Abstract
Proteins of the NUDIX hydrolase (NUDT) superfamily that cleave organic pyrophosphates are found in all classes of organisms, from archaea and bacteria to higher eukaryotes. In mammals, NUDTs exhibit a wide range of functions and are characterized by different substrate specificity and intracellular localization. They control the concentration of various metabolites in the cell, including key regulatory molecules such as nicotinamide adenine dinucleotide (NAD), ADP-ribose, and their derivatives. In this review, we discuss the role of NUDT proteins in the metabolism of NAD and ADP-ribose in human and animal cells.
Similar content being viewed by others
Abbreviations
- ADPR:
-
ADP-ribose
- AMPK:
-
AMP-activated protein kinase
- ANT:
-
adenine nucleotide translocase
- ARH:
-
ADP-ribosylhydrolase
- cADPR:
-
cyclic ADP-ribose
- ER:
-
endoplasmic reticulum
- Nam:
-
nicotinamide
- NAD:
-
nicotinamide adenine dinucleotide
- NADP:
-
nicotinamide adenine dinucleotide phosphate
- NMN:
-
nicotinamide mononucleotide
- NMNAT:
-
nicotinamide mononucleotide adenylyltransferase
- NUDT:
-
NUDIX hydrolase
- OAcADPR:
-
O-acetyl-ADP-ribose
- PARP:
-
poly(ADP-ribose) polymerase
- PAR:
-
poly(ADP-ribose)
- PARG:
-
poly(ADP-ribose) glycohydrolase
- R5′P:
-
ribose 5′-phosphate
- ROS:
-
reactive oxygen species
- TARG:
-
terminal ADP-ribose protein glycohydrolase 1
REFERENCES
McLennan, A. G. (2006) The Nudix hydrolase superfamily, Cell. Mol. Life Sci., 63, 123-143, doi: https://doi.org/10.1007/s00018-005-5386-7.
Carreras-Puigvert, J., Zitnik, M., Jemth, A. S., Carter, M., Unterlass, J. E. et al. (2017) A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family, Nat. Commun., 8, 1541, doi: https://doi.org/10.1038/s41467-017-01642-w.
Rai, P., and Sobol, R. W. (2019) Mechanisms of MTH1 inhibition-induced DNA strand breaks: the slippery slope from the oxidized nucleotide pool to genotoxic damage, DNA Rep., 77, 18-26, doi: https://doi.org/10.1016/j.dnarep.2019.03.001.
Ishibashi, T., Hayakawa, H., and Sekiguchi, M. (2003) A novel mechanism for preventing mutations caused by oxidation of guanine nucleotides, EMBO Rep., 4, 479-483, doi: https://doi.org/10.1038/sj.embor.embor838.
Cai, J. P., Ishibashi, T., Takagi, Y., Hayakawa, H., and Sekiguchi, M. (2003) Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides, Biochem. Biophys. Res. Commun., 305, 1073-1077, doi: https://doi.org/10.1016/s0006-291x(03)00864-7.
Ishibashi, T., Hayakawa, H., Ito, R., Miyazawa, M., Yamagata, Y., and Sekiguchi, M. (2005) Mammalian enzymes for preventing transcriptional errors caused by oxidative damage, Nucleic Acids Res., 33, 3779-3784, doi: https://doi.org/10.1093/nar/gki682.
Grudzien-Nogalska, E., and Kiledjian, M. (2017) New insights into decapping enzymes and selective mRNA decay, Wiley Interdisc. Rev. RNA, 8, doi: https://doi.org/10.1002/wrna.1379.
Lu, G., Zhang, J., Li, Y., Li, Z., Zhang, N., Xu, X., Wang, T., Guan, Z., Gao, G. F., and Yan, J. (2011) hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA, Protein Cell, 2, 64-73, doi: https://doi.org/10.1007/s13238-011-1009-2.
Gasmi, L., and McLennan, A. G. (2001) The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives, Biochem. J., 357, 33-38, doi: https://doi.org/10.1042/0264-6021:3570033.
Shumar, S. A., Kerr, E. W., Geldenhuys, W. J., Montgomery, G. E., Fagone, P., Thirawatananond, P., Saavedra, H., Gabelli, S. B., and Leonardi, R. (2018) Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform, J. Biol. Chem., 293, 4134-4148, doi: https://doi.org/10.1074/jbc.RA117.001358.
Kerr, E. W., Shumar, S. A., and Leonardi, R. (2019) Nudt8 is a novel CoA diphosphohydrolase that resides in the mitochondria, FEBS Lett., 593, 1133-1143, doi: https://doi.org/10.1002/1873-3468.13392.
