Issue 23, 2012

Graphene oxide strongly inhibits amyloid beta fibrillation

Abstract

Since amyloid beta fibrillation (AβF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Aβ fibrillation in the aqueous solution. We showed that GO and their protein-covered surfaces delay the AβF process via adsorption of amyloid monomers. Also, the large available surface of GO sheets can delay the AβF process by adsorption of amyloid monomers. The inhibitory effect of the GO sheet was increased when we increase the concentration from 10% (in vitro; stimulated media) to 100% (in vivo; stimulated media). Conclusion: our results revealed that GO and their surface proteins inhibit AβF by decreasing the kinetic reaction.

Graphical abstract: Graphene oxide strongly inhibits amyloid beta fibrillation

Supplementary files

Article information

Article type
Communication
Submitted
28 Jun 2012
Accepted
24 Sep 2012
First published
02 Oct 2012

Nanoscale, 2012,4, 7322-7325

Graphene oxide strongly inhibits amyloid beta fibrillation

M. Mahmoudi, O. Akhavan, M. Ghavami, F. Rezaee and S. M. A. Ghiasi, Nanoscale, 2012, 4, 7322 DOI: 10.1039/C2NR31657A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements