Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The Bcl-2 apoptotic switch in cancer development and therapy

Abstract

Impaired apoptosis is both critical in cancer development and a major barrier to effective treatment. In response to diverse intracellular damage signals, including those evoked by cancer therapy, the cell's decision to undergo apoptosis is determined by interactions between three factions of the Bcl-2 protein family. The damage signals are transduced by the diverse ‘BH3-only’ proteins, distinguished by the BH3 domain used to engage their pro-survival relatives: Bcl-2, Bcl-xL, Bcl-w, Mcl-1 and A1. This interaction ablates pro-survival function and allows activation of Bax and Bak, which commit the cell to apoptosis by permeabilizing the outer membrane of the mitochondrion. Certain BH3-only proteins (e.g. Bim, Puma) can engage all the pro-survival proteins, but others (e.g. Bad, Noxa) engage only subsets. Activation of Bax and Bak appears to require that the BH3-only proteins engage the multiple pro-survival proteins guarding Bax and Bak, rather than binding to the latter. The balance between the pro-survival proteins and their BH3 ligands regulates tissue homeostasis, and either overexpression of a pro-survival family member or loss of a proapoptotic relative can be oncogenic. Better understanding of the Bcl-2 family is clarifying its role in cancer development, revealing how conventional therapy works and stimulating the search for ‘BH3 mimetics’ as a novel class of anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams JM . (2003). Ways of dying: multiple pathways to apoptosis. Genes Dev 17: 2481–2495.

    CAS  PubMed  Google Scholar 

  • Akiyama T, Bouillet P, Miyazaki T, Kadono Y, Chikuda H, Chung UI et al. (2003). Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J 22: 6653–6664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace Jr AJ . (2000). An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 60: 6101–6110.

    CAS  PubMed  Google Scholar 

  • Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B et al. (2005). Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24: 2096–2103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot G, Cartron PF, Er E, Oliver L, Juin P, Armstrong LC et al. (2006). TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ [Epub ahead of print].

  • Bouillet P, Cory S, Zhang L-C, Strasser A, Adams JM . (2001). Degenerative disorders caused by Bcl-2 deficiency are prevented by loss of its BH3-only antagonist Bim. Dev Cell 1: 645–653.

    CAS  PubMed  Google Scholar 

  • Bouillet P, Metcalf D, Huang DCS, Tarlinton DM, Kay TWH, Köntgen F et al. (1999). Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286: 1735–1738.

    CAS  PubMed  Google Scholar 

  • Bouillet P, Purton JF, Godfrey DI, Zhang L-C, Coultas L, Puthalakath H et al. (2002). BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415: 922–926.

    CAS  PubMed  Google Scholar 

  • Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P et al. (2004). The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16: 807–818.

    CAS  PubMed  Google Scholar 

  • Certo M, Moore Vdel G, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. (2006). Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9: 351–365.

    CAS  PubMed  Google Scholar 

  • Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P et al. (2006). A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene [Epub ahead of print].

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. (2005). Differential targeting of pro-survival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17: 393–403.

    CAS  PubMed  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ . (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301: 513–517.

    CAS  PubMed  Google Scholar 

  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. (2001). BCL-2, BCL-xL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705–711.

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010–1014.

    CAS  PubMed  Google Scholar 

  • Chou CH, Lee RS, Yang-Yen HF . (2006). An internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway. Mol Biol Cell 17: 3952–3963.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI . (2006). The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443: 214–217.

    CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Concannon CG, Koehler BF, Reimertz C, Murphy BM, Bonner C, Thurow N et al. (2006). Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene [Epub ahead of print].

  • Cory S, Adams JM . (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2: 647–656.

    CAS  PubMed  Google Scholar 

  • Cory S, Huang DCS, Adams JM . (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607.

    CAS  PubMed  Google Scholar 

  • Cuconati A, Mukherjee C, Perez D, White E . (2003). DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17: 2922–2932.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danial NN, Korsmeyer SJ . (2004). Cell death: critical control points. Cell 116: 205–219.

