Abstract
The problem of Mycobacterium tuberculosis virulence, together with drug resistance, is becoming key for the design of drugs with a new mechanism of action and the production of modern concepts and tuberculosis treatment schemes. The review describes gene complexes and their products, including mycolic acids and global regulatory systems at the level of transcriptional, translational, and post-translational modification, etc. The criteria for selection of virulence/pathogenicity factors that might be used for comparative genomic analysis of strains differing in the degree of virulence were recommended. The experimental approaches and test systems for an adequate estimation of the virulence degree of different strains of M. tuberculosis were analyzed.
Similar content being viewed by others
References
Global Tuberculosis Report, Genewa: World Health Organization, 2012.
Balabanova, Y., Nikolayevskyy, V., Ignatyeva, O., et al., Survival of civilian and prisoner drug-sensitive, multi- and extensive drug-resistant tuberculosis cohorts prospectively followed in Russia, PLoS One, 2011, vol. 6. e20531
Udwadia, Z.F., MDR, XDR, TDR tuberculosis: ominous progression, Thorax, 2012, vol. 67, pp. 286–288.
Homolka, S., Projahn, M., Feuerriegel, S., et al., High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms, PLoS One, 2012, vol. 7, no. 7. e39855
Brudey, K., Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology, BMC Microbiol., 2006, vol. 6, no. 6, p. 23.
Mokrousov, I., Russian “Successful” clone B0/W148 of Mycobacterium tuberculosis Beijing genotype: a multiplex PCR assay for rapid detection and global screening, J. Clin. Microbiol., 2012, vol. 50, no. 11, pp. 3757–3759.
Prozorov, A.A. and Danilenko, V.N., Mycobacteria of the tuberculosis complex: genomics, molecular epidemiology, and evolution trends, Usp. Sovrem. Biol., 2011, vol. 13, no. 3, pp. 227–243.
Comas, I., Coscola, M., Luo, T., et al., Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans, Nat. Genet., 2013, vol. 45, no. 10, pp. 1176–1182.
Gagneux, S. and Small, P., Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development, Lancet Infect. Dis., 2007, vol. 7, no. 5, pp. 328–337.
Manabe, Y. and Bishai, W., Latent Mycobacterium tuberculosis-persisting, patience, and winning by waiting, Nat. Med., 2000, vol. 6, no. 12, pp. 1327–1329.
Smith, I., Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence, Clin. Microbiol. Rev., 2003, vol. 16, no. 3, pp. 463–496.
Mishra, A.K., Driessen, N.N., Appelmelk, B.J., et al., Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction, FEMS Microbiol. Rev., 2011, vol. 35, no. 6, pp. 1126–1157.
Leber, J.H., Crimmins, G.T., Raghavan, S., et al., Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen, PLoS Pathogens., 2008, vol. 4, no. 1, pp. 84–95.
Court, N., Vasseur, V., Vacher, R., et al., Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection, J. Immunol., 2010, vol. 184, no. 12, pp. 7057–7070.
Philips, J.A. and Ernst, J.D., Tuberculosis pathogenesis and immunity, Annu. Rev. Pathol., 2011, vol. 7, pp. 353–384.
Bafica, A., Scanga, C.A., Feng, C.G., et al., TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis, J. Exp. Med., 2005, vol. 202, no. 12, pp. 1715–1724.
Kleinnijenhuis, J., Oosting, M., Joosten, L.A.B., et al., Innate immune recognition of Mycobacterium tuberculosis, Clin. Dev. Immunol., 2011, vol. 2011. doi 10.1155/2011/405310
Ahmad, S., Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection, Clin. Dev. Immunol., 2011, vol. 2011. doi 10.1155/2011/814943
Fenhalls, G., Stevens, L., Bezuidenhout, J., et al., Distribution of IFN-γ, IL-4 and TNF-αprotein and CD8 T cells producing IL-12p40 mRNA in human lung tuberculous granulomas, Immunology, 2002, vol. 105, no. 3, pp. 325–335.
