Subscribe to RSS
DOI: 10.1055/s-0029-1192044
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York
Adipose Tissue Dysfunction in Obesity
Publication History
received 10.12.2008
first decision 08.01.2009
accepted 08.01.2009
Publication Date:
08 April 2009 (online)
Abstract
The incidence of obesity has increased dramatically during recent decades. Obesity will cause a decline in life expectancy for the first time in recent history due to numerous co-morbid disorders. Adipocyte and adipose tissue dysfunction belong to the primary defects in obesity and may link obesity to several health problems including increased risk of insulin resistance, type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, atherosclerosis, dementia, airway disease and some cancers. However, not all obese individuals develop obesity related metabolic or cardiovascular disorders potentially due to a preserved normal adipose tissue architecture and function. The majority of patients with obesity have an impaired adipose tissue function caused by the interaction of genetic and environmental factors which lead to adipocyte hypertrophy, hypoxia, a variety of stresses and inflammatory processes within adipose tissue. Ectopic fat accumulation including visceral obesity may be considered as a consequence of adipose tissue dysfunction, which is further characterized by changes in the cellular composition, increased lipid storage and impaired insulin sensitivity in adipocytes, and secretion of a proinflammatory, atherogenic, and diabetogenic adipokine pattern. This review focuses on the discussion of mechanisms causing or maintaining impaired adipose tissue function in obesity and potentially linking obesity to its associated disorders. A model is proposed how different pathogenic factors and mechanisms may cause dysfunction of adipose tissue.
Key words
obesity - visceral fat - adipose tissue dysfunction - insulin resistance - adipocyte - adipokines - inflammation
References
- 1 Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med. 1995; 27 435-438
- 2 Basat O, Ucak S, Ozkurt H. et al . Visceral adipose tissue as an indicator of insulin resistance in nonobese patients with new onset type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2006; 114 58-62
- 3 Bashan N, Dorfman K, Tarnovscki T. et al . Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity. Endocrinology. 2007; 148 2955-2962
- 4 Berndt J, Kralisch S, Klöting N. et al . Adipose triglyceride lipase gene expression in human visceral obesity. Exp Clin Endocrinol Diabetes. 2008; 116 203-210
- 5 Blüher M. The inflammatory process of adipose tissue. Pediatr Endocrinol Rev. 2008; 6 24-31
- 6 Blüher M, Fasshauer M, Tönjes A. et al . Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp Clin Endocrinol Diabetes. 2005; 113 534-537
- 7 Blüher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003; 299 572-574
- 8 Blüher M, Michael MD, Peroni OD. et al . Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002; 3 25-38
- 9 Blüher M, Wilson-Fritch L, Leszyk J. et al . Role of insulin action and cell size on protein expression patterns in adipocytes. J Biol Chem. 2004; 279 31902-31909
- 10 Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2003; 111 121-124
- 11 Bornstein SR, Ehrhart-Bornstein M, Wong ML. et al . Is the worldwide epidemic of obesity a communicable feature of globalization?. Exp Clin Endocrinol Diabetes. 2008; 116 S30-S32
- 12 Boschmann M, Engeli S, Adams F. et al . Adipose tissue metabolism and CD11b expression on monocytes in obese hypertensives. Hypertension. 2005; 46 130-136
- 13 Bourlier V, Zakaroff-Girard A, Miranville A. et al . Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008; 117 806-815
- 14 Böttcher Y, Teupser D, Enigk B. et al . Genetic variation in the visfatin gene (PBEF1) and its relation to glucose metabolism and fat-depot-specific messenger ribonucleic acid expression in humans. J Clin Endocrinol Metab. 2006; 91 2725-2731
- 15 Cancello R, Clément K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006; 113 1141-1147
