterium tuberculosis, J. Biol. Chem., 1995, vol. 270, no. 45, pp. 27292–27298.

    CAS  PubMed  Google Scholar 

  72. Glickman, M., Cording, cord factors, and trehalosedimycolate, The Mycobacterium Cell Envelope, Daffe, M. and Reyrat, J.-M., Eds., Washington, DC: ASM Press, 2008, pp. 63–73.

    Google Scholar 

  73. Vander Beken, S., Al Dulayymi, J., Naessens, T., et al., Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern, Eur. J. Immunol., 2011, vol. 41, no. 2, pp. 450–460.

    Google Scholar 

  74. Hunter, R., Armitage, L., Jagannath, Ch., et al., TB research at UT-Housten-a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis, Tuberculosis, 2009, vol. 82, no. 1, pp. 18–25.

    Google Scholar 

  75. Kochemasova, Z.N., Dykhno, M.M., and Gendon, Yu.Z., Morphological features of microcultures of the tubercle bacilli and acid-tolerant saprophytes, in Voprosy patologii tuberkuleza i izmenchivosti ego vozbuditelya (The Pathology of Tuberculosis and Variability of Its Causative Agent), Strukov, A.I. and Lebedeva, M.N., Eds., Moscow: Medgiz, 1956, pp. 160–165.

    Google Scholar 

  76. Prozorov, A.A., The current state of the problem of tubercle bacillus virulence, Sovrem. Probl. Tuberk., 1956, vol. 39, no. 3, pp. 9–17.

    Google Scholar 

  77. Noll, H., Bloch, H., Asselinean, J., et al., The chemical structure of the cord factor of Mycobacterium tuberculosis, Biochem. Biophys. Acta, 1956, vol. 20, no. 3, pp. 299–318.

    CAS  PubMed  Google Scholar 

  78. Lima, V., Bonato, V., Lima, K., et al., Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and in tuberculosis, Infect. Immun., 2001, vol. 69, no. 9, pp. 5305–5312.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Glickman, M., Cording, cord factors, and trehalosedimycolate, The Mycobacterium Cell Envelope, Daffe, M. and Reyrat, J.-M., Eds., Washington, DC: ASM Press, 2008, pp. 63–73.

    Google Scholar 

  80. Dulayymi, J., Baird, M., Maza-Iglesias, M., et al., The first unique synthetic mycobacterial cord factors, Tetrahedron Lett., 2009, vol. 50, no. 19, pp. 3702–3705.

    Google Scholar 

  81. Khan, A., Stocter, B., and Timmer, M., Trehalose glycolipids-synthesis and biological activities, Carbohydrate Ros., 2012, vol. 356, no. 1, pp. 25–36.

    CAS  Google Scholar 

  82. Silva, C., Ekizlerian, S., and Fazioli, R., Role of cord factor in the modulation of infection caused by mycobacteria, Am. J. Pathol., 1958, vol. 118, no. 2, pp. 238–247.

    Google Scholar 

  83. Perez, E., Samper, S., Bordas, Y., et al., An essential role for phoP in Mycobacterium tuberculosis virulence, Mol. Microbiol., 2001, vol. 47, no. 1, pp. 179–187.

    Google Scholar 

  84. Retzinger, G., Meredith, S., Takayma, K., et al., The role of surface in the biological activities of trehalose6,6-dimycolate: surface properties and development of a model system, J. Biol. Chem., 1981, vol. 256, no. 20, pp. 8208–8216.

    CAS  PubMed  Google Scholar 

  85. Schabbing, R., Garcia, A., and Hanter, R., Characterization of the trehalose-6,6-dimycolate surface monolayer by scanning tunneling microscopy, Infect. Immun., 1994, vol. 62, no. 2, pp. 754–756.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gao, Q., Kripke, K., Arinc, M., et al., Comparative expression studies of a complex phenotype: cord formation in Mycobacterium tuberculosis, Tuberculosis, 2004, vol. 84, no. 3, pp. 188–196.

    PubMed  Google Scholar 

  87. Makinoshima, H. and Glickman, M., Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis, Nature, 2005, vol. 436, no. 7049, pp. 406–409.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Rao, V., Fujiwara, N., Porcelli, S., et al., Mycobacterium tuberculosis control host innate immune activation through cyclopropane modulation of a glycolipid effector molecule, JEM, 2005, vol. 201, no. 4, pp. 535–543.