Herrera, M.T., Torres, M., Nevels, D., et al., Compartmentalized bronchoalveolar IFN-γ and IL-12 response in human pulmonary tuberculosis, Tuberculosis, 2009, vol. 89, no. 1, pp. 38–47.
Kellar, K.L., Gehrke, J., Weis, S.E., et al., Multiple cytokines are released when blood from patients with tuberculosis is stimulated with Mycobacterium tuberculosis antigens, PLoS One, 2011, vol. 6, no. 11, pp. 1–17.
Guler, R., Parihar, S.P., Spohn, G., et al., Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice, Vaccine, 2011, vol. 29, no. 6, pp. 1339–1346.
Roach, D.R., Bean, A.G.D., Demangel, C., et al., TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection, J. Immunol., 2002, vol. 168, no. 9, pp. 4620–462.
Cooper, A.M., Adams, L.B., Dalton, D.K., et al., IFN-γ and NO in mycobacterial disease: new jobs for old hands, Trends Microbiol., 2002, vol. 10, no. 5, pp. 221–226.
Macmicking, J.D., North, R.J., Lacourse, R., et al., Identification of nitric oxide synthase as a protective locus against tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 10, pp. 5243–5248.
Cooper, A.M., Dalton, D.K., Stewart, T.A., et al., Disseminated tuberculosis in interferon gene-disrupted mice, J. Exp. Med., 1993, vol. 178, no. 6, pp. 2243–2247.
Saunders, B.M., Frank, A.A., Orme, I.M., et al., Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection, Infect. Immun., 2000, vol. 68, no. 6, pp. 3322–3326.
Pompei, L., Jang, S., Zamlynny, B., et al., Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs, J. Immunol., 2007, vol. 178, no. 8, pp. 5192–5199.
Filipe-Santos, O., Bustamante, J., Chapgier, A., et al., Inborn errors of IL-12/23- and IFN-γ mediated immunity: molecular, cellular, and clinical features, Semin. Immunol., 2006, vol. 18, no. 6, pp. 347–361.
Mayanja-Kizza, H., Wajja, A., Wu, M., et al., Activation of β-chemokines and CCR5 in persons infected with human immunodeficiency virus type 1 and tuberculosis, J. Infect. Dis., 2001, vol. 183, no. 12, pp. 1801–1804.
Algood, H.M.S., Chan, J., and Flynn, J.L., Chemokines and tuberculosis, Cytokine Growth Factor Rev., 2003, vol. 14, no. 6, pp. 467–477.
Serbina, N.V., Jia, T., Hohl, T.M., et al., Monocytemediated defence against microbial pathogens, Annu. Rev. Immunol., 2008, vol. 26, pp. 421–452.
Takeda, K. and Akira, S., Toll-like receptors in innate immunity, Int. Immunol., 2005, vol. 17, no. 1, pp. 1–14.
Fenton, M. and Vermeulen, M., Immunopathology of tuberculosis: role of macrophages and monocytes, Infect. Immun., 1996, vol. 64, no. 3, pp. 683–690.
Glickman, M. and Jacobs, W., Microbial pathogenesis of Mycobacterium tuberculosis: down of a discipline, Cell, 2001, vol. 104, no. 2, pp. 477–485.
Esmail, H., Barry, C.E., and Wilkinson, R.J., Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies, Drug Discov. Today, 2012, vol. 17, nos. 9–10, pp. 514–521.
Gideon, H.P. and Flynn, J.L., Latent tuberculosis: what the host “sees”?, Immunol. Results, 2011, vol. 50, pp. 202–212.
Suhail, A., New approaches in the diagnosis and treatment of latent tuberculosis infection, Respir. Res., 2010, vol. 11, no. 1, p. 169.
Shleeva, M.O., Salina, E.G., and Kaprel’yants, A.S., Dormant forms of mycobacteria, Microbiology, 2010, vol. 79, no. 1, pp. 1–12.
Keren, I., Minami, S., Rubin, E., and Lewis, K., Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters, MBio, 2011, vol. 2, no. 3. doi 10.1128/mBio.00100-11
Lyte, M., The microbial organ in the gut as a driver of homeostasis and disease, Med. Hypotheses, 2010, vol. 74, pp. 634–638.