    CAS  PubMed  Google Scholar 

  • Degenhardt K, Chen G, Lindsten T, White E . (2002). BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell 2: 193–203.

    CAS  PubMed  Google Scholar 

  • Deng X, Gao F, Flagg T, May Jr WS . (2004). Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci USA 101: 153–158.

    CAS  PubMed  Google Scholar 

  • Deverman BE, Cook BL, Manson SR, Niederhoff RA, Langer EM, Rosová I et al. (2002). Bcl-xL deamidation is a critical switch in the regulation of the response to DNA damage. Cell 111: 51–62.

    CAS  PubMed  Google Scholar 

  • Deverman BE, Cook BL, Manson SR, Niederhoff RA, Langer EM, Rosová I et al. (2003). Bcl-xL deamidation is a critical switch in the regulation of the response to DNA damage. Cell 115: 503.

    CAS  Google Scholar 

  • Dijkers PF, Medema RH, Lammers JJ, Koenderman L, Coffer PJ . (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10: 1201–1204.

    CAS  PubMed  Google Scholar 

  • Dzhagalov I, St John A, He YW . (2006). The anti-apoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood [Epub ahead of print].

  • Egle A, Harris AW, Bath ML, O'Reilly L, Cory S . (2004a). VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103: 2276–2283.

    CAS  PubMed  Google Scholar 

  • Egle A, Harris AW, Bouillet P, Cory S . (2004b). Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 101: 6164–6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eischen CM, Rehg JE, Korsmeyer SJ, Cleveland JL . (2002). Loss of Bax alters tumor spectrum and tumor numbers in ARF-deficient mice. Cancer Res 62: 2184–2191.

    CAS  PubMed  Google Scholar 

  • Eischen CM, Woo D, Roussel MF, Cleveland JL . (2001). Apoptosis triggered by myc-induced suppression of Bcl-XL or Bcl-2 Is bypassed during lymphomagenesis. Mol Cell Biol 21: 5063–5070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L et al. (2005). BH3-only proteins Puma and Bim are rate-limiting for {gamma}-radiation and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106: 4131–4138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez Y, Verhaegen M, Miller TP, Rush JL, Steiner P, Opipari Jr AW et al. (2005). Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res 65: 6294–6304.

    CAS  PubMed  Google Scholar 

  • Fesik SW . (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5: 876–885.

    CAS  PubMed  Google Scholar 

  • Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H et al. (2006). Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281: 31440–31447.

    CAS  PubMed  Google Scholar 

  • Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N et al. (2004). Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279: 21085–21095.

    CAS  PubMed  Google Scholar 

  • Green DR . (2005). Apoptotic pathways: ten minutes to dead. Cell 121: 671–674.

    CAS  PubMed  Google Scholar 

  • Hamasaki A, Sendo F, Nakayama K, Ishida N, Negishi I, Nakayama K-I et al. (1998). Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J Exp Med 188: 1985–1992.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. (2005). Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436: 807–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemann MT, Zilfou JT, Zhao Z, Burgess DJ, Hannon GJ, Lowe SW . (2004). Suppression of tumorigenesis by the p53 target PUMA. Proc Natl Acad Sci USA 101: 9333–9338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J et al. (2002). Activated T cell death in vivo mediated by pro-apoptotic Bcl-2 family member, Bim. Immunity 16: 759–767.

    CAS  PubMed  Google Scholar 

  • Hinds MG, Day CL . (2005). Regulation of apoptosis: uncovering the binding determinants. Curr Opin Struct Biol 15: 690–699.

    CAS  PubMed  Google Scholar 

  • Hsu YT, Youle RJ . (1997). Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272: 13829–13834.

    CAS  PubMed  Google Scholar 

  • Hsu Y-T, Youle RJ . (1998). Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273: 10777–10783.

    CAS  PubMed  Google Scholar 

  • Huang DC, Hahne M, Schroeter M, Frei K, Fontana A, Villunger A et al. (1999). Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL . Proc Natl Acad Sci USA 96: 14871–14876.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DCS, Strasser A . (2000). BH3-only proteins – essential initiators of apoptotic cell death. Cell 103: 839–842.

