Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

p63 and p73 in human cancer: defining the network

Abstract

The p53-related genes p63 and p73 exhibit significant structural homology to p53; however, they do not function as classical tumor suppressors and are rarely mutated in human cancers. Both p63 and p73 exhibit tissue-specific roles in normal development and a complex contribution to tumorigenesis that is due to their expression as multiple protein isoforms. The predominant p63/p73 isoforms expressed both in normal development and in many tumors lack the conserved transactivation (TA) domain; these isoforms instead exhibit a truncated N-terminus (ΔN) and function at least in part as transcriptional repressors. p63 and p73 isoforms are regulated through both transcriptional and post-translational mechanisms, and they in turn regulate diverse cellular functions including proliferation, survival and differentiation. The net effect of p63/p73 expression in a given context depends on the ratio of TA/ΔN isoforms expressed, on physical interaction between p63 and p73 isoforms, and on functional interactions with p53 at the promoters of specific downstream target genes. These multifaceted interactions occur in diverse ways in tumor-specific contexts, demonstrating a functional ‘p53 family network’ in human tumorigenesis. Understanding the regulation and mechanistic contributions of p63 and p73 in human cancers may ultimately provide new therapeutic opportunities for a variety of these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Agami R, Blandino G, Oren M, Shaul Y . (1999). Interaction of c-abl and p73α and their collaboration to induce apoptosis. Nature 399: 809–813.

    CAS  Google Scholar 

  • Antonini D, Rossi B, Han R, Minichiello A, Di Palma T, Corrado M et al. (2006). An autoregulatory loop directs the tissue-specific expression of p63 through a long-range evolutionarily conserved enhancer. Mol Cell Biol 26: 3308–3318.

    CAS  Google Scholar 

  • Balint E, Bates S, Vousden KH . (1999). Mdm2 binds p73 alpha without targeting degradation. Oncogene 18: 3923–3929.

    CAS  Google Scholar 

  • Barbieri CE, Barton CE, Pietenpol JA . (2003). Delta Np63 alpha expression is regulated by the phosphoinositide 3-kinase pathway. J Biol Chem 278: 51408–51414.

    CAS  Google Scholar 

  • Barbieri CE, Perez CA, Johnson KN, Ely KA, Billheimer D, Pietenpol JA . (2005). IGFBP-3 is a direct target of transcriptional regulation by DeltaNp63alpha in squamous epithelium. Cancer Res 65: 2314–2320.

    CAS  Google Scholar 

  • Barbieri CE, Pietenpol JA . (2006). p63 and epithelial biology. Exp Cell Res 312: 695–706.

    CAS  Google Scholar 

  • Barbieri CE, Tang LJ, Brown KA, Pietenpol JA . (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66: 7589–7597.

    CAS  Google Scholar 

  • Basu S, Totty NF, Irwin MS, Sudol M, Downward J . (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11: 11–23.

    CAS  Google Scholar 

  • Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al. (2003). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3: 387–402.

    CAS  Google Scholar 

  • Bjorkqvist AM, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Tammilehto L, Mattson K et al. (1998). DNA gains in 3q occur frequently in squamous cell carcinoma of the lung, but not in adenocarcinoma. Genes Chromosomes Cancer 22: 79–82.

    CAS  Google Scholar 

  • Blandino G, Dobbelstein M . (2004). p73 and p63: why do we still need them? Cell Cycle 3: 886–894.

    CAS  Google Scholar 

  • Blint E, Phillips AC, Kozlov S, Stewart CL, Vousden KH . (2002). Induction of p57(KIP2) expression by p73beta. Proc Natl Acad Sci USA 99: 3529–3534.

    Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    CAS  Google Scholar 

  • Calabro V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G . (2002). The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 277: 2674–2681.

    CAS  Google Scholar 

  • Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M et al. (2006). p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10: 281–293.

    CAS  Google Scholar 

  • Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8: 551–561.

    CAS  Google Scholar 

  • Chan WM, Siu WY, Lau A, Poon RY . (2004). How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol 24: 3536–3551.

    CAS  Google Scholar 

  • Chi SG, Chang SG, Lee SJ, Lee CH, Kim JI, Park JH . (1999a). Elevated and biallelic expression of p73 is associated with progression of human bladder cancer. Cancer Res 59: 2791–2793.