Lyte, M., Microbial Endocrinology: A Personal Journey, 2010. doi 10.1007/978-1-4419-5576-01
Lyte, M., Microbial endocrinology and infectious disease in the 21st century, Trends Microbiol., 2004, vol. 12, no. 1, pp. 14–20.
Chen, X., Souza, R.D., and Hong, S., The role of gut microbiota in the gut-brain axis: current challenges and perspectives, Protein Cell, 2013, vol. 4, no. 6, pp. 403–414.
Norris, V., Molina, F., and Gewirtz, A.T., Hypothesis: bacteria control host appetites, J. Bacteriol., 2013, vol. 195, no. 3, pp. 411–416.
Foster, J.A. and McVey Neufeld, K., Gut-brain axis: how the microbiome influences anxiety and depression, Trends Neirosci., 2013, vol. 36, no. 5, pp. 305–312.
Douglas-Escobar, M., Elliott, E., and Neu, J., Effect of intestinal microbial ecology on the developing brain, Jama Pediatr., 2013, vol. 167, no. 4, pp. 374–379.
Dinan, T.G. and Quigley, E.M., Probiotics in the treatment of depression: science or science fiction? Aust. N. Z. J. Psychiatry, 2011, vol. 45, pp. 1023–1025.
Moloney, R.D., Desbonnet, L., Clarke, G., et al., The microbiome: stress, health and disease, Mamm. Genome, 2014, vol. 25, nos. 1–2, pp. 49–74.
Lawn, S.D., Wood, R., and Wilkinson, R.J., Changing concepts of “latent tuberculosis infection” in patients living with HIV infection, Clin. Dev. Immunol., 2011, vol. 2011. http://dx.doi.org/10.1155/2011/980594
Salina, T.I. and Morozova, T.I., Molecular genetic analysis of the isoniazid-resistant strains of M. tuberculosis circulating over the Saratov region, Mol. Gen. Microbiol. Virol., 2013, vol. 3, pp. 8–26.
Safi, H., Lingaraju, S., and Amin, A., Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes, Nat. Genet., 2013, vol. 45, no. 10, pp. 1190–1197.
Hickman, S.P., Chan, J., Salgame, P., et al., Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization, J. Immunol., 2002, vol. 168, no. 9, pp. 4636–4642.
Bermudez, L.E. and Goodman, J., Mycobacterium tuberculosis invades and replicates within type II alveolar cells, Infect. Immun., 1996, vol. 64, no. 4, pp. 1400–1406.
Franzblau, S.G., DeGroote, M.A., Cho, S.H., et al., Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis, Tuberculosis, 2012, vol. 92, no. 6, pp. 453–488.
Melo, M.D. and Stokes, R.W., Interaction of Mycobacterium tuberculosis with MH-S, an immortalized murine alveolar macrophage cell line: a comparison with primary murine macrophages, Tubercle Lung Dis., 2000, vol. 80, no. 1, pp. 35–46.
Kapina, M.A., Rubakova, E.I., Majorov, K.B., et al., Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis, PLoS One, 2013, vol. 8, no. 8. e72773
Apt, A.S., Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!,’ Immunology, vol. 134, no. 2, pp. 109–115.
Kramnik, I., Dietrich, W.F., Demant, P., et al., Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 15, pp. 8560–8568.
Rindi, L., Fattorini, L., Bonanni, D., et al., Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice, Microbiology, 2002, vol. 148, no. 12, pp. 3873–3880.
Shi, L., Jung, Y.J., Tyagi, S., et al., Expression of Th1mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 1, pp. 241–246.
Poltorak, A., He, X., Smirnova, I., et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Science, 1998, vol. 282, no. 5396, pp. 2085–2088.
Converse, P.J., Dannenberg, A.M., Estep, J.E., et al., Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli, Infect. Immun., 1996, vol. 64, no. 11, pp. 4776–4787.