    CAS  PubMed  Google Scholar 

  • Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M . (2000). Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 97: 10872–10877.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328.

    CAS  PubMed  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW . (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164.

    CAS  PubMed  Google Scholar 

  • Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ . (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443: 658–662.

    CAS  PubMed  Google Scholar 

  • Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ et al. (2006a). Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8: 1348–1358.

    CAS  PubMed  Google Scholar 

  • Kim BJ, Ryu SW, Song BJ . (2006b). JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation, mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281: 21256–21265.

    CAS  PubMed  Google Scholar 

  • Kim PK, Annis MG, Dlugosz PJ, Leber B, Andrews DW . (2004). During apoptosis bcl-2 changes membrane topology at both the endoplasmic reticulum and mitochondria. Mol Cell 14: 523–529.

    CAS  PubMed  Google Scholar 

  • Knudson CM, Johnson GM, Lin Y, Korsmeyer SJ . (2001). Bax accelerates tumorigenesis in p53-deficient mice. Cancer Res 61: 659–665.

    CAS  PubMed  Google Scholar 

  • Kondo S, Shinomura Y, Miyazaki Y, Kiyohara T, Tsutsui S, Kitamura S et al. (2000). Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 60: 4328–4330.

    CAS  PubMed  Google Scholar 

  • Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. (2006). Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10: 375–388.

    CAS  PubMed  Google Scholar 

  • Kuribara R, Honda H, Matsui H, Shinjyo T, Inukai T, Sugita K et al. (2004). Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitor. Mol Cell Biol 24: 6172–6183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC et al. (2006). Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 103: 14907–14912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. (2005). BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17: 525–535.

    CAS  PubMed  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342.

    CAS  PubMed  Google Scholar 

  • Lakhani SA, Masud A, Kuida K, Porter Jr GA, Booth CJ, Mehal WZ et al. (2006). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311: 847–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letai A, Bassik M, Walensky L, Sorcinelli M, Weiler S, Korsmeyer S . (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183–192.

    CAS  PubMed  Google Scholar 

  • Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ . (2003). Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 278: 18811–18816.

    CAS  PubMed  Google Scholar 

  • Lindsten T, Ross AJ, King A, Zong W, Rathmell JC, Shiels HA et al. (2000). The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 6: 1389–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Dai S, Zhu Y, Marrack P, Kappler JW . (2003). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19: 341–352.

    CAS  PubMed  Google Scholar 

  • Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G et al. (2003). Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22: 6785–6793.

    CAS  PubMed  Google Scholar 

  • Lucken-Ardjomande S, Martinou JC . (2005). Newcomers in the process of mitochondrial permeabilization. J Cell Sci 118: 473–483.

    CAS  PubMed  Google Scholar 

  • McDonnell TJ, Deane N, Platt FM, Nuñez G, Jaeger U, McKearn JP et al. (1989). bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57: 79–88.

    CAS  PubMed  Google Scholar 

  • McDonnell TJ, Korsmeyer SJ . (1991). Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349: 254–256.

    CAS  PubMed  Google Scholar 

  • Meijerink JPP, Mensink EJBM, Wang K, Sedlak TW, Slöetjes AW, de Witte T et al. (1998). Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91: 2991–2997.

    CAS  PubMed  Google Scholar 

  • Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al. (2006). Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood [Epub ahead of print].

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    CAS  PubMed  Google Scholar 

  • Ming L, Wang P, Bank A, Yu J, Zhang L . (2006). PUMA dissociates Bax and Bcl-XL to induce apoptosis in colon cancer cells. J Biol Chem 281: 16034–16042.

    CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    CAS  PubMed  Google Scholar 

  • Moldoveanu T, Liu Q, Tocilj A, Watson M, Shore G, Gehring K . (2006). The X-ray structure of a Bak homodimer reveals an inhibitory zinc binding site. Mol Cell 24: 677–688.

    CAS  PubMed  Google Scholar 

  • Motoyama N, Kimura T, Takahashi T, Watanabe T, Nakano T . (1999). bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J Exp Med 189: 1691–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motoyama N, Wang FP, Roth KA, Sawa H, Nakayama K, Nakayama K et al. (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x deficient mice. Science 267: 1506–1510.

    CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama K-I, Negishi I, Kuida K, Sawa H, Loh DY . (1994). Targeted disruption of bcl-2αβ in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci USA 91: 3700–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama K-I, Nakayama K, Izumi N, Kulda K, Shinkai Y, Louie MC et al. (1993). Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261: 1584–1588.

    CAS  PubMed  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S . (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112: 481–490.

    CAS  PubMed  Google Scholar 

  • Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F et al. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17: 1475–1486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS . (2005). The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4: 443–449.

    CAS  PubMed  Google Scholar 

  • Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM . (1999). Constitutive bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci USA 96: 14943–14948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh KJ, Barbuto S, Pitter K, Morash J, Walensky LD, Korsmeyer SJ . (2006). A membrane-targeted BID BH3 peptide is sufficient for high potency activation of BAX in vitro. J Biol Chem 281: 36999–37008.

    CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    CAS  PubMed  Google Scholar 

  • Opferman J, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K et al. (2005). Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307: 1101–1104.

    CAS  PubMed  Google Scholar 

  • Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ . (2003). Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426: 671–676.

    CAS  PubMed  Google Scholar 

  • Parone PA, James DI, Da Cruz S, Mattenberger Y, Donze O, Barja F et al. (2006). Inhibiting the mitochondrial fission machinery does not prevent bax/bak-dependent apoptosis. Mol Cell Biol 26: 7397–7408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel JH, McMahon SB . (2006). BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC induced apoptosis. J Biol Chem [Epub ahead of print].

  • Pellegrini M, Belz G, Bouillet P, Strasser A . (2003). Shut down of an acute T cell immune response to viral infection is mediated by the pro-apoptotic Bcl-2 homology 3-only protein Bim. Proc Natl Acad Sci USA 100: 14175–14180.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N et al. (1998). Apoptosis regulator Bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci USA 95: 12424–12431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B et al. (2003). JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38: 899–914.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, Strasser A . (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9: 505–512.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, Huang DCS, O'Reilly LA, King SM, Strasser A . (1999). The pro-apoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3: 287–296.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE et al. (2001). Bmf: a pro-apoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293: 1829–1832.

    CAS  PubMed  Google Scholar 

  • Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V et al. (2005). Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 65: 6282–6293.

    CAS  PubMed  Google Scholar 

  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al. (1997). Somatic frameshift mutations in the bax gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.

    CAS  PubMed  Google Scholar 

  • Reginato MJ, Mills KR, Becker EB, Lynch DK, Bonni A, Muthuswamy SK et al. (2005). Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 25: 4591–4601.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J et al. (2003). Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 5: 733–740.

    CAS  PubMed  Google Scholar 

  • Rinkenberger JL, Horning S, Klocke B, Roth K, Korsmeyer SJ . (2000). Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev 14: 23–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD et al. (1998). Testicular degeneration in Bclw-deficient mice. Nat Genet 18: 251–256.

    CAS  PubMed  Google Scholar 

  • Sadowsky JD, Fairlie WD, Hadley EB, Lee H-S, Umezawa N, Nikolovska-Coleska Z et al. (2006). Characterization of (a/b+a)-peptide antagonists of BH3 domain/Bcl-XLrecognition: toward general strategies for developing foldamer-based inhibitors of protein–protein interactions. J Am Chem Soc in press.

  • Sadowsky JD, Schmitt MA, Lee HS, Umezawa N, Wang S, Tomita Y et al. (2005). Chimeric (alpha/beta+alpha)-peptide ligands for the BH3-recognition cleft of Bcl-XL: critical role of the molecular scaffold in protein surface recognition. J Am Chem Soc 127: 11966–11968.

    CAS  PubMed  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275: 983–986.

    CAS  PubMed  Google Scholar 

  • Schmidt T, Korner K, Karsunky H, Korsmeyer S, Muller R, Moroy T . (1999). The activity of the murine bax promoter is regulated by Sp1/3 and E-box binding proteins but not by p53. Cell Death Differ 6: 873–882.