    CAS  Google Scholar 

  89. Onwueme, K., Vos, C., Zurita, J., et al., The dimycocerosate ester polyketide virulence factors of Mycobacterium, Prog. Lipid Res., 2005, vol. 44, no. 2, pp. 259–302.

    CAS  PubMed  Google Scholar 

  90. Barkan, D., Rao, V., Sukenick, G., et al., Redundant function of cmaA2 and mmA2 in Mycobacterium tuberculosis cyclopropanation of oxygenated mycolates, J. Bacteriol., 2010, vol. 192, no. 14, pp. 3661–3668.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Gao, L.-Y., Laval, F., Lawson, E., et al., Requirement for kas in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival; implications for therapy, Mol. Microbiol., 2003, vol. 49, no. 6, pp. 1547–1563.

    CAS  PubMed  Google Scholar 

  92. Bhatt, A., Fujiwara, N., Bhatt, K., et al., Deletion of kas in Mycobacterium tuberculosis causes loss of acidfastness and subclinical latent tuberculosis in immunocompetent mice, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 12, pp. 5157–5162.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Glickman, M., Cahill, S., and Jacobs, W., The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropanesynthetase, J. Biol. Chem., 2001, vol. 276, no. 3, pp. 2228–2233.

    CAS  PubMed  Google Scholar 

  94. Dao, D., Sweenly, K., Hsu, T., et al., Mycolic acid modification by the mmaA4 gene of Mycobacterium tuberculosis modulates IL-12 production, PLoS Pathogens, 2008, vol. 4, no. 6, pp. 1–14.

    Google Scholar 

  95. Yuan, Y., Zhu, Y., Crane, D., et al., The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis, Mol. Microbiol., 1998, vol. 29, no. 6, pp. 1449–1458.

    CAS  PubMed  Google Scholar 

  96. Behr, M., Schroeder, B., Brinkman, J., et al., A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BC6 strains obtained offer 1927, J. Bacteriol., 2000, vol. 182, no. 12, pp. 3392–3394.

    Google Scholar 

  97. Armitage, L., Jagannath, C., Wanger, A., et al., Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages, Infect. Immun., 2000, vol. 68, no. 2, pp. 767–778.

    Google Scholar 

  98. Mompon, B., Fedenci, C., Toubiana, R., et al., Isolation and structural determination of a cord factor (trehalose-6,6-dimycolate) from Mycobacterium smegmatis, Chem. Phys. Lipids, 1978, vol. 21, nos. 1–2, pp. 97–101.

    CAS  PubMed  Google Scholar 

  99. Alibaud, L., Alahari, A., Trivelli, X., et al., Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG 1351) cis-cyclopropanation of α-mycolates, J. Biol. Chem., 2010, vol. 285, no. 28, pp. 21698–21707.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Retzinger, G., Dissemination of beads coated with trehalose-6,6-dimycolate a possible role for coagulation in the dissemination process, Exp. Mol. Pathol., 1987, vol. 46, no. 2, pp. 190–198.

    CAS  PubMed  Google Scholar 

  101. Glickman, M., Cox, J., and Jacobs, W., A novel mycolic acid cyclopropane synthetase is required for cording, persistence and virulence of Mycobacterium tuberculosis, Mol. Cell, 2000, vol. 5, no. 4, pp. 717–727.

    CAS  PubMed  Google Scholar 

  102. Prozorov, A.A., Zaichikova, M.V., and Danilenko, V.N., Mycobacterium tuberculosis mutants with multidrug resistance: history of origin, genetic and molecular mechanisms of resistance, and emerging challenges, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 125–141.

    CAS  Google Scholar 

  103. Gordon, S., Brosch, R., Billaut, A., et al., Identification of variable regions in the genomes of virulence bacilli using bacterial artificial chromosome arrays, Mol. Microbiol., 1999, vol. 32, no. 3, pp. 643–655.

    CAS  PubMed  Google Scholar 

  104. Abdallah, A., Gey van Pittins, N., Champion, P., et al., Type VII secretion-mycobacteria show the way, Nat. Rev. Microbiol., 2007, vol. 5, no. 11, pp. 883–891.

    CAS  PubMed  Google Scholar 

  105. Champion, P. and Cox, I.S., Protein secretion system in mycobacteria, Cell Microbiol., 2007, vol. 9, no. 6, pp. 1376–1384.