- 16 Cancello R, Henegar C, Viguerie N. et al . Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005; 54 2277-2286
- 17 Cancello R, Tordjman J, Poitou C. et al . Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006; 55 1554-1561
- 18 Carlsson E, Fredriksson J, Groop L. et al . Variation in the calpain-10 gene is associated with elevated triglyceride levels and reduced adipose tissue messenger ribonucleic acid expression in obese Swedish subjects. J Clin Endocrinol Metab. 2004; 89 3601-3605
- 19 Cinti S, Mitchell G, Barbatelli G. et al . Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005; 46 2347-2355
- 20 Curat CA, Miranville A, Sengenès C. et al . From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes. 2004; 53 1285-1292
- 21 Dina C, Meyre D, Gallina S. et al . Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007; 39 724-726
- 22 Dubois SG, Heilbronn LK, Smith SR. et al . Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring). 2006; 14 1543-1552
- 23 Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008; 29 42-61
- 24 Elbein SC, Chu WS, Das SK. et al . Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent. Diabetologia. 2007; 50 1621-1630
- 25 Engeli S. Dysregulation of the endocannabinoid system in obesity. J Neuroendocrinol. 2008; 20 110-115
- 26 Engeli S, Jordan J. The endocannabinoid system: body weight and metabolic regulation. Clin Cornerstone. 2006; 8 S24-S35
- 27 Ersek RA, Bell 4th HN, Salisbury AV. Serial and superficial suction for steatopygia (Hottentot bustle). Aesthetic Plast Surg. 1994; 18 279-282
- 28 Esterbauer H, Schneitler C, Oberkofler H. et al . A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet. 2001; 28 178-183
- 29 Farooqi S, O’Rahilly S. Genetics of obesity in humans. Endocr Rev. 2006; 27 710-718
- 30 Fleischmann E, Kurz A, Niedermayr M. et al . Tissue oxygenation in obese and non-obese patients during laparoscopy. Obes Surg. 2005; 15 813-819
- 31 Frayling TM, Timpson NJ, Weedon MN. et al . A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007; 316 889-894
- 32 Frayn KN. Visceral fat and insulin resistance – causative or correlative?. Br J Nutr. 2000; 83 S71-S77
- 33 Garg A, Misra A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol Metab Clin North Am. 2004; 33 305-331
- 34 Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 1999; 84 170-174
- 35 Grimsrud PA, Picklo Sr MJ, Griffin TJ. et al . Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics. 2007; 6 624-637
- 36 Guilherme A, Virbasius JV, Puri V. et al . Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008; 9 367-377
- 37 Hainer V, Zamrazilová H, Spálová J. et al . Role of hereditary factors in weight loss and its maintenance. Physiol Res. 2008; 57 S1-S15
- 38 Harman-Boehm I, Blüher M, Redel H. et al . Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007; 92 2240-2247
- 39 Haupt A, Thamer C, Staiger H. et al . Variation in the FTO gene influences food intake but not energy expenditure. Exp Clin Endocrinol Diabetes. 2008 Dec 3; , epub ahead
- 40 Hofbauer KG, Nicholson JR. Pharmacotherapy of obesity. Exp Clin Endocrinol Diabetes. 2006; 114 475-484
- 41 Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes. 1999; 107 119-125
- 42 Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259 87-91
- 43 Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 444 840-846
- 44 Kintscher U, Hartge M, Hess K. et al . T-lymphocyte infiltration in visceral adipose tissue. a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008; 28 1304-1310
- 45 Klein S, Fontana L, Young VL. et al . Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004; 350 2549-2557
- 46 Klöting N, Schleinitz D, Ruschke K. et al . Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia. 2008; 51 641-647
- 47 Klöting N, Stumvoll M, Blüher M. The biology of visceral fat. Internist. 2007; 48 126-133
- 48 Knudtson MD, Klein BE, Klein R. et al . Associations with weight loss and subsequent mortality risk. Ann Epidemiol. 2005; 15 483-491
- 49 Konrad D, Rudich A, Schoenle EJ. Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia. 2007; 50 833-839