Ghadimi, D., de Vrese, M., Heller, K.J., et al., Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagy-promoting cytokine (IFN-gamma) and nitric oxide (NO) levels and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen, Int. Immunopharmacol., 2010, vol. 10, no. 6, pp. 694–706.
Meena, L.S. and Rajni, Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv, FEBS J., 2010, vol. 277, no. 11, pp. 2416–2427.
Forrelad, M., Klepp, L., Gioffe, A., et al., Virulence factors of the Mycobacterium tuberculosis complex, Virulence, 2013, vol. 4, no. 1, pp. 3–66.
Neyrolles, O., Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis, Tuberculosis, 2011, vol. 91, no. 3, pp. 187–195.
Jankute, M., Grover, Sh., Rana, A., et al., Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets, Future Microbiol., 2012, vol. 7, no. 1, pp. 120–147.
Mukherjee, R. and Chattej, D., Glycopeptidolipids: immuno-modulators in grelasy mycobacterial cell envelope, LUBMB Life, 2012, vol. 6, no. 3, pp. 215–225.
Lea-Smith, D., Pyke, J., Tull, D., et al., The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acid to arabinogalactan, J. Biol. Chem., 2007, vol. 282, no. 15, pp. 11000–11008.
George, K., Yuan, Y., Shermans, D., et al., The biosynthesis of cyclopropanatemycolic acids in Mycobacterium tuberculosis, J. Biol. Chem., 1995, vol. 270, no. 45, pp. 27292–27298.
Glickman, M., Cording, cord factors, and trehalosedimycolate, The Mycobacterium Cell Envelope, Daffe, M. and Reyrat, J.-M., Eds., Washington, DC: ASM Press, 2008, pp. 63–73.
Vander Beken, S., Al Dulayymi, J., Naessens, T., et al., Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern, Eur. J. Immunol., 2011, vol. 41, no. 2, pp. 450–460.
Hunter, R., Armitage, L., Jagannath, Ch., et al., TB research at UT-Housten-a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis, Tuberculosis, 2009, vol. 82, no. 1, pp. 18–25.
Kochemasova, Z.N., Dykhno, M.M., and Gendon, Yu.Z., Morphological features of microcultures of the tubercle bacilli and acid-tolerant saprophytes, in Voprosy patologii tuberkuleza i izmenchivosti ego vozbuditelya (The Pathology of Tuberculosis and Variability of Its Causative Agent), Strukov, A.I. and Lebedeva, M.N., Eds., Moscow: Medgiz, 1956, pp. 160–165.
Prozorov, A.A., The current state of the problem of tubercle bacillus virulence, Sovrem. Probl. Tuberk., 1956, vol. 39, no. 3, pp. 9–17.
Noll, H., Bloch, H., Asselinean, J., et al., The chemical structure of the cord factor of Mycobacterium tuberculosis, Biochem. Biophys. Acta, 1956, vol. 20, no. 3, pp. 299–318.
Lima, V., Bonato, V., Lima, K., et al., Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and in tuberculosis, Infect. Immun., 2001, vol. 69, no. 9, pp. 5305–5312.
Glickman, M., Cording, cord factors, and trehalosedimycolate, The Mycobacterium Cell Envelope, Daffe, M. and Reyrat, J.-M., Eds., Washington, DC: ASM Press, 2008, pp. 63–73.
Dulayymi, J., Baird, M., Maza-Iglesias, M., et al., The first unique synthetic mycobacterial cord factors, Tetrahedron Lett., 2009, vol. 50, no. 19, pp. 3702–3705.
Khan, A., Stocter, B., and Timmer, M., Trehalose glycolipids-synthesis and biological activities, Carbohydrate Ros., 2012, vol. 356, no. 1, pp. 25–36.
Silva, C., Ekizlerian, S., and Fazioli, R., Role of cord factor in the modulation of infection caused by mycobacteria, Am. J. Pathol., 1958, vol. 118, no. 2, pp. 238–247.
Perez, E., Samper, S., Bordas, Y., et al., An essential role for phoP in Mycobacterium tuberculosis virulence, Mol. Microbiol., 2001, vol. 47, no. 1, pp. 179–187.
Retzinger, G., Meredith, S., Takayma, K., et al., The role of surface in the biological activities of trehalose6,6-dimycolate: surface properties and development of a model system, J. Biol. Chem., 1981, vol. 256, no. 20, pp. 8208–8216.
Schabbing, R., Garcia, A., and Hanter, R., Characterization of the trehalose-6,6-dimycolate surface monolayer by scanning tunneling microscopy, Infect. Immun., 1994, vol. 62, no. 2, pp. 754–756.
Gao, Q., Kripke, K., Arinc, M., et al., Comparative expression studies of a complex phenotype: cord formation in Mycobacterium tuberculosis, Tuberculosis, 2004, vol. 84, no. 3, pp. 188–196.
Makinoshima, H. and Glickman, M., Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis, Nature, 2005, vol. 436, no. 7049, pp. 406–409.
Rao, V., Fujiwara, N., Porcelli, S., et al., Mycobacterium tuberculosis control host innate immune activation through cyclopropane modulation of a glycolipid effector molecule, JEM, 2005, vol. 201, no. 4, pp. 535–543.
Onwueme, K., Vos, C., Zurita, J., et al., The dimycocerosate ester polyketide virulence factors of Mycobacterium, Prog. Lipid Res., 2005, vol. 44, no. 2, pp. 259–302.
Barkan, D., Rao, V., Sukenick, G., et al., Redundant function of cmaA2 and mmA2 in Mycobacterium tuberculosis cyclopropanation of oxygenated mycolates, J. Bacteriol., 2010, vol. 192, no. 14, pp. 3661–3668.
Gao, L.-Y., Laval, F., Lawson, E., et al., Requirement for kas in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival; implications for therapy, Mol. Microbiol., 2003, vol. 49, no. 6, pp. 1547–1563.
Bhatt, A., Fujiwara, N., Bhatt, K., et al., Deletion of kas in Mycobacterium tuberculosis causes loss of acidfastness and subclinical latent tuberculosis in immunocompetent mice, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 12, pp. 5157–5162.
Glickman, M., Cahill, S., and Jacobs, W., The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropanesynthetase, J. Biol. Chem., 2001, vol. 276, no. 3, pp. 2228–2233.
Dao, D., Sweenly, K., Hsu, T., et al., Mycolic acid modification by the mmaA4 gene of Mycobacterium tuberculosis modulates IL-12 production, PLoS Pathogens, 2008, vol. 4, no. 6, pp. 1–14.
Yuan, Y., Zhu, Y., Crane, D., et al., The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis, Mol. Microbiol., 1998, vol. 29, no. 6, pp. 1449–1458.
Behr, M., Schroeder, B., Brinkman, J., et al., A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BC6 strains obtained offer 1927, J. Bacteriol., 2000, vol. 182, no. 12, pp. 3392–3394.
Armitage, L., Jagannath, C., Wanger, A., et al., Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages, Infect. Immun., 2000, vol. 68, no. 2, pp. 767–778.
Mompon, B., Fedenci, C., Toubiana, R., et al., Isolation and structural determination of a cord factor (trehalose-6,6-dimycolate) from Mycobacterium smegmatis, Chem. Phys. Lipids, 1978, vol. 21, nos. 1–2, pp. 97–101.
Alibaud, L., Alahari, A., Trivelli, X., et al., Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG 1351) cis-cyclopropanation of α-mycolates, J. Biol. Chem., 2010, vol. 285, no. 28, pp. 21698–21707.
Retzinger, G., Dissemination of beads coated with trehalose-6,6-dimycolate a possible role for coagulation in the dissemination process, Exp. Mol. Pathol., 1987, vol. 46, no. 2, pp. 190–198.
Glickman, M., Cox, J., and Jacobs, W., A novel mycolic acid cyclopropane synthetase is required for cording, persistence and virulence of Mycobacterium tuberculosis, Mol. Cell, 2000, vol. 5, no. 4, pp. 717–727.
Prozorov, A.A., Zaichikova, M.V., and Danilenko, V.N., Mycobacterium tuberculosis mutants with multidrug resistance: history of origin, genetic and molecular mechanisms of resistance, and emerging challenges, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 125–141.