    CAS  Google Scholar 

  • Chi SW, Ayed A, Arrowsmith CH . (1999b). Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J 18: 4438–4445.

    CAS  Google Scholar 

  • Choi HR, Batsakis JG, Zhan F, Sturgis E, Luna MA, El-Naggar AK . (2002). Differential expression of p53 gene family members p63 and p73 in head and neck squamous tumorigenesis. Hum Pathol 33: 158–164.

    CAS  Google Scholar 

  • Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H et al. (2004). Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res 64: 2449–2460.

    CAS  Google Scholar 

  • Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 59: 3352–3356.

    CAS  Google Scholar 

  • Courtois S, de Fromentel CC, Hainaut P . (2004). p53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene 23: 631–638.

    CAS  Google Scholar 

  • Cuadros M, Ribas G, Fernandez V, Rivas C, Benitez J, Martinez-Delgado B . (2006). Allelic expression and quantitative RT-PCR study of TAp73 and DeltaNp73 in non-Hodgkin's lymphomas. Leuk Res 30: 170–177.

    CAS  Google Scholar 

  • Cui R, He J, Mei R, de Fromentel CC, Martel-Planche G, Taniere P et al. (2005). Expression of p53, p63, and p73 isoforms in squamous cell carcinoma and adenocarcinoma of esophagus. Biochem Biophys Res Commun 336: 339–345.

    Google Scholar 

  • Davison TS, Vagner C, Kaghad M, Ayed A, Caput D, Arrowsmith CH . (1999). p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J Biol Chem 274: 18709–18714.

    CAS  Google Scholar 

  • De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico-Petruzzelli M et al. (1998). Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 188: 1763–1768.

    CAS  Google Scholar 

  • De Laurenzi V, Melino G . (2000). Evolution of functions within the p53/p63/p73 family. Ann NY Acad Sci 926: 90–100.

    CAS  Google Scholar 

  • De Laurenzi V, Rossi A, Terrinoni A, Barcaroli D, Levrero M, Costanzo A et al. (2000). p63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem Biophys Res Commun 273: 342–346.

    CAS  Google Scholar 

  • Deyoung MP, Johannessen CM, Leong CO, Faquin W, Rocco JW, Ellisen LW . (2006). Tumor-Specific p73 Up-regulation Mediates p63 Dependence in Squamous Cell Carcinoma. Cancer Res 66: 9362–9368.

    CAS  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438–1449.

    CAS  Google Scholar 

  • Dohn M, Zhang S, Chen X . (2001). p63α and ΔNp63α can induce cell arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20: 3193–3205.

    CAS  Google Scholar 

  • Dominguez G, Silva JM, Silva J, Garcia JM, Sanchez A, Navarro A et al. (2001). Wild type p73 overexpression and high-grade malignancy in breast cancer. Breast Cancer Res Treat 66: 183–190.

    CAS  Google Scholar 

  • Dominguez G, Garcia JM, Pena C, Silva J, Garcia V, Martinez L et al. (2006). DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol 24: 805–815.

    CAS  Google Scholar 

  • Douc-Rasy S, Barrois M, Echeynne M, Kaghad M, Blanc E, Raguenez G et al. (2002). DeltaN-p73alpha accumulates in human neuroblastic tumors. Am J Pathol 160: 631–639.

    CAS  Google Scholar 

  • Fillippovich I, Sorokina N, Gatei M, Haupt Y, Hobson K, Moallem E et al. (2001). Transactivation-deficient p73alpha (p73Deltaexon2) inhibits apoptosis and competes with p53. Oncogene 20: 514–522.

    CAS  Google Scholar 

  • Flinterman M, Guelen L, Ezzati-Nik S, Killick R, Melino G, Tominaga K et al. (2005). E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem 280: 5945–5959.

    CAS  Google Scholar 

  • Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F et al. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416: 560–564.

    CAS  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    CAS  Google Scholar 

  • Fomenkov A, Zangen R, Huang YP, Osada M, Guo Z, Fomenkov T et al. (2004). RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 3: 1285–1295.