- 50 Kovacs P, Berndt J, Ruschke K. et al . TCF7L2 gene expression in human visceral and subcutaneous adipose tissue is differentially regulated but not associated with type 2 diabetes mellitus. Metabolism. 2008; 57 1227-1231
- 51 Kovacs P, Geyer M, Berndt J. et al . Effects of genetic variation in the human retinol binding protein-4 gene (RBP4) on insulin resistance and fat depot-specific mRNA expression. Diabetes. 2007; 56 3095-3100
- 52 Krude H, Biebermann H, Luck W. et al . Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998; 19 155-157
- 53 Lång P, Harmelen V van, Rydén M. et al . Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity. PLoS ONE. 2008; 3 e1713
- 54 Lefèbvre PJ, Scheen AJ. Obesity: causes and new treatments. Exp Clin Endocrinol Diabetes. 2001; 109 S215-S224
- 55 LeRoith D, Novosyadlyy R, Gallagher EJ. et al . Obesity and type 2 diabetes are associated with an increased risk of developing cancer and a worse prognosis; epidemiological and mechanistic evidence. Exp Clin Endocrinol Diabetes. 2008; 116 S4-S6
- 56 Lolmède K, Durand de Saint Front V, Galitzky J. et al . Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes. 2003; 27 1187-1195
- 57 Loos RJ, Bouchard C. Obesity – is it a genetic disorder?. J Intern Med. 2003; 254 401-425
- 58 Mårin P, Andersson B, Ottosson M. et al . The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism. 1992; 41 1242-1248
- 59 Michailidou Z, Jensen MD, Dumesic DA. et al . Omental 11beta-hydroxysteroid dehydrogenase 1 correlates with fat cell size independently of obesity. Obesity (Silver Spring). 2007; 15 1155-1163
- 60 Montague CT, Farooqi IS, Whitehead JP. et al . Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997; 387 903-908
- 61 Mori Y, Hoshino K, Yokota K. et al . Increased visceral fat and impaired glucose tolerance predict the increased risk of metabolic syndrome in Japanese middle-aged men. Exp Clin Endocrinol Diabetes. 2005; 113 334-339
- 62 Motoshima H, Wu X, Sinha MK. et al . Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab. 2002; 87 5662-5667
- 63 Ohlson LO, Larsson B, Svärdsudd K. et al . The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985; 34 1055-1058
- 64 Olshansky SJ, Passaro DJ, Hershow RC. et al . A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005; 352 1138-1145
- 65 Palming J, Sjöholm K, Jernås M. et al . The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J Clin Endocrinol Metab. 2007; 92 2346-2352
- 66 Pausova Z. From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr Opin Nephrol Hypertens. 2006; 15 173-178
- 67 Pasarica M, Sereda OR, Redman LM. et al . Reduced adipose tissue oxygenation in human obesity – evidence for rarefaction, macrophage chemotaxis and inflammation without an angiogenic response. Diabetes. 2008 Dec 15; , epub ahead
- 68 Piper MD, Bartke A. Diet and aging. Cell Metab. 2008; 8 99-104
- 69 Pischon T, Boeing H, Hoffmann K. et al . General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008; 359 2105-2120
- 70 Plaisier CL, Kyttälä M, Weissglas-Volkov D. et al . Galanin preproprotein is associated with elevated plasma triglycerides. Arterioscler Thromb Vasc Biol. 2008 Nov 6; , epub ahead
- 71 Pou KM, Massaro JM, Hoffmann U. et al . Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007; 116 1234-1241
- 72 Prudente S, Flex E, Morini E. et al . A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities. Diabetes. 2007; 56 1468-1474
- 73 Rankinen T, Zuberi A, Chagnon YC. et al . The human obesity gene map: the 2005 update. Obesity (Silver Spring). 2006; 14 529-644
- 74 Rausch ME, Weisberg S, Vardhana P. et al . Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond). 2008; 32 451-463
- 75 Rasouli N, Molavi B, Elbein SC. et al . Ectopic fat accumulation and metabolic syndrome. Diabetes Obes Metab. 2007; 9 1-10
- 76 Reaven GM. Importance of identifying the overweight patient who will benefit the most by losing weight. Ann Intern Med. 2003; 138 420-423
- 77 Romao I, Roth J. Genetic and environmental interactions in obesity and type 2 diabetes. J Am Diet Assoc. 2008; 108 S24-S28