Ying, W. (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences, Antioxid. Redox Signal., 10, 179-206, doi: https://doi.org/10.1089/ars.2007.1672.
Kulikova, V. A., Gromyko, D. V., and Nikiforov, A. A. (2018) The regulatory role of NAD in human and animal cells, Biochemistry (Moscow), 83, 800-812, doi: https://doi.org/10.1134/S0006297918070040.
Stromland, O., Niere, M., Nikiforov, A. A., VanLinden, M. R., Heiland, I., and Ziegler, M. (2019) Keeping the balance in NAD metabolism, Biochem. Soc. Trans., 47, 119-130, doi: https://doi.org/10.1042/BST20180417.
Yang, Y., and Sauve, A. A. (2016) NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy, Biochim. Biophys. Acta, 1864, 1787-1800, doi: https://doi.org/10.1016/j.bbapap.2016.06.014.
Gupte, R., Liu, Z., and Kraus, W. L. (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes, Genes Dev., 31, 101-126, doi: https://doi.org/10.1101/gad.291518.116.
Cohen, M. S., and Chang, P. (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation, Nat. Chem. Biol., 14, 236-243, doi: https://doi.org/10.1038/nchembio.2568.
Rack, J. G. M., Palazzo, L., and Ahel, I. (2020) (ADP-ribosyl)hydrolases: structure, function, and biology, Genes Dev., 34, 263-284, doi: https://doi.org/10.1101/gad.334631.119.
Talhaoui, I., Lebedeva, N. A., Zarkovic, G., Saint-Pierre, C., Kutuzov, M. M., Sukhanova, M. V., Matkarimov, B. T., Gasparutto, D., Saparbaev, M. K., Lavrik, O. I., and Ishchenko, A. A. (2016) Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro, Nucleic Acids Res., 44, 9279-9295, doi: https://doi.org/10.1093/nar/gkw675.
Munnur, D., and Ahel, I. (2017) Reversible mono-ADP-ribosylation of DNA breaks, FEBS J., 284, 4002-4016, doi: https://doi.org/10.1111/febs.14297.
Munnur, D., Bartlett, E., Mikolcevic, P., Kirby, I. T., Rack, J. G. M., Mikoc, A., Cohen, M. S., and Ahel, I. (2019) Reversible ADP-ribosylation of RNA, Nucleic Acids Res., 47, 5658-5669, doi: https://doi.org/10.1093/nar/gkz305.
Houtkooper, R. H., Pirinen, E., and Auwerx, J. (2012) Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol., 13, 225-238, doi: https://doi.org/10.1038/nrm3293.
Tanner, K. G., Landry, J., Sternglanz, R., and Denu, J. M. (2000) Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose, Proc. Natl. Acad. Sci. USA, 97, 14178-14182, doi: https://doi.org/10.1073/pnas.250422697.
Sassone-Corsi, P. (2016) The Epigenetic and Metabolic Language of the Circadian Clock, in A Time for Metabolism and Hormones (Sassone-Corsi, P., and Christen, Y., eds.) Cham (CH), pp. 1-11.
Imai, S., and Guarente, L. (2014) NAD+ and sirtuins in aging and disease, Trends Cell. Biol., 24, 464-471, doi: https://doi.org/10.1016/j.tcb.2014.04.002.
Cao, Y., Jiang, X., Ma, H., Wang, Y., Xue, P., and Liu, Y. (2016) SIRT1 and insulin resistance, J. Diabetes Complic., 30, 178-183, doi: https://doi.org/10.1016/j.jdiacomp.2015.08.022.
Grubisha, O., Rafty, L. A., Takanishi, C. L., Xu, X., Tong, L., Perraud, A. L., Scharenberg, A. M., and Denu, J. M. (2006) Metabolite of SIR2 reaction modulates TRPM2 ion channel, J. Biolog. Chem., 281, 14057-14065, doi: https://doi.org/10.1074/jbc.M513741200.
Chen, D., Vollmar, M., Rossi, M. N., Phillips, C., Kraehenbuehl, R., Slade, D., Mehrotra, P. V., von Delft, F., Crosthwaite, S. K., Gileadi, O., Denu, J. M., and Ahel, I. (2011) Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases, J. Biolog. Chem., 286, 13261-13271, doi: https://doi.org/10.1074/jbc.M110.206771.
Ono, T., Kasamatsu, A., Oka, S., and Moss, J. (2006) The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases, Proc. Natl. Acad. Sci. USA, 103, 16687-16691, doi: https://doi.org/10.1073/pnas.0607911103.
Lee, H. C., and Zhao, Y. J. (2019) Resolving the topological enigma in Ca2+ signaling by cyclic ADP-ribose and NAADP, J. Biolog. Chem., 294, 19831-19843, doi: https://doi.org/10.1074/jbc.REV119.009635.
Guse, A. H. (2015) Calcium mobilizing second messengers derived from NAD, Biochim. Biophys. Acta, 1854, 1132-1137, doi: https://doi.org/10.1016/j.bbapap.2014.12.015.
Sumoza-Toledo, A., and Penner, R. (2011) TRPM2: a multifunctional ion channel for calcium signalling, J. Physiol., 589, 1515-1525, doi: https://doi.org/10.1113/jphysiol.2010.201855.
Jiao, X., Doamekpor, S. K., Bird, J. G., Nickels, B. E., Tong, L., Hart, R. P., and Kiledjian, M. (2017) 5′-End nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-mediated deNADding, Cell, 168, 1015-1027, doi: https://doi.org/10.1016/j.cell.2017.02.019.
Luscher, B., Butepage, M., Eckei, L., Krieg, S., Verheugd, P., and Shilton, B. H. (2018) ADP-ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease, Chem. Rev., 118, 1092-1136, doi: https://doi.org/10.1021/acs.chemrev.7b00122.
Nikiforov, A., Kulikova, V., and Ziegler, M. (2015) The human NAD metabolome: functions, metabolism and compartmentalization, Crit. Rev. Biochem. Mol. Biol., 50, 284-297, doi: https://doi.org/10.3109/10409238.2015.1028612.
Katsyuba, E., Romani, M., Hofer, D., and Auwerx, J. (2020) NAD+ homeostasis in health and disease, Nat. Metab., 2, doi: https://doi.org/10.1038/s42255-019-0161-5.
Dolle, C., Skoge, R. H., Vanlinden, M. R., and Ziegler, M. (2013) NAD biosynthesis in humans – enzymes, metabolites and therapeutic aspects, Curr. Top. Med. Chem., 13, 2907-2917, doi: https://doi.org/10.2174/15680266113136660206.
Yang, Y., Zhang, N., Zhang, G., and Sauve, A. A. (2020) NRH salvage and conversion to NAD+ requires NRH kinase activity by adenosine kinase, Nat. Metab., 2, 364-379, doi: https://doi.org/10.1038/s42255-020-0194-9.
Frick, D. N., and Bessman, M. J. (1995) Cloning, purification, and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes, J. Biolog. Chem., 270, 1529-1534, doi: https://doi.org/10.1074/jbc.270.4.1529.
Shimizu, M., Masuo, S., Fujita, T., Doi, Y., Kamimura, Y., and Takaya, N. (2012) Hydrolase controls cellular NAD, sirtuin, and secondary metabolites, Mol. Cell. Biol., 32, 3743-3755, doi: https://doi.org/10.1128/MCB.00032-12.
Xu, W., Dunn, C. A., and Bessman, M. J. (2000) Cloning and characterization of the NADH pyrophosphatases from Caenorhabditis elegans and Saccharomyces cerevisiae, members of a Nudix hydrolase subfamily, Biochem. Biophys. Res. Commun., 273, 753-758, doi: https://doi.org/10.1006/bbrc.2000.2999.
AbdelRaheim, S. R., Cartwright, J. L., Gasmi, L., and McLennan, A. G. (2001) The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 Nudix hydrolase gene is located in peroxisomes, Arch. Biochem. Biophys., 388, 18-24, doi: https://doi.org/10.1006/abbi.2000.2268.
AbdelRaheim, S. R., Spiller, D. G., and McLennan, A. G. (2003) Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein, Biochem. J., 374, 329-335, doi: https://doi.org/10.1042/BJ20030441.
Dunn, C. A., O’Handley, S. F., Frick, D. N., and Bessman, M. J. (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance, J. Biol. Chem., 274, 32318-32324, doi: https://doi.org/10.1074/jbc.274.45.32318.
Lin, S., Gasmi, L., Xie, Y., Ying, K., Gu, S., Wang, Z., Jin, H., Chao, Y., Wu, C., Zhou, Z., Tang, R., Mao, Y., and McLennan, A. G. (2002) Cloning, expression and characterisation of a human Nudix hydrolase specific for adenosine 5′-diphosphoribose (ADP-ribose), Biochim. Biophys. Acta, 1594, 127-135, doi: https://doi.org/10.1016/s0167-4838(01)00296-5.