    CAS  PubMed  Google Scholar 

  106. Camacho, L., Ensergueix, D., Perez, E., et al., Identification of a virulence gene clusters of Mycobacterium tuberculosis by signature-target transposon mutagenesis, Mol. Microbiol., 1999, vol. 34, no. 2, pp. 257–267.

    CAS  PubMed  Google Scholar 

  107. Mucherjee, R. and Chattej, D., Glycopeptidolipids: immunomodulators in greasy mycobacterial cell envelope, UMB Life, 2012, vol. 6, no. 3, pp. 215–225.

    Google Scholar 

  108. Barkan, D., Hedhli, D., Yan, H.-G., et al., Mycobacterium tuberculosis backing all mycolic acid cyclopropanation in viable but high by attenuated and hyperinflammatory in mice, Infect. Immun., 2012, vol. 80, no. 6, pp. 1958–1968.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Tsenova, L., Ellison, E., Harbacheuski, R., et al., Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli, J. Infect. Dis., 2005, vol. 192, no. 1, pp. 98–106.

    PubMed  Google Scholar 

  110. Steyn, A.J., Collins, D.M., Hondalus, M.K., et al., Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 3147–3152.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Casonato, S., Sanchez, A.C., Haruki, H., et al., WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation, Infect. Immun., 2012, vol. 80, pp. 3132–3134.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Stapleton, M.R., Smith, L.J., Hunt, D.M., et al., Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2, Tuberculosis, 2012, vol. 92, no. 4, pp. 328–332.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Konar, M., Alam, Md.S., Arora, C., and Agrawal, P., WhiB2/Rv3260c, a cell division-associated protein of Mycobacterium tuberculosis H37Rv, has properties of a chaperone, FEBS J., 2012, vol. 279, pp. 2781–2792.

    CAS  PubMed  Google Scholar 

  114. Chawla, M. and Parikh, P., Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo, Mol. Microbiol., 2012, vol. 85, no. 6, pp. 1148–1165.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Alam, Md.S., Garg, S.K., and Agrawal, P., Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv, FEBS J., 2009, vol. 276, pp. 76–93.

    CAS  PubMed  Google Scholar 

  116. Burian, J., Ramón-García, S., Howes, C.G., and Thompson, C.J., WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis, Expert Rev. Anti-Infect. Ther., 2012, vol. 10, no. 9, pp. 1037–1047.

    CAS  PubMed  Google Scholar 

  117. McKenzie, J.L., Robson, J., Berney, M., et al., A VapBC toxin-antitoxin module is a posttranscriptional regulator of metabolic flux in mycobacteria, J. Bacteriol., 2012, vol. 194, no. 9, pp. 2189–2204.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Ramage, H.R., Connolly, L.E., and Cox J.S., Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution, PLoS Genet., 2009, vol. 5, no. 12, pp. 1–14.

    Google Scholar 

  119. Mehra, S., Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor σH, J. Bacteriol., 2009, vol. 191, no. 12, pp. 3965–3980.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Schnappinger, D., Ehrt, S., Voskuil, M.I., et al., Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment, J. Exp. Med., 2003, vol. 198, no. 5, pp. 693–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Fisher, M.A., Plikaytis, B.B., and Shinnick, T.M., Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes, J. Bacteriol., 2002, vol. 184, no. 14, pp. 4025–4032.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Stewart, G.R., Patel, J., Robertson, B.D., et al., Mycobacterial mutants with defective control of phagosomal acidification, PLoS Pathog., 2005, vol. 1, no. 3, pp. 269–278.

    CAS  PubMed  Google Scholar 

  123. Shur, K., Maslov, D., Bekker, O., et al., WhiB7 gene polymorphism and its regulon genes in Mycobacterium tuberculosis, as a new mechanism of drug resistance, FEBS J., 2013, vol. 280,suppl. 1, p. 366.

    Google Scholar 

  124. Be, N.A., Bishai, W.R., and Jain, S.K., Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis, BMC Microbiol., 2012, vol. 12, no. 7. PMID:22243650

    Google Scholar 

  125. Jayakumar, D., Jacobs, W.R., and Narayanan, S., Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection, Cell Microbiol., 2008, vol. 10, pp. 365–374.

    CAS  PubMed  Google Scholar 

  126. Cowley, S., Ko, M., Pick, N., et al., The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo, Mol. Microbiol., 2004, vol. 52, pp. 1691–1702.

