Skip to main content

Cap-independent translation initiation of Apaf-1 mRNA based on a scanning mechanism is determined by some features of the secondary structure of its 5′ untranslated region

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We have earlier shown that the 5′-untranslated region (5′ UTR) of the mRNA coding for activation factor of apoptotic peptidase 1 (Apaf-1) can direct translation in vivo by strictly 5′ end-dependent way even in the absence of m7G-cap. Dependence of translational efficiency on the cap availability for this mRNA turned out to be relatively low. In this study we demonstrate that this surprising phenomenon is determined the 5′-proximal part (domains I and II) of highly structured Apaf-1 5′ UTR. Remarkably, domain II by itself was able to reduce dependence of the mRNA on the cap on its transferring to a short 5′ UTR derived from a standard vector. We suggest that the low cap-dependence inherent to some cellular mRNAs may have an important physiological significance under those stress conditions when the function of cap-binding factor eIF4E is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Apaf-1:

apoptotic peptidase activating factor 1

CITEs:

cap-independent translational enhancers

eIF:

eukaryotic initiation factor

IRES:

internal ribosome entry site

5′ UTR:

5′-untranslated region

References

  1. Cully, M., and Downward, J. (2009) Biochem. Soc. Trans., 37, 284–288.

    Article  PubMed  CAS  Google Scholar 

  2. Polunovsky, V. A., and Bitterman, P. B. (2006) RNA Biol., 3, 10–17.

    Article  PubMed  CAS  Google Scholar 

  3. Averous, J., and Proud, C. G. (2006) Oncogene, 25, 6423–6435.

    Article  PubMed  CAS  Google Scholar 

  4. Robert, F., and Pelletier, J. (2009) Expert Opin. Ther. Targets, 13, 1279–1293.

    Article  PubMed  CAS  Google Scholar 

  5. Silvera, D., Formenti, S. C., and Schneider, R. J. (2010) Nat. Rev. Cancer, 10, 254–266.

    Article  PubMed  CAS  Google Scholar 

  6. Proud, C. G. (2009) Biochem. Soc. Trans., 37, 227–231.

    Article  PubMed  CAS  Google Scholar 

  7. Lin, T. A., Kong, X., Haystead, T. A., Pause, A., Belsham, G., Sonenberg, N., and Lawrence, J. C., Jr. (1994) Science, 266, 653–656.

    Article  PubMed  CAS  Google Scholar 

  8. Pause, A., Belsham, G. J., Gingras, A. C., Donze, O., Lin, T. A., Lawrence, J. C., Jr., and Sonenberg, N. (1994) Nature, 371, 762–767.

    Article  PubMed  CAS  Google Scholar 

  9. Poulin, F., Gingras, A. C., Olsen, H., Chevalier, S., and Sonenberg, N. (1998) J. Biol. Chem., 273, 14002–14007.

    Article  PubMed  CAS  Google Scholar 

  10. Reiling, J. H., and Sabatini, D. M. (2006) Oncogene, 25, 6373–6383.

    Article  PubMed  CAS  Google Scholar 

  11. Morley, S. J., Coldwell, M. J., and Clemens, M. J. (2005) Cell. Death Differ., 12, 571–584.

    Article  PubMed  CAS  Google Scholar 

  12. Schafer, Z. T., and Kornbluth, S. (2006) Dev. Cell., 10, 549–561.

    Article  PubMed  CAS  Google Scholar 

  13. Coldwell, M. J., Mitchell, S. A., Stoneley, M., MacFarlane, M., and Willis, A. E. (2000) Oncogene, 19, 899–905.

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell, S. A., Spriggs, K. A., Coldwell, M. J., Jackson, R. J., and Willis, A. E. (2003) Mol. Cell., 11, 757–771.

    Article  PubMed  CAS  Google Scholar 

  15. Ungureanu, N. H., Cloutier, M., Lewis, S. M., de Silva, N., Blais, J. D., Bell, J. C., and Holcik, M. (2006) J. Biol. Chem., 281, 15155–15163.

