- Original Article
- Published:
Estimation of chlorophyll in Quercus leaves using a portable chlorophyll meter: effects of species and leaf age
Estimation de la chlorophylle dans les feuilles de Quercus en utilisant un chlorophyllomètre portable : effets de l’espèce et de l’âge des feuilles
Annals of Forest Science volume 67, page 108 (2010)
Abstract
-
• The potential of a chlorophyll meter (CCM-200, Opti-Sciences, Tyngsboro, MA, USA) for the estimation of total leaf chlorophyll contents was evaluated in leaves of different developmental stages for Quercus pyrenaica Willd., Q. faginea Lam., Q. suber L. and Q. ilex L. subsp. ballota (Desf.) Samp.
-
• For all species and leaf stages, a strong non-linear relationship (P < 0.0001) was found between the chlorophyll content index (CCI) and leaf chlorophyll content per unit area. In all species, the slope of the CCI-chlorophyll content relationship varied during leaf development, suggesting that caution should be exercised when using the CCM-200, since the interpretation of CCI readings should be limited to samples of similar leaf age. Also, the data indicate that the models should also be speciesspecific, owing to differences in the intercept and/or slope of the equations.
-
• The addition of fresh LMA as a complementary parameter improved the accuracy of chlorophyll estimation in non-species-specific equations to a considerable extent when leaf samples of similar development were considered.
-
• After due consideration, it may be concluded that the CCM-200 chlorophyll meter is a reliable method for acquiring an estimation of chlorophyll contents in Mediterranean Quercus species, with potential use as an effective tool in forest management.
Résumé
-
• Le potentiel d’un chlorophyllomètre (CCM-200, Opti-Sciences, Tyngsboro, MA, USA) pour l’estimation du contenu total des feuilles en chlorophylle a été évalué dans des feuilles à différents stades de développement chez Quercus pyrenaica Willd., Q. faginea Lamb. Q. suber L. et Q. ilex L. subsp. ballota (Desf.) Samp.
-
• Pour toutes les espèces et les feuilles à différents stades, une forte relation non linéaire (P < 0,0001) a été trouvée entre l’index de teneur en chlorophylle (CCI) et la teneur en chlorophylle des feuilles par unité de surface. Chez toutes les espèces, la pente de la relation CCI-teneur en chlorophylle a varié avec le développement de la feuille, ce qui suggère que la prudence est de mise lors de l’utilisation du CCM-200,puisque l’interprétation des indications du CCI devraient être limitées à des échantillons de feuilles d’âge similaire. Aussi, les données indiquent que les modèles devraient également être spécifiques à l’espèce, en raison des différences dans l’interception et/ou la pente des équations.
-
• L’ajout de nouvelles LMA en tant que paramètre complémentaire a amélioré la précision de l’estimation de la chlorophylle dans les équations non spécifiques de l’espèce, et ceci dans une large mesure lorsque des échantillons de feuilles de développement similaires ont été examinés.
-
• Après mûre réflexion, il peut être conclu que le chlorophyllomètre CCM-200 est une méthode fiable pour l’acquisition d’une estimation de la teneur en chlorophylle des espèces méditerranéennes de Quercus, avec la possibilité de l’utiliser comme un outil efficace pour la gestion des forêts.
References
Abadía A., Gil E., Morales F., Montañés L., Montserrat G., and Abadía J., 1996. Marcescence and senescence in a sub-Mediterranean oak (Quercus subpyrenaica E.H. del Villar): photosynthetic characteristics and nutrient composition. Plant Cell Environ. 19: 685–694.
Barnes J.D., Balaguer L., Manrique E., Elvira S., and Davison A.W., 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32: 85–100.
Berg A.K. and Perkins T.D., 2004. Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. For. Ecol. Manage. 200: 113–117.
Campbell R.J., Mobley K.N., Marini R.P., and Pfeiffer D.G., 1990. Growing conditions alter the relationship between SPAD-5001 values and apple leaf chlorophyll. HortScience 25: 330–331.
Castelli F., Contillo R., and Miceli F., 1996. Non-destructive determination of leaf chlorophyll content in four crop species. J. Agron. Crop Sci. 177: 275–283.
Chang S.X. and Robinson D.J., 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. For. Ecol. Manage. 181: 331–338.