    CAS  Google Scholar 

  • Fontemaggi G, Gurtner A, Strano S, Higashi Y, Sacchi A, Piaggio G et al. (2001). The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol Cell Biol 21: 8461–8470.

    CAS  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21: 1874–1887.

    CAS  Google Scholar 

  • Gaiddon C, Lokshin M, Gross I, Levasseur D, Taya Y, Loeffler JP et al. (2003). Cyclin-dependent kinases phosphorylate p73 at threonine 86 in a cell cycle-dependent manner and negatively regulate p73. J Biol Chem 278: 27421–27431.

    CAS  Google Scholar 

  • Ghioni P, Bolognese F, Duijf PH, Van Bokhoven H, Mantovani R, Guerrini L . (2002). Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol 22: 8659–8668.

    CAS  Google Scholar 

  • Ghioni P, D'Alessandra Y, Mansueto G, Jaffray E, Hay RT, La Mantia G et al. (2005). The protein stability and transcriptional activity of p63alpha are regulated by SUMO-1 conjugation. Cell Cycle 4: 183–190.

    CAS  Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG, Levrero M et al. (1999). The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399: 806–809.

    CAS  Google Scholar 

  • Gonzalez S, Prives C, Cordon-Cardo C . (2003). p73alpha regulation by Chk1 in response to DNA damage. Mol Cell Biol 23: 8161–8171.

    CAS  Google Scholar 

  • Green H, Easley K, Iuchi S . (2003). Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl Acad Sci USA 100: 15625–15630.

    CAS  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8: 1213–1223.

    CAS  Google Scholar 

  • Hagiwara K, McMenamin MG, Miura K, Harris CC . (1999). Mutational analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res 59: 4165–4169.

    CAS  Google Scholar 

  • Hanamoto T, Ozaki T, Furuya K, Hosoda M, Hayashi S, Nakanishi M et al. (2005). Identification of protein kinase A catalytic subunit beta as a novel binding partner of p73 and regulation of p73 function. J Biol Chem 280: 16665–16675.

    CAS  Google Scholar 

  • Harmes DC, Bresnick E, Lubin EA, Watson JK, Heim KE, Curtin JC et al. (2003). Positive and negative regulation of deltaN-p63 promoter activity by p53 and deltaN-p63-alpha contributes to differential regulation of p53 target genes. Oncogene 22: 7607–7616.

    CAS  Google Scholar 

  • Harms K, Nozell S, Chen X . (2004). The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61: 822–842.

    CAS  Google Scholar 

  • Helton ES, Zhu J, Chen X . (2006). The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem 281: 2533–2542.

    CAS  Google Scholar 

  • Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE et al. (2000). AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97: 5462–5467.

    CAS  Google Scholar 

  • Hu H, Xia SH, Li AD, Xu X, Cai Y, Han YL et al. (2002). Elevated expression of p63 protein in human esophageal squamous cell carcinomas. Int J Cancer 102: 580–583.

    CAS  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648.

    CAS  Google Scholar 

  • Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin Jr WG . (2003). Chemosensitivity linked to p73 function. Cancer Cell 3: 403–410.

    CAS  Google Scholar 

  • Ishimoto O, Kawahara C, Enjo K, Obinata M, Nukiwa T, Ikawa S . (2002). Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res 62: 636–641.

    CAS  Google Scholar 

  • Jacobs WB, Govoni G, Ho D, Atwal JK, Barnabe-Heider F, Keyes WM et al. (2005). p63 is an essential proapoptotic protein during neural development. Neuron 48: 743–756.

    CAS  Google Scholar 

  • Jeong MH, Bae J, Kim WH, Yoo SM, Kim JW, Song PI et al. (2006). p19ras interacts with and activates p73 by involving the MDM2 protein. J Biol Chem 281: 8707–8715.

    CAS  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    CAS  Google Scholar 

  • Kamiya M, Nakazato Y . (2002). The expression of p73, p21 and MDM2 proteins in gliomas. J Neurooncol 59: 143–149.

    Google Scholar 

  • Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H et al. (1999). Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94: 1113–1120.

    CAS  Google Scholar 

  • Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA . (2005). p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19: 1986–1999.

    CAS  Google Scholar 

  • Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM et al. (2006). p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA 103: 8435–8440.

