A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young’s modulus, and Poisson’s ratio for ideal polycrystalline TiSi2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young’s modulus for single crystal TiSi2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential.

1.
M. E.
Fine
,
L. D.
Brown
, and
H. L.
Marcus
,
Scr. Metall.
18
,
951
(
1984
);
R. L. Fleischer, Proceedings of the International Symposium on Intermetallic Compounds (JIMIS-6), edited by O. Izumi (Japan Institute of Metals, Sendai, Japan, 1991), pp. 157–163.
2.
M.
Nakamura
,
Metall. Trans. A
25A
,
331
(
1993
).
3.
S. F.
Pugh
,
Philos. Mag.
45
,
823
(
1954
).
4.
M. Nakamura, Intermetallic Compounds: Principles, edited by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 1994), Vol. 1, p. 873.
5.
M. J. Mehl, B. M. Klein, and D. A. Papaconstantopoulos, in Intermetallic Compounds: Principles, edited by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 1994), Vol. 1, p. 195.
6.
C. L.
Fu
and
M. H.
Yoo
,
Philos. Mag. Lett.
58
,
199
(
1988
);
J.
Chen
,
L. L.
Boyer
,
H.
Krakauer
, and
M. J.
Mehl
,
Phys. Rev. B
37
,
3295
(
1988
);
J. M.
Wills
,
O.
Erisksson
,
P.
Söderlind
, and
A. M.
Boring
,
Phys. Rev. Lett.
68
,
2802
(
1992
);
P.
Söderlind
,
O.
Eriksson
,
J. M.
Wills
, and
A. M.
Boring
,
Phys. Rev. B
48
,
5844
(
1993
);
N. E.
Christensen
,
Solid State Commun.
49
,
701
(
1984
);
N. E.
Christensen
,
Solid State Commun.
50
,
177
(
1984
);
M.
Dacorogna
,
J.
Ashkenasi
, and
M.
Peter
,
Phys. Rev. B
26
,
1527
(
1982
);
D.
Iotova
,
N.
Kioussis
, and
S. P.
Lim
,
Phys. Rev. B
54
,
14413
(
1996
);
G.
Bihlmayer
,
R.
Eibler
, and
A.
Necker
,
Phys. Rev. B
50
,
13113
(
1994
);
X.-Q.
Guo
,
R.
Podloucky
, and
A. J.
Freeman
,
J. Mater. Res.
6
,
324
(
1991
);
M. J.
Mehl
,
Phys. Rev. B
47
,
2493
(
1993
).
7.
M. J.
Mehl
,
J. E.
Osburn
,
D. A.
Papaconstantopoulos
, and
B. M.
Klein
,
Phys. Rev. B
41
,
10311
(
1990
);
C. L.
Fu
and
M. H.
Yoo
,
Philos. Mag.
62
,
159
(
1990
);
C. L.
Fu
,
J. Mater. Res.
5
,
971
(
1990
);
M.
Alouani
,
R. C.
Albers
, and
M.
Methfessel
,
Phys. Rev. B
43
,
6500
(
1991
).
8.
L.
Fast
,
J. M.
Wills
,
B.
Johansson
, and
O.
Eriksson
,
Phys. Rev. B
51
,
17431
(
1995
);
P.
Söderlind
,
J. A.
Moriarty
, and
J. M.
Wills
,
Phys. Rev. B
53
,
14063
(
1996
).
9.
W.
Jeitschko
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
33
,
2347
(
1977
).
10.
J.
Mass
,
G.
Bastin
,
F.
van Loo
, and
R.
Metselaar
,
Z. Metallkd.
75
,
140
(
1984
).
11.
R.
Rosenkranz
and
G.
Frommeyer
,
Z. Metallkd.
83
,
9
(
1992
).
12.
J. M. Wills (unpublished);
J. M.
Wills
and
B. R.
Cooper
,
Phys. Rev. B
36
,
3809
(
1987
);
D. L.
Price
and
B. R.
Cooper
,
Phys. Rev. B
39
,
4945
(
1989
).
13.
D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).
14.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
, and
D. J.
Singh
,
Phys. Rev. B
46
,
6671
(
1992
).
15.
O. K.
Andersen
,
Phys. Rev. B
12
,
3060
(
1975
);
H. L. Skriver, The LMTO Method (Springer, Berlin, 1984).
16.
D. J.
Chadi
and
M. L.
Cohen
,
Phys. Rev. B
8
,
5747
(
1973
);
S.