- 78 Rudich A, Kanety H, Bashan N. Adipose stress-sensing kinases: linking obesity to malfunction. Trends Endocrinol Metab. 2007; 18 291-299
- 79 Sabio G, Das M, Mora A. et al . A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008; 322 1539-1543
- 80 Sainaghi PP, Castello L, Bergamasco L. et al . Metabolic characteristics of glucose intolerance: the critical role of obesity. Exp Clin Endocrinol Diabetes. 2008; 116 86-93
- 81 Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest. 2008; 118 2992-3002
- 82 Schinner S, Kempf K, Overmann H. et al . Association of impaired glucose metabolism in morbid obesity with hypoadiponectinaemia. Exp Clin Endocrinol Diabetes. 2008; 116 S64-S69
- 83 Shackleton S, Lloyd DJ, Jackson SN. et al . LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000; 24 153-156
- 84 Skurk T, Alberti-Huber C, Herder C. et al . Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007; 92 1023-1033
- 85 Spalding KL, Arner E, Westermark PO. et al . Dynamics of fat cell turnover in humans. Nature. 2008; 453 783-787
- 86 Staiger H, Häring HU. Adipocytokines: fat-derived humoral mediators of metabolic homeostasis. Exp Clin Endocrinol Diabetes. 2005; 113 67-79
- 87 Stefan N, Stumvoll M. Adiponectin – its role in metabolism and beyond. Horm Metab Res. 2002; 34 469-474
- 88 Thorne A, Lonnqvist F, Apelman J. et al . A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002; 26 193-199
- 89 Tran TT, Yamamoto Y, Gesta S. et al . Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008; 7 410-420
- 90 Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004; 92 347-355
- 91 Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?. Br J Nutr. 2008; 100 227-235
- 92 Tuncman G, Erbay E, Hom X. et al . A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci USA. 2006; 103 6970-6975
- 93 Vaisse C, Clement K, Guy-Grand B. et al . A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998; 20 113-114
- 94 Gaal LF Van, Mertens IL, Block CE De. Mechanisms linking obesity with cardiovascular disease. Nature. 2006; 444 875-880
- 95 Harmelen V Van, Röhrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism. 2004; 53 632-637
- 96 Virtanen KA, Lönnroth P, Parkkola R. et al . Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002; 87 3902-3910
- 97 Wåhlén K, Sjölin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res. 2008; 49 607-611
- 98 Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000; 21 697-738
- 99 Wang J, Kuusisto J, Vänttinen M. et al . Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia. 2007; 50 1192-1200
- 100 Weinstein AR, Sesso HD, Lee IM. et al . Relationship of physical activity vs. body mass index with type 2 diabetes in women. JAMA. 2004; 292 1188-1194
- 101 Weisberg SP, MacCann D, Desai M. et al . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003; 112 1796-1808
- 102 Wood IS, Wang B, Lorente-Cebrián S. et al . Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-d-glucose uptake in human adipocytes. Biochem Biophys Res Commun. 2007; 361 468-473
-
103
World Health Organization
.
Health Report.
2005;
- 104 Ye J, Gao Z, Yin J. et al . Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007; 293 E1118-E1128
- 105 Yeo GS, Farooqi IS, Aminian S. et al . A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998; 20 111-112
- 106 Youn BS, Bang SI, Klöting N. et al . Serum Progranulin Concentrations May be Associated with Macrophage Infiltration into Omental Adipose Tissue. Diabetes. 2008 Dec 3; , epub ahead
- 107 Youn BS, Klöting N, Kratzsch J. et al . Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes. 2008; 57 372-377
- 108 Yusuf S, Hawken S, Ounpuu S. et al . Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: a case-control study. Lancet. 2005; 366 1640-1649
- 109 Zeyda M, Farmer D, Todoric J. et al . Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond). 2007; 31 1420-1428
Correspondence
M. BlüherMD
Medical Department
University of Leipzig
Ph.-Rosenthal-Str. 27
04103 Leipzig
Germany
Phone: +49/341/971 59 84
Fax: +49/341/972 24 39
Email: bluma@medizin.uni-leipzig.de