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Rosenthal CT, Lowe SW . (2000). Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6: 1029–1035.

    CAS  PubMed  Google Scholar 

  • Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ . (1991). bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67: 879–888.

    CAS  PubMed  Google Scholar 

  • Shibata MA, Liu ML, Knudson MC, Shibata E, Yoshidome K, Bandey T et al. (1999). Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 18: 2692–2701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker AR, Oleksijew A, Bauch J, Belli BA, Borre T, Bruncko M et al. (2006). A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res 66: 8731–8739.

    CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Bath ML, Cory S . (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348: 331–333.

    CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Cory S . (1991a). Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67: 889–899.

    CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Cory S . (1993). Eμ-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 8: 1–9.

    CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Huang DCS, Krammer PH, Cory S . (1995). Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14: 6136–6147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser A, O'Connor L, Dixit VM . (2000). Apoptosis signaling. Ann Rev Biochem 69: 217–245.

    CAS  PubMed  Google Scholar 

  • Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S et al. (1991b). Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA 88: 8661–8665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser A . (2005). The role of BH3-only proteins in the immune system. Nat Rev Immunol 5: 189–200.

    CAS  PubMed  Google Scholar 

  • Suzuki M, Youle RJ, Tjandra N . (2000). Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103: 645–654.

    CAS  PubMed  Google Scholar 

  • Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al. (2005). Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24: 1348–1358.

    CAS  PubMed  Google Scholar 

  • Tan TT, Degenhardt K, Nelson DA, Beaudoin B, Nieves-Neira W, Bouillet P et al. (2005). Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7: 227–238.

    CAS  PubMed  Google Scholar 

  • van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. (2006). The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10: 389–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaux DL, Cory S, Adams JM . (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442.

    CAS  PubMed  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ . (1993). Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75: 229–240.

    CAS  PubMed  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ et al. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302: 1036–1038.

    CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    CAS  PubMed  Google Scholar 

  • Wagner KU, Claudio E, Rucker III EB, Riedlinger G, Broussard C, Schwartzberg PL et al. (2000). Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development 127: 4949–4958.

    CAS  PubMed  Google Scholar 

  • Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD et al. (2004). Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305: 1466–1470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J et al. (2006). A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 24: 199–210.

    CAS  PubMed  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Adams JM . (2005). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17: 617–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al. (2005). Pro-apoptotic Bak is sequestered by Mc1-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19: 1294–1305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science in press.

  • Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ . (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281–1292.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin CY, Knudson CM, Korsmeyer SJ, Van Dyke T . (1997). Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640.

    CAS  PubMed  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-xL . Cell 87: 619–628.

    CAS  PubMed  Google Scholar 

  • Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ . (2000). Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290: 1761–1765.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Adachi M, Kawamura R, Imai K . (2005). Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell Death Differ 13: 129–140.

    Google Scholar 

  • Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q . (2005). Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci USA 102: 16090–16095.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Q, Gao W, Du F, Wang X . (2005). Mule/ARF-BP1, a BH3-Only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121: 1085–1095.

    CAS  PubMed  Google Scholar 

  • Zhu Y, Liu X, Hildeman D, Peyerl FW, White J, Kushnir E et al. (2006). Bax does not have to adopt its final form to drive T cell death. J Exp Med 203: 1147–1152.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Swanson BJ, Wang M, Hildeman DA, Schaefer BC, Liu X et al. (2004). Constitutive association of the proapoptotic protein Bim with Bcl-2-related proteins on mitochondria in T cells. Proc Natl Acad Sci USA 101: 7681–7686.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB . (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15: 1481–1486.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The issues addressed here have benefited greatly from discussions with many colleagues, including in particular our senior colleagues Drs David Huang and Andreas Strasser, as well as Drs Simon Willis and Jamie Fletcher. This research is supported by the National Health and Medical Research Council (Program Grant 257502), the Leukmia and Lymphoma Society (SCOR Grant 7015-02) and the US National Cancer Institute (CA80188, CA43540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, J., Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007). https://doi.org/10.1038/sj.onc.1210220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210220

Keywords

This article is cited by

Search

Quick links