    CAS  PubMed  Google Scholar 

  127. Walburger, A., Koul, A., Ferrari, G., et al., Protein kinase G from pathogenic mycobacteria promotes survival within macrophages, Science, 2004, vol. 304, no. 5678, pp. 1800–1804.

    CAS  PubMed  Google Scholar 

  128. McLaughlin, B., Chon, J.S., MacGurn, J.A., et al., A mycobacterium ESX-1-secreted virulence factor with unique requirements for export, PLoS Pathog., 2007, vol. 3, no. 8. e105

    PubMed Central  PubMed  Google Scholar 

  129. Li, A.H., Waddell, S.J., Hinds, J., et al., Contrasting transcriptional responses of a virulent and an attenuated strain of Mycobacterium tuberculosis infecting macrophages, PLoS One, 2010, vol. 5, no. 6. e11066

    PubMed Central  PubMed  Google Scholar 

  130. Fortune, S.M., Jaeger, A., Sarracino, D.A., et al., Mutually dependent secretion of proteins required for mycobacterial virulence, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 10676–10681.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Bottai, D., Majlessi, L., Simeone, R., et al., ESAT-6 secretion-independent impact of ESX-1 genes espF and espG1 on virulence of Mycobacterium tuberculosis, J. Infect. Dis., 2011, vol. 203, pp. 1155–1164.

    CAS  PubMed  Google Scholar 

  132. Brodin, P., Majlessi, L., Marsollier, L., et al., Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence, Infect. Immun., 2006, vol. 74, no. 1, pp. 88–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Stanley, S.A., Raghavan, S., Hwang, W.W., and Cox, J.S., Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 22, pp. 13001–13006.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Bottai, D. and Brosch, R., Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families, Mol. Microbiol., 2009, vol. 73, pp. 325–328.

    CAS  PubMed  Google Scholar 

  135. Wards, B.J., de Lisle, G.W., and Collins, D.M., An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine, Tuber. Lung Dis., 2000, vol. 80, pp. 185–189.

    CAS  PubMed  Google Scholar 

  136. Tan, T., Lee, W.L., Alexander, D.C., et al., The ESAT6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation, Cell Microbiol., 2006, vol. 8, no. 9, pp. 1417–1429.

    CAS  PubMed  Google Scholar 

  137. Coros, A., Callahan, B., Battaglioli, E., and Derbyshire, K.M., The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis, Mol. Microbiol., 2008, vol. 69, no. 4, pp. 794–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Guinn, K.M., Hickey, M.J., Mathur, S.K., et al., Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis, Mol. Microbiol., 2004, vol. 51, pp. 359–370.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Sander, P., Rezwan, M., Walker, B., et al., Lipoprotein processing is required for virulence of Mycobacterium tuberculosis, Mol. Microbiol., 2004, vol. 52, pp. 1543–1552.

    CAS  PubMed  Google Scholar 

  140. Rampini, S.K., Selchow, P., Keller, C., et al., LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest, Microbiology, 2008, vol. 154, pp. 2991–3001.

    CAS  PubMed  Google Scholar 

  141. Brzostek, A., Dziadek, B., Rumijowska-Galewicz, A., et al., Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis, FEMS Microbiol. Letts., 2007, vol. 275, pp. 106–112.

    Google Scholar 

  142. Copenhaver, R.H., Sepulveda, E., Armitage, L.Y., et al., A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential, Infect. Immun., 2004, vol. 72, no. 12, pp. 7084–7095.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Wong, D., Bach, H., Sun, J., et al., Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19371–19376.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Iantomasi, R., Sali, M., Cascioferro, A., et al., PE-PGRS30 is required for the full virulence of Mycobacterium tuberculosis, Cell Microbiol., 2012, vol. 14, pp. 356–367.

    CAS  PubMed  Google Scholar 

  145. Mohamedmohaideen, N.N., Palaninathan, S.K., Morin, P.M., et al., Structure and function of the virulence-associated high-temperature requirement a of Mycobacterium tuberculosis, Biochemistry, 2008, vol. 47, pp. 6092–6102.

    CAS  PubMed  Google Scholar 

  146. Blumenthal, A., Trujillo, C., Ehrt, S., and Schnappinger, D., Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo, PLoS One, 2010, vol. 5, no. 12. e15667

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Pearce, M.J., Arora, P., Festa, R.A., et al., Identification of substrates of the Mycobacterium tuberculosis proteasome, EMBO J., 2006, vol. 25, no. 22, pp. 5423–5432.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Lamichhane, G., Raghunand, T.R., Morrison, N.E., et al., Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing strain that persists in host tissues, J. Infect. Dis., 2006, vol. 194, pp. 1233–1240.