Froyen
,
Phys. Rev. B
39
,
3161
(
1989
).
17.
T.
Peun
,
J.
Lauterjung
, and
E.
Hinze
,
Nucl. Instrum. Methods Phys. Res. B
97
,
487
(
1995
).
18.
W. Voigt, Lehrbuch der Kristallphysik (Taubner, Leipzig, 1928).
19.
A.
Reuss
,
Z. Angew. Math. Mech.
9
,
55
(
1929
).
20.
R.
Hill
,
Proc. Phys. Soc. London
65
,
350
(
1952
).
21.
W.
Koster
and
H.
Franz
,
Metall. Rev.
6
,
1
(
1961
).
22.
M. H. Ledbetter, Materials at Low Temperatures, edited by R. P. Reed and A. F. Clark (American Society for Metals, Metals Park, OH, 1983), p. 1.
23.
P.
Vinet
,
J. H.
Rose
,
J.
Ferrante
, and
J. R.
Smith
,
J. Phys.: Condens. Matter
1
,
1941
(
1989
).
24.
V.
Tvergaard
and
J. W.
Hutchinson
,
J. Am. Chem. Soc.
71
,
157
(
1988
).
25.
D. H. Chung and W. R. Buessem, in Anisotropy in Single Crystal Refractory Compound, edited by F. W. Vahldiek and S. A. Mersol (Plenum, New York, 1968), Vol. 2, p. 217.
26.
J. F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985).
27.
O.
Thomas
,
R.
Madar
,
J. P.
Senateur
, and
O.
Laborde
,
J. Less-Common Met.
136
,
175
(
1987
).
28.
K.
Tanaka
,
K.
Okamoto
,
H.
Inui
,
Y.
Minonishi
,
M.
Yamaguchi
, and
M.
Koiwa
,
Philos. Mag. A
73
,
1475
(
1996
).
29.
J.-H.
Xu
,
T.
Oguchi
, and
A. J.
Freeman
,
Phys. Rev. B
35
,
6940
(
1987
);
J.-H.
Xu
and
A. J.
Freeman
,
Phys. Rev. B
40
,
11927
(
1989
);
J.-H.
Xu
and
A. J.
Freeman
,
Phys. Rev. B
41
,
12553
(
1990
);
J.-H.
Xu
and
A. J.
Freeman
,
J. Mater. Res.
6
,
1188
(
1991
);
P.
Ravindran
,
G.
Subramoniam
, and
R.
Asokamani
,
Phys. Rev. B
53
,
1129
(
1996
).
30.
P. J. W.
Weijs
,
M. T.
Czyzyk
,
J. C.
Fuggle
,
W.
Speier
,
D. D.
Sarma
, and
K. H. J.
Buschow
,
Z. Phys. B
78
,
423
(
1990
).
31.
A.
Franciosi
and
J. H.
Weaver
,
Surf. Sci.
132
,
324
(
1983
);
J. H.
Weaver
,
A.
Franciosi
, and
V. L.
Moruzzi
,
Phys. Rev. B
29
,
3293
(
1984
).
32.
N.
Zhau
,
M.
Hiri
,
M.
Kusaka
,
M.
Iwami
, and
H.
Nakamura
,
Jpn. J. Appl. Phys., Part 1
29
,
2014
(
1990
).
33.
L. F.
Matheiss
and
J. C.
Hensel
,
Phys. Rev. B
39
,
7754
(
1989
).
34.
M.
Affronte
,
O.
Laborde
,
J. C.
Lasjaunias
,
U.
Gottlieb
, and
R.
Madar
,
Phys. Rev. B
54
,
7799
(
1996
).
35.
O. L.
Anderson
,
J. Phys. Chem. Solids
24
,
909
(
1963
).
36.
E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurements (McGraw-Hill, New York, 1973).
37.
P.
Joardar
,
S.
Chatterjee
, and
S.
Chakraborthy
,
Indian J. Phys., A
54A
,
433
(
1980
).
38.
W. K.
Sylla
,
S. E.
Stillman
,
M. S.
Sabella
, and
E. J.
Cotts
,
J. Appl. Phys.
76
,
2752
(
1994
).
39.
P.
Bujard
and
E.
Walker
,
Solid State Commun.
39
,
667
(
1981
).
40.
T.
Hirano
and
M.
Kaise
,
J. Appl. Phys.
68
,
627
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.