Gordon, S., Brosch, R., Billaut, A., et al., Identification of variable regions in the genomes of virulence bacilli using bacterial artificial chromosome arrays, Mol. Microbiol., 1999, vol. 32, no. 3, pp. 643–655.
Abdallah, A., Gey van Pittins, N., Champion, P., et al., Type VII secretion-mycobacteria show the way, Nat. Rev. Microbiol., 2007, vol. 5, no. 11, pp. 883–891.
Champion, P. and Cox, I.S., Protein secretion system in mycobacteria, Cell Microbiol., 2007, vol. 9, no. 6, pp. 1376–1384.
Camacho, L., Ensergueix, D., Perez, E., et al., Identification of a virulence gene clusters of Mycobacterium tuberculosis by signature-target transposon mutagenesis, Mol. Microbiol., 1999, vol. 34, no. 2, pp. 257–267.
Mucherjee, R. and Chattej, D., Glycopeptidolipids: immunomodulators in greasy mycobacterial cell envelope, UMB Life, 2012, vol. 6, no. 3, pp. 215–225.
Barkan, D., Hedhli, D., Yan, H.-G., et al., Mycobacterium tuberculosis backing all mycolic acid cyclopropanation in viable but high by attenuated and hyperinflammatory in mice, Infect. Immun., 2012, vol. 80, no. 6, pp. 1958–1968.
Tsenova, L., Ellison, E., Harbacheuski, R., et al., Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli, J. Infect. Dis., 2005, vol. 192, no. 1, pp. 98–106.
Steyn, A.J., Collins, D.M., Hondalus, M.K., et al., Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 3147–3152.
Casonato, S., Sanchez, A.C., Haruki, H., et al., WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation, Infect. Immun., 2012, vol. 80, pp. 3132–3134.
Stapleton, M.R., Smith, L.J., Hunt, D.M., et al., Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2, Tuberculosis, 2012, vol. 92, no. 4, pp. 328–332.
Konar, M., Alam, Md.S., Arora, C., and Agrawal, P., WhiB2/Rv3260c, a cell division-associated protein of Mycobacterium tuberculosis H37Rv, has properties of a chaperone, FEBS J., 2012, vol. 279, pp. 2781–2792.
Chawla, M. and Parikh, P., Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo, Mol. Microbiol., 2012, vol. 85, no. 6, pp. 1148–1165.
Alam, Md.S., Garg, S.K., and Agrawal, P., Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv, FEBS J., 2009, vol. 276, pp. 76–93.
Burian, J., Ramón-García, S., Howes, C.G., and Thompson, C.J., WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis, Expert Rev. Anti-Infect. Ther., 2012, vol. 10, no. 9, pp. 1037–1047.
McKenzie, J.L., Robson, J., Berney, M., et al., A VapBC toxin-antitoxin module is a posttranscriptional regulator of metabolic flux in mycobacteria, J. Bacteriol., 2012, vol. 194, no. 9, pp. 2189–2204.
Ramage, H.R., Connolly, L.E., and Cox J.S., Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution, PLoS Genet., 2009, vol. 5, no. 12, pp. 1–14.
Mehra, S., Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor σH, J. Bacteriol., 2009, vol. 191, no. 12, pp. 3965–3980.
Schnappinger, D., Ehrt, S., Voskuil, M.I., et al., Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment, J. Exp. Med., 2003, vol. 198, no. 5, pp. 693–704.
Fisher, M.A., Plikaytis, B.B., and Shinnick, T.M., Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes, J. Bacteriol., 2002, vol. 184, no. 14, pp. 4025–4032.
Stewart, G.R., Patel, J., Robertson, B.D., et al., Mycobacterial mutants with defective control of phagosomal acidification, PLoS Pathog., 2005, vol. 1, no. 3, pp. 269–278.
Shur, K., Maslov, D., Bekker, O., et al., WhiB7 gene polymorphism and its regulon genes in Mycobacterium tuberculosis, as a new mechanism of drug resistance, FEBS J., 2013, vol. 280,suppl. 1, p. 366.