    CAS  Google Scholar 

  • Koga F, Kawakami S, Fujii Y, Saito K, Ohtsuka Y, Iwai A et al. (2003). Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin Cancer Res 9: 5501–5507.

    CAS  Google Scholar 

  • Koker MM, Kleer CG . (2004). p63 expression in breast cancer: a highly sensitive and specific marker of metaplastic carcinoma. Am J Surg Pathol 28: 1506–1512.

    Google Scholar 

  • Kovalev S, Marchenko N, Swendeman S, LaQuaglia M, Moll UM . (1998). Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ 9: 897–903.

    CAS  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.

    CAS  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119: 861–872.

    CAS  Google Scholar 

  • Leupin N, Luthi A, Novak U, Grob TJ, Hugli B, Graber H et al. (2004). P73 status in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma 45: 1205–1207.

    CAS  Google Scholar 

  • Li N, Li H, Cherukuri P, Farzan S, Harmes DC, DiRenzo J . (2006). TA-p63-gamma regulates expression of DeltaN-p63 in a manner that is sensitive to p53. Oncogene 25: 2349–2359.

    CAS  Google Scholar 

  • Little NA, Jochemsen AG . (2001). Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene 20: 4576–4580.

    CAS  Google Scholar 

  • Liu G, Nozell S, Xiao H, Chen X . (2004). DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol 24: 487–501.

    CAS  Google Scholar 

  • Liu SS, Chan KY, Cheung AN, Liao XY, Leung TW, Ngan HY . (2006). Expression of deltaNp73 and TAp73alpha independently associated with radiosensitivities and prognoses in cervical squamous cell carcinoma. Clin Cancer Res 12: 3922–3927.

    CAS  Google Scholar 

  • Maisse C, Munarriz E, Barcaroli D, Melino G, De Laurenzi V . (2004). DNA damage induces the rapid and selective degradation of the DeltaNp73 isoform, allowing apoptosis to occur. Cell Death Differ 11: 685–687.

    CAS  Google Scholar 

  • Mantovani F, Piazza S, Gostissa M, Strano S, Zacchi P, Mantovani R et al. (2004). Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell 14: 625–636.

    CAS  Google Scholar 

  • Marin MC, Jost CA, Brooks LA, Irwin MS, O'Nions J, Tidy JA et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25: 47–54.

    CAS  Google Scholar 

  • Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME et al. (2003). Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 63: 7113–7121.

    CAS  Google Scholar 

  • Matheny KE, Barbieri CE, Sniezek JC, Arteaga CL, Pietenpol JA . (2003). Inhibition of epidermal growth factor receptor signaling decreases p63 expression in head and neck squamous carcinoma cells. Laryngoscope 113: 936–939.

    CAS  Google Scholar 

  • Melino G, De Laurenzi V, Vousden KH . (2002). p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.

    CAS  Google Scholar 

  • Melino G, Lu X, Gasco M, Crook T, Knight RA . (2003). Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28: 663–670.

    CAS  Google Scholar 

  • Mills AA . (2006). p63: oncogene or tumor suppressor? Curr Opin Genet Dev 16: 38–44.

    CAS  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713.

    CAS  Google Scholar 

  • Minty A, Dumont X, Kaghad M, Caput D . (2000). Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275: 36316–36323.

    CAS  Google Scholar 

  • Miyazaki K, Ozaki T, Kato C, Hanamoto T, Fujita T, Irino S et al. (2003). A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun 308: 106–113.

    CAS  Google Scholar 

  • Moll UM, Slade N . (2004). p63 and p73: roles in development and tumor formation. Mol Cancer Res 2: 371–386.

    CAS  Google Scholar 

  • Momand J, Wu HH, Dasgupta G . (2000). MDM2 – master regulator of the p53 tumor suppressor protein. Gene 242: 15–29.

    CAS  Google Scholar 

  • Muller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H et al. (2005). TAp73/DeltaNp73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 12: 1564–1577.

    CAS  Google Scholar 

  • Nakagawa T, Takahashi M, Ozaki T, Watanabe Ki K, Todo S, Mizuguchi H et al. (2002). Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol Cell Biol 22: 2575–2585.