    Article  PubMed  CAS  Google Scholar 

  16. Macejak, D. G., and Sarnow, P. (1991) Nature, 353, 90–94.

    Article  PubMed  CAS  Google Scholar 

  17. Holcik, M., and Sonenberg, N. (2005) Nat. Rev. Mol. Cell. Biol., 6, 318–327.

    Article  PubMed  CAS  Google Scholar 

  18. Komar, A. A., and Hatzoglou, M. (2005) J. Biol. Chem., 280, 23425–23428.

    Article  PubMed  CAS  Google Scholar 

  19. Graber, T. E., and Holcik, M. (2007) Mol. Biosyst., 3, 825–834.

    Article  PubMed  CAS  Google Scholar 

  20. Spriggs, K. A., Stoneley, M., Bushell, M., and Willis, A. E. (2008) Biol. Cell, 100, 27–38.

    Article  PubMed  CAS  Google Scholar 

  21. Komar, A. A., and Hatzoglou, M. (2011) Cell. Cycle, 10, 229–240.

    Article  PubMed  CAS  Google Scholar 

  22. Andreev, D. E., Dmitriev, S. E., Terenin, I. M., Prassolov, V. S., Merrick, W. C., and Shatsky, I. N. (2009) Nucleic Acids Res., 37, 6135–6147.

    Article  PubMed  CAS  Google Scholar 

  23. Stoneley, M., Paulin, F. E., Le Quesne, J. P., Chappell, S. A., and Willis, A. E. (1998) Oncogene, 16, 423–428.

    Article  PubMed  CAS  Google Scholar 

  24. Dmitriev, S. E., Andreev, D. E., Ad’yanova, Z. V., Terenin, I. M., and Shatsky, I. N. (2009) Mol. Biol. (Moscow), 43, 108–113.

  25. Barreau, C., Dutertre, S., Paillard, L., and Osborne, H. B. (2006) RNA, 12, 1790–1793.

    Article  PubMed  CAS  Google Scholar 

  26. Dmitriev, S. E., Andreev, D. E., Terenin, I. M., Olovnikov, I. A., Prassolov, V. S., Merrick, W. C., and Shatsky, I. N. (2007) Mol. Cell. Biol., 27, 4685–4697.

    Article  PubMed  CAS  Google Scholar 

  27. Vassilenko, K. S., Alekhina, O. M., Dmitriev, S. E., Shatsky, I. N., and Spirin, A. S. (2011) Nucleic Acids Res., 39, 5555–5567.

    Article  PubMed  CAS  Google Scholar 

  28. De Gregorio, E., Preiss, T., and Hentze, M. W. (1998) RNA, 4, 828–836.

    Article  PubMed  Google Scholar 

  29. Ali, I. K., McKendrick, L., Morley, S. J., and Jackson, R. J. (2001) EMBO J., 20, 4233–4242.

    Article  PubMed  CAS  Google Scholar 

  30. Gunnery, S., Maivali, U., and Mathews, M. B. (1997) J. Biol. Chem., 272, 21642–21646.

    Article  PubMed  CAS  Google Scholar 

  31. Shatsky, I. N., Dmitriev, S. E., Terenin, I. M., and Andreev, D. E. (2010) Mol. Cells, 30, 285–293.

    Article  PubMed  CAS  Google Scholar 

  32. Terenin, I. M., Andreev, D. E., Dmitriev, S. E., and Shatsky, I. N. (2012) Nucleic Acids Res., doi: 10.1093/nar/gks 1282.

  33. Lerner, R. S., and Nicchitta, C. V. (2006) RNA, 12, 775–789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Shatsky.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 2, pp. 220–229.

Originally published in Biochemistry (Moscow) On-Line Papers in Press as Manuscript BM12-254, January 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, D.E., Dmitriev, S.E., Terenin, I.M. et al. Cap-independent translation initiation of Apaf-1 mRNA based on a scanning mechanism is determined by some features of the secondary structure of its 5′ untranslated region. Biochemistry Moscow 78, 157–165 (2013). https://doi.org/10.1134/S0006297913020041

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913020041

Key words