Be, N.A., Bishai, W.R., and Jain, S.K., Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis, BMC Microbiol., 2012, vol. 12, no. 7. PMID:22243650
Jayakumar, D., Jacobs, W.R., and Narayanan, S., Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection, Cell Microbiol., 2008, vol. 10, pp. 365–374.
Cowley, S., Ko, M., Pick, N., et al., The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo, Mol. Microbiol., 2004, vol. 52, pp. 1691–1702.
Walburger, A., Koul, A., Ferrari, G., et al., Protein kinase G from pathogenic mycobacteria promotes survival within macrophages, Science, 2004, vol. 304, no. 5678, pp. 1800–1804.
McLaughlin, B., Chon, J.S., MacGurn, J.A., et al., A mycobacterium ESX-1-secreted virulence factor with unique requirements for export, PLoS Pathog., 2007, vol. 3, no. 8. e105
Li, A.H., Waddell, S.J., Hinds, J., et al., Contrasting transcriptional responses of a virulent and an attenuated strain of Mycobacterium tuberculosis infecting macrophages, PLoS One, 2010, vol. 5, no. 6. e11066
Fortune, S.M., Jaeger, A., Sarracino, D.A., et al., Mutually dependent secretion of proteins required for mycobacterial virulence, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 10676–10681.
Bottai, D., Majlessi, L., Simeone, R., et al., ESAT-6 secretion-independent impact of ESX-1 genes espF and espG1 on virulence of Mycobacterium tuberculosis, J. Infect. Dis., 2011, vol. 203, pp. 1155–1164.
Brodin, P., Majlessi, L., Marsollier, L., et al., Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence, Infect. Immun., 2006, vol. 74, no. 1, pp. 88–98.
Stanley, S.A., Raghavan, S., Hwang, W.W., and Cox, J.S., Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 22, pp. 13001–13006.
Bottai, D. and Brosch, R., Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families, Mol. Microbiol., 2009, vol. 73, pp. 325–328.
Wards, B.J., de Lisle, G.W., and Collins, D.M., An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine, Tuber. Lung Dis., 2000, vol. 80, pp. 185–189.
Tan, T., Lee, W.L., Alexander, D.C., et al., The ESAT6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation, Cell Microbiol., 2006, vol. 8, no. 9, pp. 1417–1429.
Coros, A., Callahan, B., Battaglioli, E., and Derbyshire, K.M., The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis, Mol. Microbiol., 2008, vol. 69, no. 4, pp. 794–808.
Guinn, K.M., Hickey, M.J., Mathur, S.K., et al., Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis, Mol. Microbiol., 2004, vol. 51, pp. 359–370.
Sander, P., Rezwan, M., Walker, B., et al., Lipoprotein processing is required for virulence of Mycobacterium tuberculosis, Mol. Microbiol., 2004, vol. 52, pp. 1543–1552.
Rampini, S.K., Selchow, P., Keller, C., et al., LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest, Microbiology, 2008, vol. 154, pp. 2991–3001.
Brzostek, A., Dziadek, B., Rumijowska-Galewicz, A., et al., Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis, FEMS Microbiol. Letts., 2007, vol. 275, pp. 106–112.
Copenhaver, R.H., Sepulveda, E., Armitage, L.Y., et al., A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential, Infect. Immun., 2004, vol. 72, no. 12, pp. 7084–7095.
Wong, D., Bach, H., Sun, J., et al., Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19371–19376.
Iantomasi, R., Sali, M., Cascioferro, A., et al., PE-PGRS30 is required for the full virulence of Mycobacterium tuberculosis, Cell Microbiol., 2012, vol. 14, pp. 356–367.
Mohamedmohaideen, N.N., Palaninathan, S.K., Morin, P.M., et al., Structure and function of the virulence-associated high-temperature requirement a of Mycobacterium tuberculosis, Biochemistry, 2008, vol. 47, pp. 6092–6102.