    CAS  Google Scholar 

  • Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della Gatta G et al. (2006). Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 20: 1028–1042.

    CAS  Google Scholar 

  • Nishi H, Senoo M, Nishi KH, Murphy BA, Rikiyama T, Matsumura Y et al. (2001). p53 homologue p63 represses epidermal growth factor receptor gene expression. J Biol Chem 276: 41717–41724.

    CAS  Google Scholar 

  • Nylander K, Vojtesek B, Nenutil R, Lindgren B, Roos G, Zhanxiang W et al. (2002). Differential expression of p63 isoforms in normal tissues and neoplastic cells. J Pathol 198: 417–427.

    CAS  Google Scholar 

  • Oberst A, Rossi M, Salomoni P, Pandolfi PP, Oren M, Melino G et al. (2005). Regulation of the p73 protein stability and degradation. Biochem Biophys Res Commun 331: 707–712.

    CAS  Google Scholar 

  • Park BJ, Lee SJ, Kim JI, Lee SJ, Lee CH, Chang SG et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res 60: 3370–3374.

    CAS  Google Scholar 

  • Parsa R, Yang A, McKeon F, Green H . (1999). Association of p63 with proliferative potential in normal and neoplastic keratinocytes. J Invest Dermatol 113: 1099–1104.

    CAS  Google Scholar 

  • Patturajan M, Nomoto S, Sommer M, Fomenkov A, Hibi K, Zangen R et al. (2002). DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell 1: 369–379.

    CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    CAS  Google Scholar 

  • Peters UR, Tschan MP, Kreuzer KA, Baskaynak G, Lass U, Tobler A et al. (1999). Distinct expression patterns of the p53-homologue p73 in malignant and normal hematopoiesis assessed by a novel real-time reverse transcription-polymerase chain reaction assay and protein analysis. Cancer Res 59: 4233–4236.

    CAS  Google Scholar 

  • Petrenko O, Zaika A, Moll UM . (2003). deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol 23: 5540–5555.

    CAS  Google Scholar 

  • Pozniak CD, Radinovic S, Yang A, McKeon F, Kaplan DR, Miller FD . (2000). An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289: 257–258.

    Google Scholar 

  • Ramalho FS, Ramalho LN, Della Porta L, Zucoloto S . (2006). Comparative immunohistochemical expression of p63 in human cholangiocarcinoma and hepatocellular carcinoma. J Gastroenterol Hepatol 21: 1276–1280.

    CAS  Google Scholar 

  • Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, du Manoir S . (2001). A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res 61: 4122–4129.

    CAS  Google Scholar 

  • Reis-Filho JS, Milanezi F, Amendoeira I, Albergaria A, Schmitt FC . (2003). Distribution of p63, a novel myoepithelial marker, in fine-needle aspiration biopsies of the breast: an analysis of 82 samples. Cancer 99: 172–179.

    CAS  Google Scholar 

  • Ribeiro-Silva A, Ramalho LN, Garcia SB, Brandao DF, Chahud F, Zucoloto S . (2005). p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology 47: 458–466.

    CAS  Google Scholar 

  • Rizzo MG, Giombini E, Diverio D, Vignetti M, Sacchi A, Testa U et al. (2004). Analysis of p73 expression pattern in acute myeloid leukemias: lack of DeltaN-p73 expression is a frequent feature of acute promyelocytic leukemia. Leukemia 18: 1804–1809.

    CAS  Google Scholar 

  • Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9: 45–56.

    CAS  Google Scholar 

  • Romano RA, Birkaya B, Sinha S . (2006). Defining the regulatory elements in the proximal promoter of DeltaNp63 in keratinocytes: Potential roles for Sp1/Sp3, NF-Y, and p63. J Invest Dermatol 126: 1469–1479.

    CAS  Google Scholar 

  • Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, Knight RA et al. (2006a). The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci USA 103: 12753–12758.

    CAS  Google Scholar 

  • Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH et al. (2005). The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 24: 836–848.

    CAS  Google Scholar 

  • Rossi M, De Simone M, Pollice A, Santoro R, La Mantia G, Guerrini L et al. (2006b). Itch/AIP4 associates with and promotes p63 protein degradation. Cell Cycle 5: 1816–1822.