Tong, L., Lee, S., and Denu, J. M. (2009) Hydrolase regulates NAD+ metabolites and modulates cellular redox, J. Biol. Chem., 284, 11256-11266, doi: https://doi.org/10.1074/jbc.M809790200.
Adam-Vizi, V., and Chinopoulos, C. (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species, Trends Pharmacol. Sci., 27, 639-645, doi: https://doi.org/10.1016/j.tips.2006.10.005.
Jamieson, D. J. (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae, Yeast, 14, 1511-1527, doi: https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S.
Abdelraheim, S. R., Spiller, D. G., and McLennan, A. G. (2017) Mouse Nudt13 is a mitochondrial Nudix hydrolase with NAD(P)H pyrophosphohydrolase activity, Protein J., 36, 425-432, doi: https://doi.org/10.1007/s10930-017-9734-x.
Wu, H., Li, L., Chen, K. M., Homolka, D., Gos, P., Fleury-Olela, F., McCarthy, A. A., and Pillai, R. S. (2019) Decapping enzyme NUDT12 partners with BLMH for cytoplasmic surveillance of NAD-capped RNAs, Cell Rep., 29, 4422-4434, doi: https://doi.org/10.1016/j.celrep.2019.11.108.
Wanders, R. J., Waterham, H. R., and Ferdinandusse, S. (2015) Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum, Front. Cell Dev. Biol., 3, 83, doi: https://doi.org/10.3389/fcell.2015.00083.
Agrimi, G., Russo, A., Scarcia, P., and Palmieri, F. (2012) The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+, Biochem. J., 443, 241-247, doi: https://doi.org/10.1042/BJ20111420.
Antonenkov, V. D., and Hiltunen, J. K. (2012) Transfer of metabolites across the peroxisomal membrane, Biochim. Biophys. Acta, 1822, 1374-1386, doi: https://doi.org/10.1016/j.bbadis.2011.12.011.
Antonenkov, V. D., Sormunen, R. T., and Hiltunen, J. K. (2004) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro, J. Cell Sci., 117, 5633-5642, doi: https://doi.org/10.1242/jcs.01485.
Rokka, A., Antonenkov, V. D., Soininen, R., Immonen, H. L., Pirila, P. L., Bergmann, U., Sormunen, R. T., Weckstrom, M., Benz, R., and Hiltunen, J. K. (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane, PLoS One, 4, e5090, doi: https://doi.org/10.1371/journal.pone.0005090.
Ramanathan, A., Robb, G. B., and Chan, S. H. (2016) mRNA capping: biological functions and applications, Nucleic Acids Res., 44, 7511-7526, doi: https://doi.org/10.1093/nar/gkw551.
Grudzien-Nogalska, E., Wu, Y., Jiao, X., Cui, H., Mateyak, M. K., Hart, R. P., Tong, L., and Kiledjian, M. (2019) Structural and mechanistic basis of mammalian Nudt12 RNA deNADding, Nat. Chem. Biol., 15, 575-582, doi: https://doi.org/10.1038/s41589-019-0293-7.
Alano, C. C., Tran, A., Tao, R., Ying, W., Karliner, J. S., and Swanson, R. A. (2007) Differences among cell types in NAD(+) compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes, J. Neurosci. Res., 85, 3378-3385, doi: https://doi.org/10.1002/jnr.21479.
Stein, L. R., and Imai, S. (2012) The dynamic regulation of NAD metabolism in mitochondria, Trends Edocrinol. Metab., 23, 420-428, doi: https://doi.org/10.1016/j.tem.2012.06.005.
Wallace, D. C. (2009) Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution, Cold Spring Harb. Symp. Quant. Biol., 74, 383-393, doi: https://doi.org/10.1101/sqb.2009.74.031.
Dolle, C., Rack, J. G., and Ziegler, M. (2013) NAD and ADP-ribose metabolism in mitochondria, FEBS J., 280, 3530-3541, doi: https://doi.org/10.1111/febs.12304.
Yang, H., Yang, T., Baur, J. A., Perez, E., Matsui, T., Carmona, J. J., Lamming, D. W., Souza-Pinto, N. C., Bohr, V. A., Rosenzweig, A., de Cabo, R., Sauve, A. A., and Sinclair, D. A. (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival, Cell, 130, 1095-1107, doi: https://doi.org/10.1016/j.cell.2007.07.035.