    CAS  PubMed  Google Scholar 

  149. Li, A.H., Waddell, S.J., Hinds, J., et al., Contrasting transcriptional responses of a virulent and an attenuated strain of Mycobacterium tuberculosis infecting macrophages, PLoS One, 2010, vol. 5, no. 6. e11066. doi 10.1371/joumal.pone.0011066

    PubMed Central  PubMed  Google Scholar 

  150. Singh, R., Singh, A., and Tyagi, A.K., Deciphering the genes involved in pathogenesis of Mycobacterium tuberculosis, Tuberculosis, 2005, vol. 85, pp. 325–335.

    CAS  PubMed  Google Scholar 

  151. Sassetti, Ch. and Rubin, E., Genetic requirements for mycobacterial survival during infection, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 22, pp. 12989–12994.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Geiman, D., Raghunand, T., Agarwell, N., et al., Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis Whi B-like genes, Antimicrob. Agentschemother., 2006, vol. 50, no. 8, pp. 2836–2841.

    CAS  Google Scholar 

  153. Rohde, K., Abramovitch, R., and Russel, D., Mycobacterium tuberculosis invasion of macrophages linking bacterial gene expression to environmental cues, Cell Host Microbe, 2007, vol. 2, no. 15, pp. 352–364.

    CAS  PubMed  Google Scholar 

  154. Leplae, R., Geeraerts, D., Hallez, R., et al., Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families, Nucleic Acids Res., 2011, vol. 39, no. 13, pp. 5513–5525.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Unterholzner, S.J. and Poppenberger Rozhon, W., Toxin-antitoxin systems: biology, identification, and application, Mob. Genet. Elem., 2013, vol. 3, no. 5. e26219

    Google Scholar 

  156. Park, S.J., Son, W.S., and Lee, B.J., Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents, Biochim. Biophys. Acta, 2013, vol. 1834, no. 6, pp. 1155–1167.

    CAS  PubMed  Google Scholar 

  157. Mehra, S. and Kaushal, D., Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor sigmaH, Bacteriology, 2009, vol. 191, no. 12, pp. 3965–3980.

    CAS  Google Scholar 

  158. Beste, D.J., Espasa, M., Bonde, B., et al., The genetic requirements for fast and slow growth in mycobacteria, PLoS One, 2009, vol. 4, no. 4. e5349

    PubMed Central  PubMed  Google Scholar 

  159. Arcus, V.L., The PIN-domain toxin-antitoxin array in mycobacteria, Trends Microbiol., 2005, vol. 13, pp. 360–365.

    CAS  PubMed  Google Scholar 

  160. Alekseeva, M.G., Danilenko, V.N., Zaichikova, M.V., and Zakharevich, N.V., RF Patent Application no. 2013155216, 2013.

  161. Danilenko, V.N., Osolodkin, D.I., and Lakatosh, S.A., Bacterial eukaryotic type serine-threonine protein kinases: tools for targeted anti-infective drug design, Curr. Top. Med. Chem., 2011, vol. 11, no. 10, pp. 1352–1369.

    CAS  PubMed  Google Scholar 

  162. Beresford, N.G., Mulhearn, D., Szczepankiewicz, B., et al., Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages, J. Antimicrob. Chemother., 2009, vol. 63, no. 5, pp. 928–936.

    CAS  PubMed  Google Scholar 

  163. Teng, T.S., Wang, H.H., and Xie, J.P., Advances in the study of Mycobacterium tuberculosis protein phosphatase and its inhibitors, Yao Xue Xue Bao, 2011, vol. 46, no. 12, pp. 1420–1428.

    CAS  PubMed  Google Scholar 

  164. Ventura, M., Canchaya, C., and Tauch, A., Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum, Microbiol. Mol. Biol. Rev., 2007, vol. 71, no. 3, pp. 495–548.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Prozorov.

Additional information

Original Russian Text © A.A. Prozorov, I.A. Fedorova, O.B. Bekker, V.N. Danilenko, 2014, published in Genetika, 2014, Vol. 50, No. 8, pp. 885–908.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prozorov, A.A., Fedorova, I.A., Bekker, O.B. et al. The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions. Russ J Genet 50, 775–797 (2014). https://doi.org/10.1134/S1022795414080055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414080055

Keywords