    CAS  Google Scholar 

  • Seelan RS, Irwin M, van der Stoop P, Qian C, Kaelin Jr WG, Liu W . (2002). The human p73 promoter: characterization and identification of functional E2F binding sites. Neoplasia 4: 195–203.

    CAS  Google Scholar 

  • Senoo M, Matsumura Y, Habu S . (2002). TAp63γ (p51A) and dNp63α (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene 21: 2455–2465.

    CAS  Google Scholar 

  • Senoo M, Manis JP, Alt FW, McKeon F . (2004). p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 6: 85–89.

    CAS  Google Scholar 

  • Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE et al. (2002). A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol Cell Biol 22: 8601–8611.

    CAS  Google Scholar 

  • Sniezek JC, Matheny KE, Westfall MD, Pietenpol JA . (2004). Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope 114: 2063–2072.

    CAS  Google Scholar 

  • Stiewe T, Putzer BM . (2002). Role of p73 in malignancy: tumor suppressor or oncogene? Cell Death Differ 9: 237–245.

    CAS  Google Scholar 

  • Stiewe T, Theseling CC, Putzer BM . (2002). Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem 277: 14177–14185.

    CAS  Google Scholar 

  • Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A et al. (2001). Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276: 15164–15173.

    CAS  Google Scholar 

  • Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E et al. (2005). The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Mol Cell 18: 447–459.

    CAS  Google Scholar 

  • Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z et al. (2006). p63 protects the female germ line during meiotic arrest. Nature 444: 624–628.

    CAS  Google Scholar 

  • Sunahara M, Shishikura T, Takahashi M, Todo S, Yamamoto N, Kimura H et al. (1999). Mutational analysis of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast cancer. Oncogene 18: 3761–3765.

    CAS  Google Scholar 

  • Tannapfel A, Schmelzer S, Benicke M, Klimpfinger M, Kohlhaw K, Mossner J et al. (2001). Expression of the p53 homologues p63 and p73 in multiple simultaneous gastric cancer. J Pathol 195: 163–170.

    CAS  Google Scholar 

  • Thanos CD, Bowie JU . (1999). p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci 8: 1708–1710.

    CAS  Google Scholar 

  • Tokuchi Y, Hashimoto T, Kobayashi Y, Hayashi M, Nishida K, Hayashi S et al. (1999). The expression of p73 is increased in lung cancer, independent of p53 gene alteration. Br J Cancer 80: 1623–1629.

    CAS  Google Scholar 

  • Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y et al. (2005). High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA 102: 9625–9630.

    CAS  Google Scholar 

  • Troung AB, Kretz M, Ridky TW, Kimmel R, Khavari PA . (2006). p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 20: 3185–3197.

    Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H et al. (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53.

    CAS  Google Scholar 

  • Uramoto H, Izumi H, Ise T, Tada M, Uchiumi T, Kuwano M et al. (2002). p73 Interacts with c-Myc to regulate Y-box-binding protein-1 expression. J Biol Chem 277: 31694–31702.

    CAS  Google Scholar 

  • Urist M, Tanaka T, Poyurovsky MV, Prives C . (2004). p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18: 3041–3054.

    CAS  Google Scholar 

  • Urist MJ, Di Como CJ, Lu ML, Charytonowicz E, Verbel D, Crum CP et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol 161: 1199–1206.

    CAS  Google Scholar 

  • van Bokhoven H, Brunner HG . (2002). Splitting p63. Am J Hum Genet 71: 1–13.

    CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    CAS  Google Scholar 

  • Vousden KH . (2000). P53: Death Star. Cell 103: 691–694.

    CAS  Google Scholar 

  • Wager M, Guilhot J, Blanc JL, Ferrand S, Milin S, Bataille B et al. (2006). Prognostic value of increase in transcript levels of Tp73 DeltaEx2-3 isoforms in low-grade glioma patients. Br J Cancer 95: 1062–1069.

    CAS  Google Scholar 

  • Waltermann A, Kartasheva NN, Dobbelstein M . (2003). Differential regulation of p63 and p73 expression. Oncogene 22: 5686–5693.