Pittelli, M., Formentini, L., Faraco, G., Lapucci, A., Rapizzi, E., Cialdai, F., Romano, G., Moneti, G., Moroni, F., and Chiarugi, A. (2010) Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool, J. Biol. Chem., 285, 34106-34114, doi: https://doi.org/10.1074/jbc.M110.136739.
Barile, M., Passarella, S., Danese, G., and Quagliariello, E. (1996) Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase, Biochem. Mol. Biol. Intern., 38, 297-306.
Nikiforov, A., Dolle, C., Niere, M., and Ziegler, M. (2011) Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation, J. Biol. Chem., 286, 21767-21778, doi: https://doi.org/10.1074/jbc.M110.213298.
Davila, A., Liu, L., Chellappa, K., Redpath, P., Nakamaru-Ogiso, E., Paolella, L. M., Zhang, Z., Migaud, M. E., Rabinowitz, J. D., and Baur, J. A. (2018) Nicotinamide adenine dinucleotide is transported into mammalian mitochondria, Elife, 7, doi: https://doi.org/10.7554/eLife.33246.
Cambronne, X. A., Stewart, M. L., Kim, D., Jones-Brunette, A. M., Morgan, R. K., Farrens, D. L., Cohen, M. S., and Goodman, R. H. (2016) Biosensor reveals multiple sources for mitochondrial NAD(+), Science, 352, 1474-1477, doi: https://doi.org/10.1126/science.aad5168.
Sharma, S., Grudzien-Nogalska, E., Hamilton, K., Jiao, X., Yang, J., Tong, L., and Kiledjian, M. (2020) Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs, Nucleic Acids Res., 48, 6788-6798, doi: https://doi.org/10.1093/nar/gkaa402.
Wright, R. H., Lioutas, A., Le Dily, F., Soronellas, D., Pohl, A., Bonet, J., Nacht, A. S., Samino, S., Font-Mateu, J., Vicent, G. P., Wierer, M., Trabado, M. A., Schelhorn, C., Carolis, C., Macias, M. J., Yanes, O., Oliva, B., and Beato, M. (2016) ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling, Science, 352, 1221-1225, doi: https://doi.org/10.1126/science.aad9335.
Gasmi, L., Cartwright, J. L., and McLennan, A. G. (1999) Cloning, expression and characterization of YSA1H, a human adenosine 5′-diphosphosugar pyrophosphatase possessing a MutT motif, Biochem. J., 344 Pt. 2, 331-337.
Page, B. D. G., Valerie, N. C. K., Wright, R. H. G., Wallner, O., Isaksson, R., Carter, M., Rudd, S. G., Loseva, O., Jemth, A. S., Almlof, I., Font-Mateu, J., Llona-Minguez, S., Baranczewski, P., Jeppsson, F., Homan, E., Almqvist, H., Axelsson, H., Regmi, S., Gustavsson, A. L., Lundback, T. et al. (2018) Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells, Nat. Commun., 9, 250, doi: https://doi.org/10.1038/s41467-017-02293-7.
Yoon, B., Yang, E. G., and Kim, S. Y. (2018) The ADP-ribose reactive NUDIX hydrolase isoforms can modulate HIF-1alpha in cancer cells, Biochem. Biophys. Res. Commun., 504, 321-327, doi: https://doi.org/10.1016/j.bbrc.2018.08.185.
Formentini, L., Macchiarulo, A., Cipriani, G., Camaioni, E., Rapizzi, E., Pellicciari, R., Moroni, F., and Chiarugi, A. (2009) Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure, J. Biol. Chem., 284, 17668-17676, doi: https://doi.org/10.1074/jbc.M109.002931.
Nury, H., Dahout-Gonzalez, C., Trezeguet, V., Lauquin, G. J., Brandolin, G., and Pebay-Peyroula, E. (2006) Relations between structure and function of the mitochondrial ADP/ATP carrier, Annu. Rev. Biochem., 75, 713-741, doi: https://doi.org/10.1146/annurev.biochem.75.103004.142747.
Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol., 13, 251-262, doi: https://doi.org/10.1038/nrm3311.
Gowans, G. J., Hawley, S. A., Ross, F. A., and Hardie, D. G. (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation, Cell Metab., 18, 556-566, doi: https://doi.org/10.1016/j.cmet.2013.08.019.
Rafty, L. A., Schmidt, M. T., Perraud, A. L., Scharenberg, A. M., and Denu, J. M. (2002) Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases, J. Biol. Chem., 277, 47114-47122, doi: https://doi.org/10.1074/jbc.M208997200.