Blumenthal, A., Trujillo, C., Ehrt, S., and Schnappinger, D., Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo, PLoS One, 2010, vol. 5, no. 12. e15667
Pearce, M.J., Arora, P., Festa, R.A., et al., Identification of substrates of the Mycobacterium tuberculosis proteasome, EMBO J., 2006, vol. 25, no. 22, pp. 5423–5432.
Lamichhane, G., Raghunand, T.R., Morrison, N.E., et al., Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing strain that persists in host tissues, J. Infect. Dis., 2006, vol. 194, pp. 1233–1240.
Li, A.H., Waddell, S.J., Hinds, J., et al., Contrasting transcriptional responses of a virulent and an attenuated strain of Mycobacterium tuberculosis infecting macrophages, PLoS One, 2010, vol. 5, no. 6. e11066. doi 10.1371/joumal.pone.0011066
Singh, R., Singh, A., and Tyagi, A.K., Deciphering the genes involved in pathogenesis of Mycobacterium tuberculosis, Tuberculosis, 2005, vol. 85, pp. 325–335.
Sassetti, Ch. and Rubin, E., Genetic requirements for mycobacterial survival during infection, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 22, pp. 12989–12994.
Geiman, D., Raghunand, T., Agarwell, N., et al., Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis Whi B-like genes, Antimicrob. Agentschemother., 2006, vol. 50, no. 8, pp. 2836–2841.
Rohde, K., Abramovitch, R., and Russel, D., Mycobacterium tuberculosis invasion of macrophages linking bacterial gene expression to environmental cues, Cell Host Microbe, 2007, vol. 2, no. 15, pp. 352–364.
Leplae, R., Geeraerts, D., Hallez, R., et al., Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families, Nucleic Acids Res., 2011, vol. 39, no. 13, pp. 5513–5525.
Unterholzner, S.J. and Poppenberger Rozhon, W., Toxin-antitoxin systems: biology, identification, and application, Mob. Genet. Elem., 2013, vol. 3, no. 5. e26219
Park, S.J., Son, W.S., and Lee, B.J., Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents, Biochim. Biophys. Acta, 2013, vol. 1834, no. 6, pp. 1155–1167.
Mehra, S. and Kaushal, D., Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor sigmaH, Bacteriology, 2009, vol. 191, no. 12, pp. 3965–3980.
Beste, D.J., Espasa, M., Bonde, B., et al., The genetic requirements for fast and slow growth in mycobacteria, PLoS One, 2009, vol. 4, no. 4. e5349
Arcus, V.L., The PIN-domain toxin-antitoxin array in mycobacteria, Trends Microbiol., 2005, vol. 13, pp. 360–365.
Alekseeva, M.G., Danilenko, V.N., Zaichikova, M.V., and Zakharevich, N.V., RF Patent Application no. 2013155216, 2013.
Danilenko, V.N., Osolodkin, D.I., and Lakatosh, S.A., Bacterial eukaryotic type serine-threonine protein kinases: tools for targeted anti-infective drug design, Curr. Top. Med. Chem., 2011, vol. 11, no. 10, pp. 1352–1369.
Beresford, N.G., Mulhearn, D., Szczepankiewicz, B., et al., Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages, J. Antimicrob. Chemother., 2009, vol. 63, no. 5, pp. 928–936.
Teng, T.S., Wang, H.H., and Xie, J.P., Advances in the study of Mycobacterium tuberculosis protein phosphatase and its inhibitors, Yao Xue Xue Bao, 2011, vol. 46, no. 12, pp. 1420–1428.
Ventura, M., Canchaya, C., and Tauch, A., Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum, Microbiol. Mol. Biol. Rev., 2007, vol. 71, no. 3, pp. 495–548.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.A. Prozorov, I.A. Fedorova, O.B. Bekker, V.N. Danilenko, 2014, published in Genetika, 2014, Vol. 50, No. 8, pp. 885–908.
Rights and permissions
About this article
Cite this article
Prozorov, A.A., Fedorova, I.A., Bekker, O.B. et al. The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions. Russ J Genet 50, 775–797 (2014). https://doi.org/10.1134/S1022795414080055
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795414080055