    CAS  Google Scholar 

  • Wan YY, DeGregori J . (2003). The survival of antigen-stimulated T cells requires NFkappaB-mediated inhibition of p73 expression. Immunity 18: 331–342.

    CAS  Google Scholar 

  • Wang X, Mori I, Tang W, Nakamura M, Nakamura Y, Sato M et al. (2002). p63 expression in normal, hyperplastic and malignant breast tissues. Breast Cancer 9: 216–219.

    Google Scholar 

  • Wang TY, Chen BF, Yang YC, Chen H, Wang Y, Cviko A et al. (2001). Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum Pathol 32: 479–486.

    CAS  Google Scholar 

  • Watanabe K, Ozaki T, Nakagawa T, Miyazaki K, Takahashi M, Hosoda M et al. (2002). Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. J Biol Chem 277: 15113–15123.

    CAS  Google Scholar 

  • Watson IR, Irwin MS . (2006). Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia 8: 655–666.

    CAS  Google Scholar 

  • Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A . (2002). Expression of p53 and its homologues in primary and recurrent squamous cell carcinomas of the head and neck. Int J Cancer 99: 22–28.

    CAS  Google Scholar 

  • Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA . (2003). The ΔNp63alpha phosphoprotein binds the p21 and 14-3-3sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutants. Mol Cell Biol 23: 2264–2276.

    CAS  Google Scholar 

  • Westfall MD, Joyner AS, Barbieri CE, Livingstone M, Pietenpol JA . (2005). Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of DeltaNp63alpha. Cell Cycle 4: 710–716.

    CAS  Google Scholar 

  • Yamaguchi H, Inokuchi K, Sakuma Y, Dan K . (2001). Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia 15: 1729–1734.

    CAS  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). p63, a p53 homolog at 3q2–29, encodes multiple products with transactivating, death inducing, and dominant negative activities. Mol Cell 2: 305–316.

    CAS  Google Scholar 

  • Yang A, McKeon F . (2000). p63 and p73: p53 mimics, menaces and more. Nat Rev 1: 199–207.

    CAS  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398: 714–718.

    CAS  Google Scholar 

  • Yang A, Walker N, Bronson RT, Kaghad M, Oosterwegel M, Bonnin J et al. (2000). p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumors. Nature 404: 99–103.

    CAS  Google Scholar 

  • Yang A, Kaghad M, Caput D, McKeon F . (2002). On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18: 90–95.

    Google Scholar 

  • Yang A, Zhu Z, Kapranov P, McKeon F, Church GM, Gingeras TR et al. (2006). Relationship between p63 binding, DNA sequence, transcription activity and biological function in human cells. Mol Cell 24: 593–602.

    CAS  Google Scholar 

  • Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY et al. (1999). p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399: 814–817.

    CAS  Google Scholar 

  • Zaika A, Irwin M, Sansome C, Moll UM . (2001). Oncogenes induce and activate endogenous p73 protein. J Biol Chem 276: 11310–11316.

    CAS  Google Scholar 

  • Zaika AI, Slade N, Erster SH, Sansome C, Joseph TW, Pearl M et al. (2002). DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196: 765–780.

    CAS  Google Scholar 

  • Zamo A, Malpeli G, Scarpa A, Doglioni C, Chilosi M, Menestrina F . (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Mod Pathol 18: 1448–1453.

    CAS  Google Scholar 

  • Zangen R, Ratovitski E, Sidransky D . (2005). DeltaNp63alpha Levels Correlate with Clinical Tumor Response to Cisplatin. Cell Cycle 4: 1313–1315.

    CAS  Google Scholar 

  • Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X et al. (1999). MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 19: 3257–3266.

    CAS  Google Scholar 

  • Zhu J, Jiang J, Zhou W, Chen X . (1998). The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 58: 5061–5065.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank James Rocco, Nabeel Bardeesy and Chee-Onn Leong for helpful discussions and for critical review of the paper. This work was supported by NIH/NICDR DE-15945, by the Mary Kay Ash Charitable Foundation, and by the Tracey Davis Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L W Ellisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeYoung, M., Ellisen, L. p63 and p73 in human cancer: defining the network. Oncogene 26, 5169–5183 (2007). https://doi.org/10.1038/sj.onc.1210337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210337

Keywords

This article is cited by

Search

Quick links