Pickup, K. E., Pardow, F., Carbonell-Caballero, J., Lioutas, A., Villanueva-Canas, J. L., Wright, R. H. G., and Beato, M. (2019) Expression of oncogenic drivers in 3D cell culture depends on nuclear ATP synthesis by NUDT5, Cancers, 11, doi: https://doi.org/10.3390/cancers11091337.
Perraud, A. L., Shen, B., Dunn, C. A., Rippe, K., Smith, M. K., Bessman, M. J., Stoddard, B. L., and Scharenberg, A. M. (2003) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase, J. Biol. Chem., 278, 1794-1801, doi: https://doi.org/10.1074/jbc.M205601200.
Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castronovo, V., Maechler, P., and Verdin, E. (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase, J. Biol. Chem., 282, 33583-33592, doi: https://doi.org/10.1074/jbc.M705488200.
Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W., and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells, Cell, 126, 941-954, doi: https://doi.org/10.1016/j.cell.2006.06.057.
Zhang, J., Zhang, J., Benovic, J. L., Sugai, M., Wetzker, R., Gout, I., and Rittenhouse, S. E. (1995) Sequestration of a G-protein beta gamma subunit or ADP-ribosylation of Rho can inhibit thrombin-induced activation of platelet phosphoinositide 3-kinases, J. Biol. Chem., 270, 6589-6594, doi: https://doi.org/10.1074/jbc.270.12.6589.
Jacobson, E. L., Cervantes-Laurean, D., and Jacobson, M. K. (1997) ADP-ribose in glycation and glycoxidation reactions, Adv. Exp. Med. Biol., 419, 371-379, doi: https://doi.org/10.1007/978-1-4419-8632-0_49.
Perraud, A. L., Takanishi, C. L., Shen, B., Kang, S., Smith, M. K., Schmitz, C., Knowles, H. M., Ferraris, D., Li, W., Zhang, J., Stoddard, B. L., and Scharenberg, A. M. (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels, J. Biol. Chem., 280, 6138-6148, doi: https://doi.org/10.1074/jbc.M411446200.
Zharova, T. V., and Vinogradov, A. D. (1997) A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose, Biochim. Biophys. Acta, 1320, 256-264, doi: https://doi.org/10.1016/s0005-2728(97)00029-7.
Palazzo, L., Thomas, B., Jemth, A. S., Colby, T., Leidecker, O., Feijs, K. L., Zaja, R., Loseva, O., Puigvert, J. C., Matic, I., Helleday, T., and Ahel, I. (2015) Processing of protein ADP-ribosylation by Nudix hydrolases, Biochem. J., 468, 293-301, doi: https://doi.org/10.1042/BJ20141554.
Thirawatananond, P., McPherson, R. L., Malhi, J., Nathan, S., Lambrecht, M. J., Brichacek, M., Hergenrother, P. J., Leung, A. K. L., and Gabelli, S. B. (2019) Structural analyses of NudT16-ADP-ribose complexes direct rational design of mutants with improved processing of poly(ADP-ribosyl)ated proteins, Sci. Rep., 9, 5940, doi: https://doi.org/10.1038/s41598-019-39491-w.
Zhang, F., Lou, L., Peng, B., Song, X., Reizes, O., Almasan, A., and Gong, Z. (2020) Nudix hydrolase NUDT16 regulates 53BP1 protein by reversing 53BP1 ADP-ribosylation, Cancer Res., 80, 999-1010, doi: https://doi.org/10.1158/0008-5472.CAN-19-2205.
Ward, I. M., Minn, K., van Deursen, J., and Chen, J. (2003) p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice, Mol. Cell. Biol., 23, 2556-2563, doi: https://doi.org/10.1128/mcb.23.7.2556-2563.2003.
Belousova, E. A., Kutuzov, M. M., Ivankina, P. A., Ishchenko, A. A., and Lavrik, O. I. (2018) A new DNA break repair pathway involving PARP3 and base excision repair proteins, Dokl. Biochem. Biophys., 482, 233-237, doi: https://doi.org/10.1134/S1607672918050010.
Funding
This work was supported by the Russian Science Foundation (project no. 18-74-00081) and Russian Foundation for Basic Research (project no. 19-34-60039).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Kulikova, V.A., Nikiforov, A.A. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals. Biochemistry Moscow 85, 883–894 (2020). https://doi.org/10.1134/S0006297920080040
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0006297920080040