Daas C., Montpied P., Hanchi B., and Dreyer E., 2008. Responses of photosynthesis to high temperatures in oak saplings assessed by chlorophyll-a fluorescence: inter-specific diversity and temperatureinduced plasticity. Ann. For. Sci. 65: 305.
Datt B., 1999. A new reflectance index for remote sensing of chlorophyll content in higher plants: test using Eucalyptus leaves. J. Plant Physiol. 154: 30–36.
Gotelli N.J. and Ellison A.M., 2004. A primer of ecological statistics, Sinauer Associates, Inc., Sunderland, 528 p.
Gratani L., Covone F., and Larcher W., 2006. Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20: 549–558.
Haupt W. and Scheuerlein R., 1990. Chloroplast movement. Plant Cell Environ. 13: 595–614.
Hiscox J.D. and Israelstam G.F., 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57: 1332–1334.
Hoel B.O. and Solhaug K.A., 1998. Effect of irradiance on chlorophyll estimation with the Minolta SPAD-502 leaf chlorophyll meter. Ann. Bot. 82: 389–392.
Jifon J.L., Syvertsen J.P., and Whaley E., 2005. Growth environment and leaf anatomy affect non-destructive estimates of chlorophyll and nitrogen in Citrus sp. leaves. J. Am. Soc. Hortic. Sci. 130: 152–158.
Markwell J., Osterman J.C., and Mitchell J.L., 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46: 467–472.
Mediavilla S. and Escudero A., 2003. Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytol. 159: 203–211.
Monge O.A. and Bugbee B., 1992. Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. HortScience 27: 69–71.
Moran J.A., Mitchell A.K., Goodmanson G., and Stockburguer K.A., 2000. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiol. 20: 1113–1120.
Neufeld H.S., Chappelka A.H., Somers G.L., Burkey K.O., Davison A.W., and Finkelstein P.L., 2006. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. Photosynth. Res. 87: 281–286.
Peguero-Pina J.J., Morales F., and Gil-Pelegrín E., 2008. Frost damage in Pinus sylvestris L. stems assessed by chlorophyll fluorescence in cortical bark chlorenchyma. Ann. For. Sci. 65: 813.
Peñuelas J. and Filella I., 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 3: 151–156.
Pinkard E.A., Patel V., and Mohammed C., 2006. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. For. Ecol. Manage 223: 211–217.
Porra R.J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73: 149–156.
Richardson A.D., Duigan S.P., and Berlyn G.P., 2002. An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytol. 153: 185–194.
Sibley J.L., Eakes D.J., Gilliam C.H., Keever G.J., Dozier W.A., and Himelrick D.G., 1996. Foliar SPAD-502 meter values, nitrogen levels, and extractable chlorophyll for red maple selection. HortScience 31: 468–470.
Sokal R.R. and Rohlf F.J., 1995. Biometry, Freeman and Company, New York, 887 p.
Tait M.A. and Hik D.S., 2003. Is dimethylsulfoxide a reliable solvent for extracting chlorophyll under field conditions? Photosynth. Res. 78: 87–91.
Terashima I. and Saeki T., 1983. Light environment within a leaf. Plant Cell Physiol. 24: 1493–1501.
Thompson J.A., Schweitzer L.E., and Nelson R.L., 1996. Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll concentration with apparent photosynthesis in soybean. Photosynth. Res. 49: 1–10.
Uddling J., Gelang-Alfredsson J., Piikki K., and Pleijel H., 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91: 37–46.
Wang Q.B., Chen M.J., and Li Y.C., 2004. Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. J. Plant Nutr. 27: 557–569.
Wellburn A.R., 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144: 307–313.
Wood C.W., Tracy P.W., Reeves D.W., and Edmisten, K.L., 1992. Determination of cotton nitrogen status with a hand-held chlorophyll meter. J. Plant Nutr. 15: 1435–1448.
Yamamoto A., Nakamura T., Adu-Gyamfi J.J., and Saigusa M., 2002. Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). J. Plant Nutr. 25: 2295–2301.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Silla, F., González-Gil, A., González-Molina, M.E. et al. Estimation of chlorophyll in Quercus leaves using a portable chlorophyll meter: effects of species and leaf age. Ann. For. Sci. 67, 108 (2010). https://doi.org/10.1051/forest/2009093
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1051/forest/2009093